SUPPORTING INFORMATION

Modulating Pathway Performance by Perturbing Local Genetic Context

Carmen Lopez¹, Yuxin Zhao^{2, 3}, Rick Masonbrink⁴, and Zengyi Shao^{1, 3, 4, 5 *}

¹ Interdepartmental Microbiology Program, Iowa State University

² The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China

³ Department of Chemical and Biological Engineering, Iowa State University

⁴ Office of Biotechnology, Iowa State University

⁵ NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University

⁶ Ames Laboratory

*Correspondence to: Dr. Zengyi Shao, 4140 Biorenewables Research Laboratory, Iowa State University, Ames, IA 50011, USA Phone: 515-294-1132 Email: zyshao@iastate.edu

transformation. Plasmid was isolated from the variants selected based on the fluorescence on the petri dishes and re-transformed to evaluate the consistency. Fluorescence was measured by flow cytometry after 44-h culture. Significant difference (*) was observed between the high-expression group and the negative control (NC) (two-sample t-test; p<0.05), but not between the low-expression group and NC. Error bars represent the standard deviation of three biological replicates. The mark 'n.s.' indicates 'not significant' as determined by the statistical test.

Figure S2. Predicted nucleosome occupancy for upstream region to *ghl-1***.** Nucleosome occupancy as predicted by NuPop, a Hidden Markov Model^{1,2}. First plot shows strains carrying perturbations compared to negative control; remaining plots show individual profiles for clarity. Genetic context is represented in the axis of abscissas: yellow shade indicates promoter region, blue rectangle indicates 30-bp perturbation sequence and red shade indicates any upstream region. NFR stands for nucleosome free region and asterisk (*) shows outstanding changes in occupancy. Error bars represent error propagation.

Figure S3. Predicted nucleosome occupancy for upstream region to *cdt-1***.** Nucleosome occupancy as predicted by NuPop, a Hidden Markov Model^{1,2}. First plot shows strains carrying perturbations compared to negative control; remaining plots show individual profiles for clarity. Genetic context is represented in the axis of abscissas: yellow shade indicates promoter region, blue rectangle indicates 30-bp perturbation sequence and red shade indicates any upstream region. NFR stands for nucleosome free region and asterisk (*) shows outstanding changes in occupancy. Error bars represent error propagation

Figure S4. Maps for the main plasmids constructed in this work. a) Plasmid with perturbations (red circles) flanking *gfp* expression cassette. b) Plasmid with mutagenized TEF2 promoter (striped arrow). c) Plasmid bearing cellobiose pathway with intact perturbations (pink circles) or d) disrupted perturbations (striped circles). e) Plasmid bearing betaxanthin pathway with characterized perturbations (pink circles). f) Helper plasmid from which a perturbed cellobiose pathway is digested and integrated to genome.

 $\label{eq:Figure S5.Assessment of perturbation orthogonality by a secondary exemplary pathway. a) The$

betaxanthin biosynthetic pathway includes a mutant 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase (*ARO4*), a mutant tyrosine hydroxylase (*TYR**) and a L-3,4-dihydroxyphenylalanine (DOPA) dioxygenase. Metabolites: PEP, phosphoenolpyruvate; E4P, erythrose-4-phosphate; DAHP, 3-deoxy-D-arabinoheptulosonate; L-TYR, tyrosine; L-DOPA, L-3,4-dihydroxyphenylalanine. PPP stands for pentose phosphate pathway. Triple arrows indicate multistep reactions. b) Fluorescence profile for variants carrying the betaxanthin pathway perturbed by sequences P3, P5 and P8 yielded from cellobiose characterization. Orange curves represent strains with intact perturbations. They are compared against the negative control bearing the betaxanthin biosynthetic pathway without perturbation; no significant differences were found. Remaining plots show comparison of strains bearing either intact (cross) or its corresponding disrupted pair (open circle). Only P8 showed significantly higher total fluorescence than disrupted P8 (two sample t-test; p<0.05). The shaded area on each curve represents the standard deviation of three biological replicates.

Figure S6. Assessment of the perturbed cellobiose utilization pathway in a genomic context. a) Growth and b) cellobiose-utilizing profiles for the variants during a 96-h fermentation. Red curves represent plasmid-contained pathways and blue curves indicate the pathway integrated to locus 8 reported previously³. Growth and consumed cellobiose were significantly higher in plasmid-based systems (two-sample t-test; p<0.05). NC represents the cellobiose utilization pathway without perturbation. Error bars represent the standard deviation of three biological replicates.

Figure S7. Standard curve for cellobiose estimation. a) Correlation between different concentrations of cellobiose (0 to 3 g/L) and absorbance at 540 nm.

