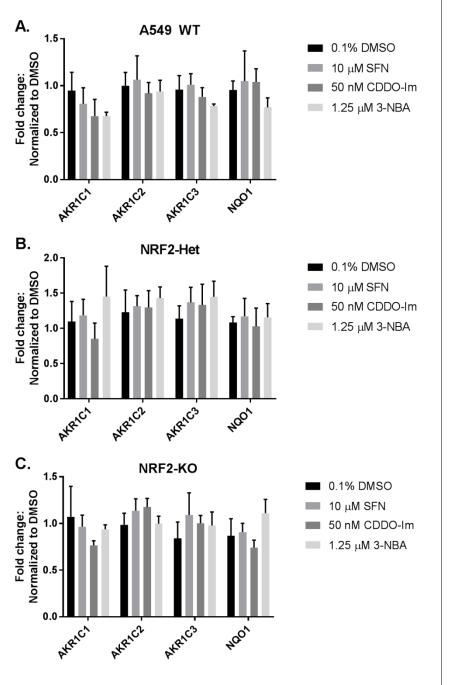
## **Supporting Information**

## Induction of the Antioxidant Response by the Transcription Factor NRF2 Increases Bioactivation of the Mutagenic Air Pollutant 3-Nitrobenzanthrone in Human Lung Cells

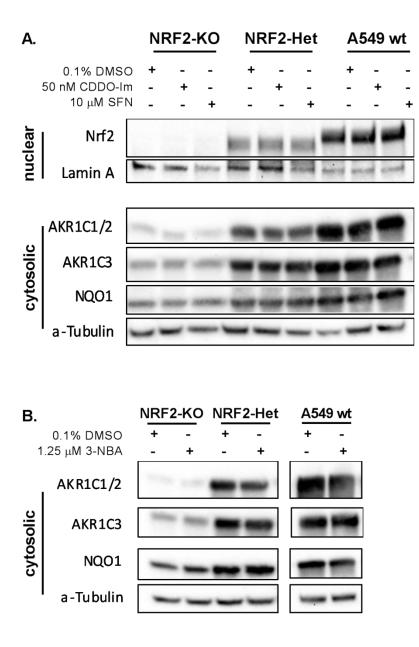
Jessica R. Murray<sup>1</sup>, Laureano de la Vega<sup>2</sup>, John D. Hayes<sup>2</sup>, Ling Duan,<sup>1</sup> Trevor M. Penning<sup>\*1,3</sup>

<sup>1</sup>Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; <sup>2</sup>Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; <sup>3</sup>Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

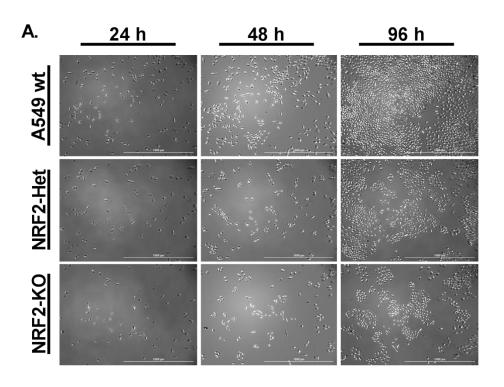

\*Corresponding Author: Trevor M. Penning, PhD Department of Systems Pharmacology & Translational Therapeutics Perelman School of Medicine University of Pennsylvania, 1315 BRBII/III 421 Curie Blvd Philadelphia, PA 19104-6061 Email: penning@upenn.edu Phone: 215-898-9445

