American Chemical Society
Browse

Electrochemistry and Catalytic Properties for Dioxygen Reduction Using Ferrocene-Substituted Cobalt Porphyrins

Download (188.56 kB)
journal contribution
posted on 2014-08-18, 00:00 authored by Bin Sun, Zhongping Ou, Deying Meng, Yuanyuan Fang, Yang Song, Weihua Zhu, Pavlo V. Solntsev, Victor N. Nemykin, Karl M. Kadish
Cobalt porphyrins having 0–4 meso-substituted ferrocenyl groups were synthesized and examined as to their electrochemical properties in N,N′-dimethylformamide (DMF) containing 0.1 M tetra-n-butylammonium perchlorate as a supporting electrolyte. The examined compounds are represented as (Fc)n(CH3Ph)4–nPorCo, where Por is a dianion of the substituted porphyrin, Fc and CH3Ph represent ferrocenyl and/or p-CH3C6H4 groups linked at the four meso-positions of the macrocycle, and n varies from 0 to 4. Each porphyrin undergoes two reversible one-electron reductions and two to six one-electron oxidations in DMF, with the exact number depending upon the number of Fc groups on the compound. The first electron addition is metal-centered to generate a Co­(I) porphyrin. The second is porphyrin ring-centered and leads to formation of a Co­(I) π-anion radical. The first oxidation of each Co­(II) porphyrin is metal-centered to generate a Co­(III) derivative under the given solution conditions. Each ferrocenyl substituent can also be oxidized by one electron, and this occurs at more positive potentials. Each compound was investigated as a catalyst for the electoreduction of dioxygen when adsorbed on a graphite electrode in 1.0 M HClO4. The number of electrons transferred (n) during the catalytic reduction was 2.0 for the three ferrocenyl substituted compounds, consistent with only H2O2 being produced as a product of the reaction. Most monomeric cobalt porphyrins exhibit n values between 2.6 and 3.1 under the same solution conditions, giving a mixture of H2O and H2O2 as a reduction product, although some monomeric porphyrins can give an n value of 4.0. Our results in the current study indicate that appending ferrocene groups directly to the meso positions of a porphyrin macrocycle will increase the selectivity of the oxygen reduction, resulting in formation of only H2O2 as a reaction product. This selectivity of the electrocatalytic oxygen reduction reaction is explained on the basis of steric hindrance by the ferrocene substituents which prevent dimerization.

History