 Table S1. Perturbation sequences retrieved in this work. The bold and underlined codes

 highlight the conserved residues. Italicized letters represent mutated and omitted (*) residues,

 both of which intended to disrupt the exemplary perturbations.

Gene of interest	Variant	Upstream	Downstream
gfp	P1	AGGTAGATGCTCAGAG AACGTGACTCAGGT	AAAAAGGACGGTGGCT TGCACACTGAAGAT
	P5	GGTTTGATTATGTTTGG CGTCTTGGGGGGGG	CAACATGCTGTGCGCCA CACTAAACTCTAA
	Р9	TCAAGCATGTTGATAGT GACGGGGGATCCGC	AACAATGAGAAGGACC GTCTATATAGCAAG
	P1	TAGTGACGTAATTGGTA ATCATTGTAACAC	GAACAATTTGATACCGG TTATTTCCACTCC
	P2	GGAACA <u>G</u> TTG <u>G</u> GGGT <u>G</u> GCATTGGTGAGGTG	TCCTTGTTCCGGGTGTA GGTCTTTGTGCCT
	Р3	ATCCCA <u>G</u> GAT <u>G</u> TCTG <u>G</u> GTCCGTCCTATTAC	AGTGCCGGGTTGGTGCT GTGGTTAGTGGGG
	P4	ACGGGGGCGCGTGCGGA GACAAGGCGTGGAG	ATGGGCTAACGTGAGCT CCTTGCAATTTTG
ghl-1	P5	CGGGGT <u>G</u> TTG <u>G</u> GCTG <u>G</u> TGCGTGTCCGGGCC	TGCTCTTGTTTCTACAA GGCAGTATGTTCC
	P6	ACGGGGGCGCGTGCGGA GACAAGGCGTGGAG	ATGGGCTAACGTGAGCT CCTTGCAATTTTG
	P7	CGGGGT <u>G</u> TTG <u>G</u> GCTG <u>G</u> TGCGTGTCCGGGCC	TGCTCTTGTTTCTACAA GGCAGTATGTTCC
	P8	CATACG <u>G</u> CGC <u>G</u> GGGT <u>G</u> ATCGTGCAAGCGGT	TATTTTCAGAAATTCGT TCACCAAGTGGAG
	dP3	ATCCCA <u>T</u> GAT <u>A</u> TCTG <u>T</u> G TCCGTCCTATTAC	AGTGCCGGGTTGGTGCT GTGGTTAGTGGGG
	dP5	CGGGGT <u>C</u> TTG <u>C</u> GCTG <u>C</u> T GCGTGTCCGGGCC	TGCTCTTGTTTCTACAA GGCAGTATGTTCC
	dP8	CATACG <u>A</u> CG**GGGT*A TCGTGCAAGCGGT	TATTTTCAGAAATTCGT TCACCAAGTGGAG
	P1	GAACAATTTGATACCGG TTATTTCCACTCC	GCCAGGCCCCGACTGCT ATTGCACTCAACG
	P2	TCCTTGTTCCGGGTGTA GGTCTTTGTGCCT	GATCTTGGGCTGAATGT GATGACGTATCAA

F 3	GTGGTTAGTGGGG	CTGGACTGGTGCG
P4	ATGGGCTAACGTGAGCT CCTTGCAATTTTG	TCCGGATGCCGGAGAC AAGCTGGATTAGTG
P5	TGCTCTTGTTTCTACAA GGCAGTATGTTCC	CTTCACCAAAGCCTGTC GGCGTCCCCCAC
P6	ATGGGCTAACGTGAGCT CCTTGCAATTTTG	ATCACGTCTATTAAGCC AAAGCGACTCAAG
P7	TGCTCTTGTTTCTACAA GGCAGTATGTTCC	CTTCACCAAAGCCTGTC GGCGTCCCCCAC
P8	TATTTTCAGAAATTCGT TCACCAAGTGGAG	GCGTATACAAAGGGTTC CAGTTTCGGGACA
	P4 P5 P6 P7 P8	P3GTGGTTAGIGGGGP4ATGGGCTAACGTGAGCT CCTTGCAATTTTGP5TGCTCTTGTTTCTACAA GGCAGTATGTTCCP6ATGGGCTAACGTGAGCT CCTTGCAATTTTGP7TGCTCTTGTTTCTACAA GGCAGTATGTTCCP8TATTTTCAGAAATTCGT TCACCAAGTGGAG

Table S2. Primers used in this work. Bold letters denote restriction sites. To construct a 90bp fragment carrying a 30-bp perturbation, a typical PCR was performed using one primer from the first section of the table and its corresponding primer from the second section of the table, e.g., to introduce a perturbation upstream to the TEF2 promoter, the 90-bp primer named *perturbed TEF2p-F* was used with *ext-TEF2p-R*.

