American Chemical Society
ja101366x_si_001.pdf (706.33 kB)

Nanostructured Liquid Crystals Combining Ionic and Electronic Functions

Download (706.33 kB)
journal contribution
posted on 2010-06-09, 00:00 authored by Sanami Yazaki, Masahiro Funahashi, Junko Kagimoto, Hiroyuki Ohno, Takashi Kato
New molecular materials combining ionic and electronic functions have been prepared by using liquid crystals consisting of terthiophene-based mesogens and terminal imidazolium groups. These liquid crystals show thermotropic smectic A phases. Nanosegregation of the π-conjugated mesogens and the ionic imidazolium moieties leads to the formation of layered liquid-crystalline (LC) structures consisting of 2D alternating pathways for electronic charges and ionic species. These nanostructured materials act as efficient electrochromic redox systems that exhibit coupled electrochemical reduction and oxidation in the ordered bulk states. For example, compound 1 having the terthienylphenylcyanoethylene mesogen and the imidazolium triflate moiety forms the smectic LC nanostructure. Distinct reversible electrochromic responses are observed for compound 1 without additional electrolyte solution on the application of double-potential steps between 0 and 2.5 V in the smectic A phase at 160 °C. In contrast, compound 2 having a tetrafluorophenylterthiophene moiety and compound 3 having a phenylterthiophene moiety exhibit irreversible cathodic reduction and reversible anodic oxidation in the smectic A phases. The use of poly(3,4-ethylenedioxythiophene)−poly(4-styrene sulfonate) (PEDOT−PSS) as an electron-accepting layer on the cathode leads to the distinct electrochromic responses for 2 and 3. These results show that new self-organized molecular redox systems can be built by nanosegregated π-conjugated liquid crystals containing imidazolium moieties with and without electroactive thin layers on the electrodes.