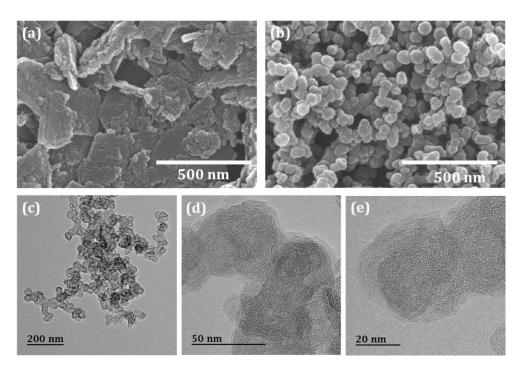

Supporting Information


'Bio-inspired' Carbon Hole Extraction Layer Derived from Aloe Vera Plant for Cost Effective Fully Printable Mesoscopic Perovskite Solar Cells

Sawanta S. Mali, Hyungjin Kim, Jyoti V. Patil and Chang Kook Hong* *Polymer Energy Materials Laboratory, School of Advanced Chemical Engineering, Chonnam National University, Gwangju, S. Korea-500757, Email: swanta@jnu.ac.kr (SSM), hongck@jnu.ac.kr (CKH)*

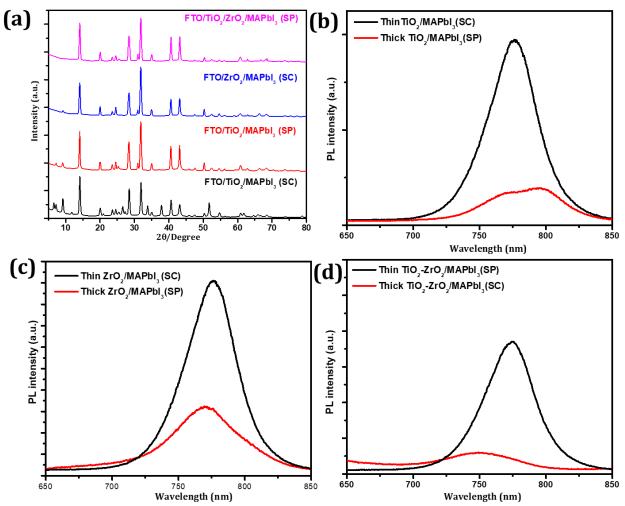

Fig. S-1 Thermogravimetric analysis (TGA) curves of as synthesized (black solid line) and annealed (red solid line) at 1000 °C AV-C powder sample.

Fig. S-2 Surface morphology of screen-printed commercial colloidal carbon and bioinspired AV-C after 12 hours' ball milling (a) top-view of screen printed commercial colloidal carbon (b) top-view screen printed AV-C and (c-e) TEM and HRTEM images of AV-C after ball milling for 12 hours at different magnification.

Fig. S-3 (a) XRD spectra MAPbI₃ deposited on different substrate. Note: SP: screen printed TiO_2 or ZrO_2 ; SC: spin coated TiO_2 or ZrO_2 and (b) normalized PL spectra of MAPbI₃ perovskite deposited on thin (black solid line) and thick (red solid line) TiO_2 mesoporous oxide (c) normalized PL spectra of MAPbI₃ perovskite deposited on thin (black solid line) and thick (red solid line) ZrO_2 (d) normalied PL spectra of MAPbI₃ perovskite deposited on thin (red solid line) and thick (black solid line) TiO_2 -ZrO₂ bilayers. *All PL spectra were recorded with excitation from perovskite side*.

