Supporting Information

Impact of sodium humate coating on collector surfaces on deposition of polymer-coated nano-iron particles

Vesna Micić[†], Doris Schmid[†], Nathan Bossa[‡], Andreas Gondikas^{†, §}, Milica Velimirovic[†], Frank von der Kammer[†], Mark R. Wiesner[‡], Thilo Hofmann^{†, *}

List of tables

Table S 1. Properties of U.S. EPA moderately hard synthetic standard water
Table S 2. Chemical composition of the collectors
List of figures
Figure S 1 . SEC chromatograms showing molecular weight distributions in < 0.1 μ m filtrates of 10 and 100 mg/L Na humate solutions in synthetic water at pH 7.5.
Figure S 2. Scanning electron micrographs of the collectors.
Figure S 3 . X-ray diffractograms of the fine collector material, with an insert showing a detail from the diffractogram of the fines in Ottawa sand.
Figure S 4. X-ray diffractograms of the bulk pulverized collector material.
Figure S 5 . Duplicate breakthrough curves for 10 mg/L Na humate in acid-washed glass beads (left) and acid-washed Ottawa sand (right)
Figure S 6 . Scanning electron micrographs of the collector surfaces, with the arrow indicating the trend towards increasing surface roughness.
Figure S 7 . Duplicate breakthrough curves for 10 mg/L Na humate in the collectors from Site 1(left) and Site 2(right).

[†] Department of Environmental Geosciences and Environmental Science Research Network, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria

[‡] Department of Civil and Environmental Engineering, Pratt School of Engineering and Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States

[§] Department of Marine Sciences, University of Gothenburg, Guldhedsgatan 5a, 40530 Göteborg, Sweden

^{*} Corresponding author

Table S 1. Properties of U.S. EPA moderately hard synthetic standard water. The anion content was determined by IC (ICS-1000, Dionex), except for the HCO₃⁻ content which was determined by titration with 0.1 N HCl to pH 4.3 (Appelo and Postma, 2004). The cation content was determined by ICP-OES (Optima 5300 DV, PerkinElmer). The pH was measured using a pH meter equipped with a pre-calibrated micro combination electrode (WTW GmbH); EC was measured using a standard conductivity cell (Tetracon®325, WTW GmbH).

Ca ²⁺	Mg ²⁺	Na [⁺]	K⁺	Cl	SO ₄ ²⁻	NO ₃	HCO ₃	рН	EC	IS
(mM)	(mM)	(mM)	(mM)	(mM)	(mM)	(mM)	(mM)	(-)	(μS/cm)	(mM)
0.3	0.5	1.1	0.1	0.1	0.8	1.1	1.0	7.7	297	4.8 [†] /4.9 [‡]

[†]calculated as: $IS(M) = 1.6 \times 10^{-5} \times EC(\mu S/cm)$ (McCleskey et al. 2012)

[‡]calculated as: $IS(M) = \frac{1}{2}\sum_i z_i^2 c_i(M)$ (Laxen 1977).

Figure S 1. SEC chromatograms showing molecular weight (MW) distributions in < 0.1 μ m filtrates of 10 and 100 mg/L Na humate solutions in synthetic water at pH 7.5; 3.6 log Da \approx 3,980 Da; 2.6 log Da \approx 400 Da; 1.8 log Da \approx 63 Da. The MW scale is based on the retention time of MW standards as described in the Materials and Methods section.

Table S 2. TOC content and chemical composition of the collectors.

	Glass beads*	Ottawa sand†	Dorsilit®8	Dorsilit®8	Site 1	Site 2
			sand a.w.	sand		
TOC (%)	n.d.	n.d.	n.d.	n.d.	n.d.	0.042
SiO ₂ (%)	100	99.8	98.11	98.45	48.10	69.74
Al ₂ O ₃ (%)		0.06	0.38	0.46	3.50	10.23
Fe ₂ O ₃ (%)		0.02	0.03	0.18	1.59	5.95
CaO (%)		0.01	< 0.02	0.02	20.68	2.26
MgO (%)		0.01	0.04	0.03	3.57	1.52
Na ₂ O (%)		0.01	0.02	0.03	0.70	1.85
K ₂ O (%)		0.01	0.13	0.10	0.76	3.45
MnO (%)		n.d.	< 0.002	< 0.002	0.04	0.11
TiO ₂ (%)		0.01	0.04	0.08	0.14	0.73
P ₂ O ₅ (%)		n.d.	0.01	0.01	0.06	0.16
L.O.I. (%)		n.a.	0.18	0.23	19.71	2.72

^{*} manufacturer's specification; † from Ojuri and Fijabi (2012); n.d. = not detected, < 0.005%; L.O.I. = loss on ignition; n.a. = not available; a.w. = acid-washed. L.O.I. was determined after drying 2 g of sample for one hour at 105°C, followed by the "ignition" of samples at 1,000°C and cooling down in an exsiccator.

Figure S 2. Scanning electron micrographs of the collectors. Magnification 50 x; a.w. = acid-washed.

Figure S 3. X-ray diffractograms of the fine collector material, with an insert showing a detail from the diffractogram of the fines in Ottawa sand (a.w. = acid-washed). The fine fraction was isolated from the bulk suspension in deionized water by directly collecting the supernatant after 6 minutes of ultrasonication in a Branson Ultrasonics Sonifier™ 450 (400 W indicated power).

Figure S 4. X-ray diffractograms of the bulk pulverized collector material (a.w. = acid-washed).

Figure S 5. Duplicate breakthrough curves for 10 mg/L Na humate in acid-washed glass beads (left) and acid-washed Ottawa sand (right); a.w. = acid-washed.

Figure S 6. Scanning electron micrographs of the collector surfaces, with the arrow indicating the trend towards increasing surface roughness. Magnification 1,000 x; a.w. = acid-washed.

Figure S 7. Duplicate breakthrough curves for 10 mg/L Na humate in the collectors from Site 1(left) and Site 2(right).

References

Appelo, C.A.J. and Postma, D. (2004) Geochemistry, Groundwater and Pollution, CRC Press, Boca Raton, FL, USA

Laxen, D.P.H. (1977) Specific Conductance Method for Quality-Control in Water Analysis. Water Research 11(1), 91-94.

McCleskey, R.B., Nordstrom, D.K. and Ryan, J.N. (2012) Comparison of electrical conductivity calculation methods for natural waters. Limnology and Oceanography-Methods 10, 952-967.

Ojuri O.O. and Fijabi D.O. (2012) Standard sand for geotechnical engineering and geoenvironmental research in Nigeria: Igbokoda sand. Advances in Environmental Research, 1 (4), 305-321.