ab9b00923_si_001.pdf (308.3 kB)

Wnt/β-Catenin Signaling Pathway Regulates Osteogenesis for Breast Cancer Bone Metastasis: Experiments in an In Vitro Nanoclay Scaffold Cancer Testbed

Download (308.3 kB)
journal contribution
posted on 13.11.2019, 18:37 by Sumanta Kar, Haneesh Jasuja, Dinesh R. Katti, Kalpana S. Katti
Breast cancer shows a high affinity toward bone, causing bone-related complications, leading to a poor clinical prognosis. The Wnt/β-catenin signaling pathway has been well-documented for the bone regenerative process; however, the regulation of the Wnt/β-catenin pathway in breast cancer bone metastasis is poorly explored. Here, we report that the Wnt/β-catenin signaling pathway has a significant effect on osteogenesis during breast cancer bone metastasis. In this study, we have created a 3D in vitro breast cancer bone metastatic microenvironment using nanoclay-based scaffolds along with osteogenically differentiated human mesenchymal stem cells (MSCs) and human breast cancer cells (MCF-7 and MDA-MB-231). The results showed upregulation in expressions of Wnt-related factors (Wnt-5a, β-catenin, AXIN2, and LRP5) in sequential cultures of MSCs with MCF-7 as compared to sequential cultures of MSCs with MDA-MB-231. Sequential cultures of MSCs with MCF-7 also showed higher β-catenin expression on the protein levels than sequential cultures of MSCs with MDA-MB-231. Stimulation of Wnt/β-catenin signaling in sequential cultures of MSCs with MCF-7 by ET-1 resulted in increased bone formation, whereas inactivation of Wnt/β-catenin signaling by DKK-1 displayed a significant decrease in bone formation, mimicking bone lesions in breast cancer patients. These data collectively demonstrate that Wnt/β-catenin signaling governs osteogenesis within the tumor-harboring bone microenvironment, leading to bone metastasis. The nanoclay scaffold provides a unique testbed approach for analysis of the pathways of cancer metastasis.

History

Exports