Description	Name	Sequence (5' to 3')
	perturbed TEF2n-F	cctcactaaagggaacaaaagctg gagctc nnnnnnnnnnnnnn
	perturbed TEI 2p T	nnnnnnnnnnnnnggggccgtatacttacatatagtagatgtc
	perturbed TEF2t-R	ggcgaattgggtaccgggccccccctcgagnnnnnnnnnn
		nnnnnnnnnnnnnggggtagcgacggattaatggcatacttgt
	perturbed PYK1p-F	aagetggageteeacegeggtggeggeegetetagannnnnn
		nnnnnnnnnnnnnnnnnnnnaacggcgggatteetetatg
	perturbed TEF1p-F	getettattgaceaeacetetaeeggeatgteeggannnnnnnn
	and the d DCK 14 D	nnnnnnnnnnnnnnnnnnnnatagetteaaaatgtttetaetee
	perturbed PGKIT-R	
Incorporation	porturbed DCV1p E	ninninninninninninninnincaggaagaatacactatactgg
of	perturbed POK IP-F	
perturbations	perturbed TDH3n-F	attaaaaaaaattegeteetetttaatgeete statg ppppppppp
	perturbed 1D115p-1	nnnnnnnnnnnnnnnnnnnnagttegagtttateattate
	perturbed CCW12p-F	oagaacgtcggcggttaaaatatattaccctgaacg cttaag nnnnn
		nnnnnnnnnnnnnnnnnnnnnnncacccatgaaccacacgg
	disrupted P3-PYK1p-F	aagetggagetecacegegggggggggggggggggggggg
		atgatatctgtgtccgtcctattacaacggcgggattcctctatg
		aagetggagetecaeegeggtggeggeegetetagaeggg
	disrupted P5-PYK1p-F	tcttgcgctgctgcgtgtccggggccaacggcgggattcctctatg
		aagetggageteeacegeggtggeggeegetetagacataeg
	distupled Po-PTKTP-F	acgcagggtaatcgtgcaagcggtaacggcgggattcctctatg
	ext-TEF2p-R	atgtaagtatacggcccc
	ext-TEF2t-F	ttaatccgtcgctacccc
Synthesis of	ext-PYK1p-R	catagaggaatcccgccgtt
dsDNA	ext-TEF1p-R	ggagtagaaacattttgaagc
fragments	ext-PGK1t-F	ccagtatagtgtattcttcc
	ext-PGK1p-R	gtgagtaaggaaagagtg
	ext-TDH3p-R	gttcgagtttatcattatc
	ext-CCW12p-R	cacccatgaaccacagg
	gfp-F	ggggccgtatacttacat
	gfp-R	ggggtagcgacggattaa
	cdt1-F	gcttcaaaatgtttctactcc
	cdt1-R	aggaagaatacactatactgg
	ghl1-F	aacggcgggattcctctatg
	ghl1-R	catgccggtagaggtgtg

	ARO4-F	gtgagtaaggaaagagtg	
	ARO4-R	acgtcatatgaggcattaaaag	
Cloning	TYRH-F	cagttcgagtttatcattatc	
	TYRH-R	actgcttaagcgttcagggtaatatattttaac	
_	DOD-F	cacccatgaaccacacgg	
	DOD-R	gtaccgggcccccctcgaggtcgacggt	
		atcgataagcttgaaatggggagcgatttgc	
	LEU-F	cagacaagaacaccgcatttg	
	LEU-R	cagacaagatagtggcgatagg	
	ALG9-F	gatggtcttcttccaggtgatt	
	ALG9-R	ctagtgatcggccactctttac	
	q-ghl1-F	gcgtcaagtacttcaacgacta	
	q-ghl1-R	catcaagetecaggeaagata	
	q-cdt1-F	gtcatcttctccttcacctacac	
	q-cdt1-R	gttgacaatgaagccggaaag	
	ghl1-P1-F	cgcctttgagtgagctgata	
	ghl1-P1-R	agaggcggtttgcgtatt	
	ghl1-P2-F	agtgagcgcaacgcaatta	
aPCR	ghl1-P2-R	cataggagccggaagcataaag	
qi Cix	ghl1-P3-F	ctatggcgtgtgatgtctgtat	
	ghl1-P3-R	aateteccaatetgtegatgg	
	cdt1-P1-F	ttgtcggcttgtctaccttg	
	cdt1-P1-R	tcgcttatttagaagtgtcaacaac	
	cdt1-P2-F	tgttcttgagtaactctttcctgtag	
	cdt1-P2-R	acatgccggtagaggtgt	
	cdt1-P3-F	catcgccgtaccacttcaa	
	cdt1-P3-R	ttccaaacctttagtacgggtaa	
	cdt1-P4-F	aaagagaccgcctcgtttc	
	cdt1-P4-R	tcaatgggaggtcatcgaaag	
	REC102-F	ccgattgaagtggcaacaaag	
	REC102-R	gtcttgggcaatcatgtta	

 Table S3. Specific growth rates for the strains bearing the cellobiose pathway with the original

 perturbations and the disrupted perturbations.