Discussion Supplementary Fig. S-3: The structural properties of MAPbI₃ perovskite deposited on different oxide layer was analyzed by XRD measurements. In order to avoid the peak from AV-C we have recorded the XRD spectra only for perovskite layer deposited/infiltrated onto either mp-TiO₂, ZrO₂ or both oxide samples. The infiltrated or spin coated sample was further annealed at 50 °C for 1h and used for measurements. The XRD spectrum of mp-TiO₂/perovskite exhibits the strong peak at 2θ =14.1° which can be assigned (110) of MAPbI₃ crystal. All samples show strong peak at 14.1° which clearly exhibited formation of highly crystalline MAPbI₃ layer. Figure S-3b shows the PL spectra of MAPbI₃ deposited on thin and thick mp-TiO₂ which clearly shows double around 750-830 nm. Similar observation has been observed for ZrO₂/ MAPbI₃ sample however there is no doublet form may be due to front illumination. In case of TiO₂/ZrO₂/ MAPbI₃ sample the intensity of screen printed sample reduced drastically which clearly revealed the proper infiltration of MAPbI₃ solution and formation of crystalline MAPbI₃ crystal.

Fig. S-4 (a) XRD spectra MAPbI₃ and MAPbI_{3-x}Cl₃ deposited on FTO substrate.

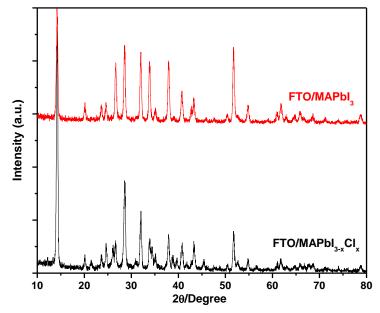
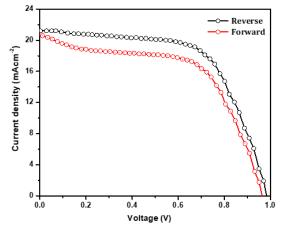
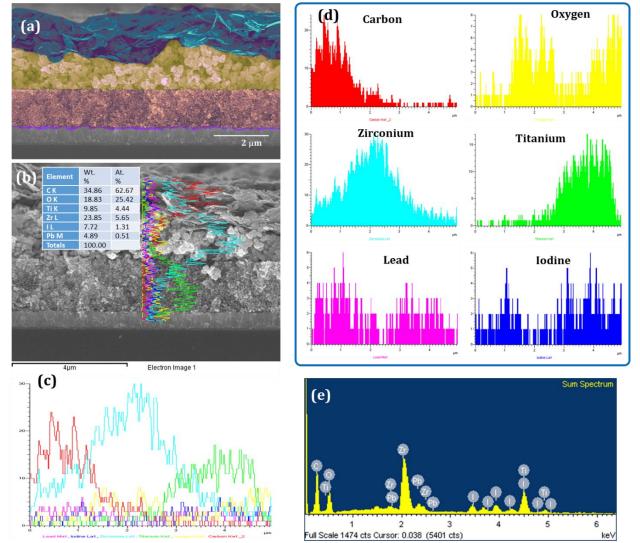
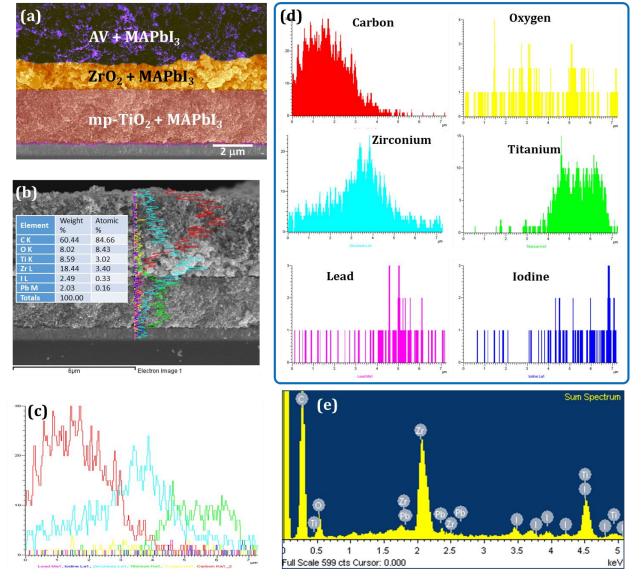




