Supporting Information ## Electrochemistry and Catalytic Properties for Dioxygen Reduction Using Ferrocene-substituted Cobalt Porphyrins Bin Sun^a, Zhongping Ou^a*, Deying Meng^a, Yuanyuan Fang^b, Yang Song^b, Weihua Zhu^a, Pavlo V. Solntsev,^c Victor N. Nemykin^c*, Karl M. Kadish^b* ^aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China ^bDepartment of Chemistry, University of Houston, Houston, TX 77204-5003, USA ^cDepartment of Chemistry&Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812-2496, USA **Figure S1.** Thin-layer UV-visible spectral changes of Fc₄PorCo^{II} **4** during the controlled potential oxidations in DMF containing 0.1 M TBAP. ## (a) Current-voltage curves ## (b) Koutecky-Levich plot **Figure S2.** (a) Current-voltage curves and (b) Koutecky-Levich plot for catalyzed reduction of O_2 at a rotating EPPG disk electrode coated with Fc_4PorCo^{II} 4 in 1.0 M HClO₄ saturated with air. Values of the electrode rotation rates (ω) are indicated on each curve. Potential scan rate = 50 mV/s.