## Table of Contents:

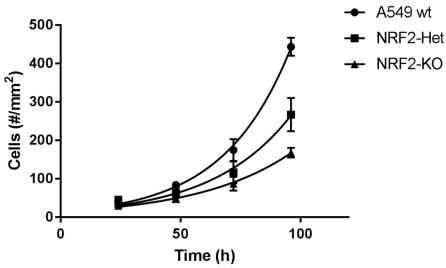
| Table S1. Primer Sequences Designed for Each Gene.                                                                                                                           | <b>S</b> 3 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure S1. NRF2 activators (CDDO-Im and SFN) did not alter <i>AKR1C1-1C3</i> or <i>NQO1</i> transcription in A549 wt (A), A549 NRF2-Het (B), or A549 NRF2-KO cells (C).      | S4         |
| Figure S2. NRF2 activators (CDDO-Im and SFN) did not lead to NRF2 recruitment to the nucleus and did not alter AKR1C1-1C3 or NQO1 protein levels in A549 cell line variants. | S6         |
| Figure S3. Effects of NRF2 on proliferation of A549 cell lines.                                                                                                              | <b>S</b> 7 |
| Figure S4. 3-NBA does not function as an NRF2 activator in HBEC3-KT cells.                                                                                                   | <b>S</b> 8 |
| Figure S5. Determination of the metabolic activation of 3-NBA to 3-ABA in A549 cell variants (A549 wt, NRF2-Het, and NRF2-KO) and HBEC3-KT cells $\pm$ NRF2 activators.      | S10        |


 Table S1. Primer Sequences Designed for Each Gene

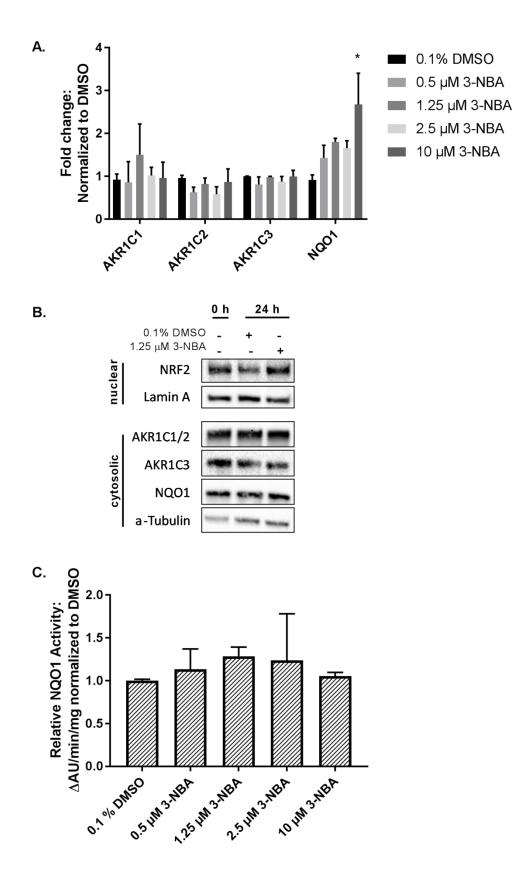
| Gene   | Forward qPCR Primer    | Reverse qPCR Primer      | Amplicon Length (bp) |
|--------|------------------------|--------------------------|----------------------|
| AKR1C1 | GTAAAGCTTTAGAGGCCAC    | ATAAGGTAGAGGTCAACATAA    | 249                  |
| AKR1C2 | GTAAAGCTCTAGAGGCCGT    | CTGGTCGATGGGAATTGCT      | 179                  |
| AKR1C3 | AAGTAAAGCTTTGGAGGTCACA | GGACCAACTCTGGTCGATGAA    | 185                  |
| NQO1   | TCCCCCTGCAGTGGTTTGGAGT | ACTGCCTTCTTACTCCGGAAGGGT | 127                  |
| GAPDH  | CATCTCTGCCCCCTCTGCTGA  | GGATGACCTTGCCCACAGCCT    | 305                  |
|        |                        |                          |                      |



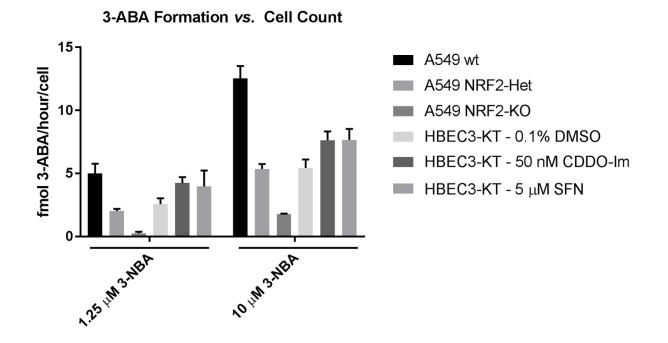

**Figure S1.** NRF2 activators (CDDO-Im and SFN) did not alter *AKR1C1-1C3* or *NQO1* transcription in A549 wt (A), A549 NRF2-Het (B), or A549 NRF2-KO cells (C). Treatment with 1.25  $\mu$ M 3-NBA also failed to significantly change *AKR1C1-1C3* or *NQO1* transcript levels, indicating that A549 cells with CRISPR-Cas9 knockout of NRF2 possess stable expression of ARE-genes that are not further induced through NRF2-dependent or independent mechanisms


