es7b01224_si_001.pdf (3.17 MB)
Download fileImpact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles
journal contribution
posted on 2017-07-06, 00:00 authored by Vesna Micić, Doris Schmid, Nathan Bossa, Andreas Gondikas, Milica Velimirovic, Frank von der Kammer, Mark R. Wiesner, Thilo HofmannThe
affinity between nanoscale zerovalent iron (nano-ZVI) and mineral
surfaces hinders its mobility, and hence its delivery into contaminated
aquifers. We have tested the hypothesis that the attachment of poly(acrylic
acid)-coated nano-ZVI (PAA-nano-ZVI) to mineral surfaces could be
limited by coating such surfaces with sodium (Na) humate prior to
PAA-nano-ZVI injection. Na humate was expected to form a coating over
favorable sites for PAA-nano-ZVI attachment and hence reduce the affinity
of PAA-nano-ZVI for the collector surfaces through electrosteric repulsion
between the two interpenetrating charged polymers. Column experiments
demonstrated that a low concentration (10 mg/L) Na humate solution
in synthetic water significantly improved the mobility of PAA-nano-ZVI
within a standard sand medium. This effect was, however, reduced in
more heterogeneous natural collector media from contaminated sites,
as not an adequate amount of the collector sites favorable for PAA-nano-ZVI
attachment within these media appear to have been screened by the
Na humate. Na humate did not interact with the surfaces of acid-washed
glass beads or standard Ottawa sand, which presented less surface
heterogeneity. Important factors influencing the effectiveness of
Na humate application in improving PAA-nano-ZVI mobility include the
solution chemistry, the Na humate concentration, and the collector
properties.