American Chemical Society
Browse
tx9b00399_si_001.pdf (879.79 kB)

Induction of the Antioxidant Response by the Transcription Factor NRF2 Increases Bioactivation of the Mutagenic Air Pollutant 3‑Nitrobenzanthrone in Human Lung Cells

Download (879.79 kB)
journal contribution
posted on 2019-11-20, 12:39 authored by Jessica R. Murray, Laureano de la Vega, John D. Hayes, Ling Duan, Trevor M. Penning
3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen present in diesel exhaust. It requires metabolic activation via nitroreduction in order to form DNA adducts and promote mutagenesis. We have determined that human aldo-keto reductases (AKR1C1–1C3) and NAD­(P)­H:quinone oxidoreductase 1 (NQO1) contribute equally to the nitroreduction of 3-NBA in lung epithelial cell lines and collectively represent 50% of the nitroreductase activity. The genes encoding these enzymes are induced by the transcription factor NF-E2 p45-related factor 2 (NRF2), which raises the possibility that NRF2 activation exacerbates 3-NBA toxification. Since A549 cells possess constitutively active NRF2, we examined the effect of heterozygous (NRF2-Het) and homozygous NRF2 knockout (NRF2-KO) by CRISPR-Cas9 gene editing on the activation of 3-NBA. To evaluate whether NRF2-mediated gene induction increases 3-NBA activation, we examined the effects of NRF2 activators in immortalized human bronchial epithelial cells (HBEC3-KT). Changes in AKR1C1–1C3 and NQO1 expression by NRF2 knockout or use of NRF2 activators were confirmed by qPCR, immunoblots, and enzyme activity assays. We observed decreases in 3-NBA activation in the A549 NRF2 KO cell lines (53% reduction in A549 NRF2-Het cells and 82% reduction in A549 NRF2-KO cells) and 40–60% increases in 3-NBA bioactivation due to NRF2 activators in HBEC3-KT cells. Together, our data suggest that activation of the transcription factor NRF2 exacerbates carcinogen metabolism following exposure to diesel exhaust which may lead to an increase in 3-NBA-derived DNA adducts.

History