American Chemical Society
Browse
sb9b00445_si_001.pdf (914.92 kB)

Modulating Pathway Performance by Perturbing Local Genetic Context

Download (914.92 kB)
journal contribution
posted on 2020-03-24, 15:36 authored by Carmen Lopez, Yuxin Zhao, Rick Masonbrink, Zengyi Shao
Combinatorial engineering is a preferred strategy for attaining optimal pathway performance. Previous endeavors have been concentrated on regulatory elements (e.g., promoters, terminators, and ribosomal binding sites) and/or open reading frames. Accumulating evidence indicates that noncoding DNA sequences flanking a transcriptional unit on the genome strongly impact gene expression. Here, we sought to mimic the effect imposed on expression cassettes by the genome. We created variants of the model yeast Saccharomyces cerevisiae with significantly improved fluorescence or cellobiose consumption rate by randomizing the sequences adjacent to the GFP expression cassette or the cellobiose-utilization pathway, respectively. Interestingly, nucleotide specificity was observed at certain positions and showed to be essential for achieving optimal cellobiose assimilation. Further characterization suggested that the modulation effects of the short sequences flanking the expression cassettes could be potentially mediated by remodeling DNA packaging and/or recruiting transcription factors. Collectively, these results indicate that the often-overlooked contiguous DNA sequences can be exploited to rapidly achieve balanced pathway expression, and the corresponding approach could be easily stacked with other combinatorial engineering strategies.

History