American Chemical Society
jp5b06626_si_001.pdf (869.43 kB)

Band Gap on/off Switching of Silicene Superlattice

Download (869.43 kB)
journal contribution
posted on 2015-09-03, 00:00 authored by Tian-Tian Jia, Meng-Meng Zheng, Xin-Yu Fan, Yan Su, Shu-Juan Li, Hai-Ying Liu, Gang Chen, Yoshiyuki Kawazoe
On the basis of density functional theory calculations with generalized gradient approximation, we have investigated in detail the cooperative effects of uniaxial strain and degenerate perturbation on manipulating the band gap in silicene. The uniaxial strain would split π bands into πa and πz bands, resulting in Dirac cone movement. Then, the hexagonal antidot would split πaz) bands into πa1 and πa2z1 and πz2) bands, accounting for the band gap opening in the superlattices with the Dirac cone being folded to the Γ point, which is a different mechanism as compared to the sublattice equivalence breaking. The energy interval between the split πa and πz bands could be tuned to switch band gap on and off, suggesting a reversible switch between the high charge carrier velocity properties of massless Fermions attributed to the linear energy dispersion relation around the Dirac point and the high on/off properties associated with a sizable band gap. In addition, the gap width could be continuously tuned by manipulating strain, resulting in fascinating application potentials.