American Chemical Society
Browse
am0c01929_si_001.pdf (1.12 MB)

A Porous Aromatic Framework Functionalized with Luminescent Iridium(III) Organometallic Complexes for Turn-On Sensing of 99TcO4

Download (1.12 MB)
journal contribution
posted on 2020-03-17, 14:36 authored by Dongyang Xu, Long Chen, Xing Dai, Baoyu Li, Yaxing Wang, Wei Liu, Jie Li, Yi Tao, Yanlong Wang, Yong Liu, Guowen Peng, Ruhong Zhou, Zhifang Chai, Shuao Wang
Contamination of 99TcO4, a problematic radioactive anion in the nuclear fuel cycle, in groundwater has been observed in a series of legacy nuclear sites, representing a notable radiation hazard and environmental concern. The development of convenient, rapid, and sensitive detection methods is therefore critical for radioactivity control and remediation tasks. Traditional detection methods suffer from clear demerits of either the presence of large interference from coexisting radioactive species (e.g., radioactivity counting methods) or the requirement of extensive instrumentation and analysis procedure (e.g., mass spectrometry). Here, we constructed a luminescent iridium­(III) organometallic complex (Ir­(ppy)2(bpy)+; ppy = 2-phenylpyridine, bpy = 2,2-bipyridine)-grafted porous aromatic framework (Ir-PAF) for the first time, which can be utilized for efficient, facile, and selective detection of trace ReO4/TcO4 in aqueous solutions. Importantly, the luminescence intensity of Ir-PAF is greatly enhanced in the presence of ReO4/TcO4, giving rise to a distinct turn-on sensor with the detection limit of 556.9 μg/L. Such a superior detection capability originates from the highly selective and strong interaction between ReO4/TcO4 and Ir­(ppy)2(bpy)+, leading to an efficient pre-enrichment of ReO4/TcO4 during analysis and subsequently a much weaker nonradiative decay of the luminescence of Ir­(ppy)2(bpy)+, as illustrated by density functional theory (DFT) calculation as well as quantum yield and fluorescence lifetime measurements. Successful quantification of trace ReO4 in simulated Hanford low-activity waste (LAW) solution containing large excess of Cl, NO3, and NO2 was demonstrated, highlighting the bright future of luminescent PAFs in the area of chemical sensing.

History