during exposures to 3-NBA. Bar graphs show mean  $\pm$  SD of n = 2/group. The effect of NRF2 treatment on the expression levels of each gene was analyzed by a one-way ANOVA with a posthoc Dunnett's multiple comparison test.




**Figure S2.** NRF2 activators (CDDO-Im and SFN) did not lead to NRF2 recruitment to the nucleus and did not alter AKR1C1-1C3 or NQO1 protein levels in A549 cell line variants (A). Western blot is representative of two independent experiments. Treatment with 1.25  $\mu$ M 3-NBA also failed to significantly change AKR1C1-1C3 or NQO1 protein levels (B), indicating that A549 cells with CRISPR-Cas9 knockout of NRF2 possess stable protein expression of ARE-genes that are not further induced through NRF2-dependent or independent mechanisms during exposures to 3-NBA.








**Figure S3.** Effects of NRF2 on proliferation of A549 cell lines. To monitor proliferation of A549 NRF2-KO, A549 NRF2-Het, and A549 wt cell lines,  $1 \times 10^3$  cells were plated per well and monitored over a 96 h time course (A). Images are representative of four independent experiments (n=4). Cell counts were then normalized to area and expressed as number of cells per mm<sup>2</sup> (B). Plotted time course shows mean cell counts ± SD of *n* = 4/cell line.



**Figure S4.** 3-NBA does not function as an NRF2 activator in HBEC3-KT cells. HBEC3-KT cells were exposed to multiple doses of 3-NBA (0.5 – 10  $\mu$ M) for 16 h (A). Quantitative RT-PCR was utilized to quantify mRNA levels of *AKR1C1-1C3* and *NQO1* expressed as copy number and normalized to cells that were treated with vehicle control, 0.1% DMSO. Bar graphs show mean fold change ± SD of *n* = 2/group. The effect of 3-NBA treatment on the expression levels of each gene was analyzed by a one-way ANOVA with a post-hoc Dunnett's multiple comparison test. Asterisks indicate a statistically significant difference from the vehicle control (\**p* ≤ 0.05). HBEC3-KT cells were exposed to 1.25  $\mu$ M 3-NBA to assess whether exposure to 3-NBA led to recruitment of NRF2 to the nucleus or increased protein levels of ARE genes. Immunoblots revealed that 3-NBA had little effect on NRF2 localization in the nucleus and protein levels of AKR1C1-1C3 and NQO1 (B). A NQO1 activity assay was conducted in HBEC3-KT cells after a 24 h of exposure to 3-NBA (C). Bar graphs show mean ± SD of *n* = 2-3/group. These changes were not statistically significant when tested by a one-way ANOVA with a post-hoc Dunnett's multiple comparison test.



**Figure S5.** Determination of the metabolic activation of 3-NBA to 3-ABA in A549 cell variants (A549 wt, NRF2-Het, and NRF2-KO) and HBEC3-KT cells  $\pm$  NRF2 activators. The intrinsic fluorescence of 3-ABA ( $\lambda_{ex}$  520 nm,  $\lambda_{em}$  650 nm) was used to detect the final reduction product, 3-ABA. Formation of 3-ABA was normalized to cell count from duplicate plates that underwent identical treatment conditions. Values are expressed as mean  $\pm$  SD and show the relative formation of fmol 3-ABA per hour per cell. A549 wt cells are able to metabolize 3-NBA to a much greater extent than HBEC3-KT which is likely due to constitutive NRF2 activity and subsequent upregulation of *AKR1C1-1C3* and *NQO1*. Experiments were repeated 4 independent times (n = 4).