Fig. S-5 Hysteresis analysis of fully printable AV-C based PSC

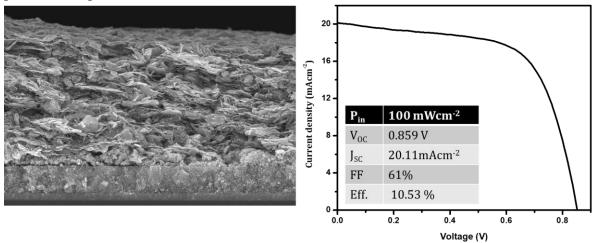
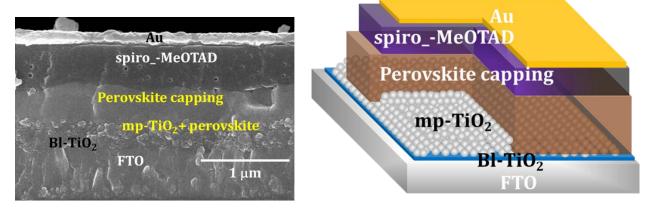
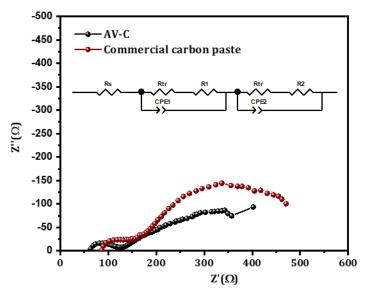


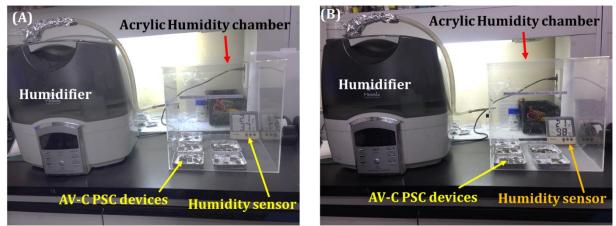
Scan	F	R
V _{oc} (V)	0.961	0.985
J _{SC} (mAcm ⁻²)	20.85	21.22
FF	57 %	61 %
Eff. (%)	11.42	12.75

Fig. S-6 EDS-line mapping of $FTO/Bl-TiO_2/(mp-TiO_2/ZrO_2)+MAPbI_3/carbon PSC$ (a) artificially colored cross sectional SEM graph of device (b, c) line profile of all elements (d) EDS line scanning profile of each element across the device from bottom-to-top (e) respective EDS spectrum

Fig. S-7 EDS-line mapping of FTO/Bl-TiO₂/(mp-TiO₂/ZrO₂) + MAPbI₃/AV-C (a) artificially colored cross sectional SEM graph of device (b, c) line profile of all elements (d) EDS line scanning profile of each element across the device from bottom-to-top (e) respective EDS spectrum

Fig. S-8 J-V characteristics of commercial carbon based fully printable PSC. Inset shows the photovoltaic parameters extracted from the J-V curve.


Fig. S-9 Cross-sectional SEM image of conventional spiro-MeOTAD based PSC.

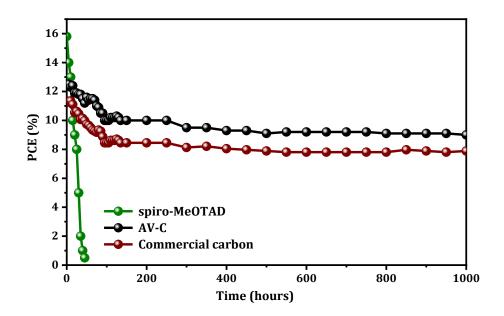

Fig. S-10 Solid state impedance spectroscopy (ssIS) (a) Nyquist plot of the AV-C and commercial colloidal carbon based PSCs recorded under illumination at 0.8 V bias. The inset shows the equivalent circuit used for the analysis.

Fig. S-11 Optical images of homemade humidity chamber (A) 37% humidity (B) 98% Humidity.

Fig. S-12 Ambient air-stability of spiro-MeOTAD and AV-C based PSCs stored under ambient condition with 65 % RH. Commercial carbon based device stability has been given for comparison.