Strain	μ (h ⁻¹)
High 3	0.028 ± 0.002
High 5	0.026 ± 0.002
High 8	0.031 ± 0.003
Disrupted High 3	0.013 ± 0.003
Disrupted High 5	0.020 ± 0.004
Disrupted High 8	0.019 ± 0.003

$(lacI^{q} rrnB_{T14} \Delta lacZ_{WJ16} \Delta phoBR580 hsdR514$	
$\Delta araBAD_{AH33} \Delta rhaBAD_{LD78} galU95 endA_{BT333}$	None
$uidA(\Delta MluI)$::pir $^+$ $recA1$	
MATα (ade2-1, ade3Δ22, ura3-1, his3-11,15,	None
trp1-1, leu2-3,112, can1-100)	INDIR
MATα (ade2-1, ade3Δ22, ura3-1, his3-11,15,	pRS416-PX-TEF2p-
trp1-1, leu2-3,112, can1-100)	GFP-TEF2t
MATα (ade2-1, ade3Δ22, ura3-1, his3-11,15,	pRS416-MX-TEF2p-
trp1-1, leu2-3,112, can1-100)	GFP-TEF2t
MATα (ade2-1, ade3Δ22, ura3-1, his3-11,15,	pRS415-PX-CB
trp1-1, leu2-3,112, can1-100)	provid i A CD
<i>MATα</i> (ade2-1, ade3Δ22, ura3-1, his3-11,15,	nRS/15_PX_RY
trp1-1, leu2-3,112, can1-100)	рк о+13-1 А- Д А
	$(lacI^{4} rrnB_{T14} \Delta lacZ_{WJ16} \Delta phoBR580 hsdR514$ $\Delta araBAD_{AH33} \Delta rhaBAD_{LD78} galU95 endA_{BT333}$ $uidA(\Delta MluI)$::pir ⁺ recA1 $MATa (ade2-1, ade3\Delta 22, ura3-1, his3-11,15, trp1-1, leu2-3,112, can1-100)$ $MATa (ade2-1, ade3\Delta 22, ura3-1, his3-11,15, trp1-1, leu2-3,112, can1-100)$

Table S4. Strains used in this work.

Table S5. Plasmids constructed in this work. The bold code represents a plasmid variant carrying a specific perturbation sequence (See Table S1). Plasmids were assembled by DNA assembler⁴.

Plasmid	Characteristics	
pRS416-PX-TEF2p-GFP-	TEF2p-gfp-TEF2t cassette in pRS416 backbone; 30-bp	
TEF2t	perturbations were added to flank the GFP transcriptional unit.	
pRS416-MX-TEF2p-GFP-	TEF2p promoter in the TEF2p-GFP-TEF2t cassette was	
TEF2t	mutagenized.	
	PYK1p-ghl-1-ADH1t and TEF1p-cdt-1-PGK1t cassettes in	
pRS415-PX-CB	pRS415 backbone; 30-bp perturbations flanking each	
	transcriptional unit.	
	PYK1p-ghl-1-ADH1t and TEF1p-cdt-1-PGK1t cassettes in	
pRS415-dPX-CB	pRS415 backbone; the conserved nucleotides in the perturbation	
	sequences were mutated.	
	PGK1p-ARO4-PGK1t, TDH3p-TYRH-TDH1t, CCW12p-DOD-	
pRS415-P X -BX	ADH1t cassettes in pRS415 backbone; 30-bp perturbations	
	flanking each transcriptional unit.	

REFERENCES

(1) Xi, L., Fondufe-Mittendorf, Y., Xia, L., Flatow, J., Widom, J., and Wang, J.-P. (2010) Predicting nucleosome positioning using a duration Hidden Markov Model. *BMC Bioinformatics* 11, 346.

(2) Wang, J.-P., Fondufe-Mittendorf, Y., Xi, L., Tsai, G.-F., Segal, E., and Widom, J. (2008) Preferentially Quantized Linker DNA Lengths in Saccharomyces cerevisiae. *PLoS Comput. Biol.* (Stormo, G., Ed.) *4*, e1000175.

(3) Flagfeldt, D. B., Siewers, V., Huang, L., and Nielsen, J. (2009) Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. *Yeast* 26, 545–551.

(4) Shao, Z., Zhao, H., and Zhao, H. (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. *Nucleic Acids Res.* 37, 1–10.