am8b08383_si_001.pdf (1.45 MB)
Download fileBio-inspired Carbon Hole Transporting Layer Derived from Aloe Vera Plant for Cost-Effective Fully Printable Mesoscopic Carbon Perovskite Solar Cells
journal contribution
posted on 2018-08-21, 00:00 authored by Sawanta
S. Mali, Hyungjin Kim, Jyoti V. Patil, Chang Kook HongHerein,
we introduce a new ecofriendly naturally extracted cross-linked
carbon nanoparticles as a hole transporting layer (C-HTL) prepared
by an ancient Indian method for carbon based printable mesoscopic
perovskite solar cells (C-PSCs), which is low-cost so far used for
fully printable PSCs. The fabricated PSCs having Glass/FTO/mp-TiO2/ZrO2/perovskite/AV-C configuration exhibited current
density (JSC) of 20.50 ± 0.5 mAcm–2, open circuit voltage (VOC) of 0.965 ± 0.02 V and fill factor (FF) of 58 ± 2%, resulting
in 12.3 ± 0.2% power conversion efficiency (PCE) for MAPbI3 perovskite absorber. The aloe-vera processed carbon C-HTL
based PSCs yields up to 12.50% power conversion efficiency and 15.80%
efficiency for conventional spiro-MeOTAD based HTM. The air and moisture
stability >1000 h at >45% relative humidity (RH) for cross-linked
AV-C nanoparticle-based PSCs. This stability is very high compared
to conventional spiro-MeOTAD HTM-based PSCs. The prepared carbon nanoparticles
facilitate an excellent penetration of perovskite absorber in triple-layer-based
scaffold, which enables a high-quality perovskite crystal and results
in high PCE. This novel bio-inspired AV-C cross-linked nanoparticle-based
natural carbon C-HTL is low-cost until date. We believe this technique
would be suitable for and helpful toward fully printable and air-moisture-stable
PSCs.
History
Usage metrics
Categories
Keywords
spiro-MeOTAD HTM-based PSCsBio-inspired Carbon HoleOCcross-linked carbon nanoparticlesPCEefficiencyFFAloe Vera PlantC-PSCnovel bio-inspired AV-C cross-linked nanoparticle-basedcross-linked AV-C nanoparticle-based PSCsRHcarbon C-HTLMAPbI 3 perovskite absorberPrintable Mesoscopic Carbon Perovskite Solar Cells Herein