Supporting Information

A POROUS AROMATIC FRAMEWORK FUNCTIONALIZED WITH LUMINESCENT IRIDIUM(III) ORGANOMETALLIC COMPLEXES FOR TURN-ON SENSING OF $^{99}T_{\rm C}O_4^{-}$

Dongyang Xu,^{§,#} Long Chen,^{†,#} Xing Dai,^{†,#} Baoyu Li,[†] Yaxing Wang,[†] Wei Liu,[△] Jie Li,[†] Yi Tao,[†] Yanlong Wang,[†] Yong Liu,^{*,§} Guowen Peng,^{*,§} Ruhong Zhou,^{†,¶} Zhifang Chai[†] and Shuao Wang^{*,†}

[§]School of Chemistry and Chemistry Engineering and School of Resource, Environmental and Safety Engineering, University of South China, 28 Chang'sheng Road, Hengyang 421001, P. R. China [†]State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China.

^aSchool of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China [¶]Computational Biology Center, IBM Thomas J Watson Research Center, Yorktown Heights, New York 10598, United States

[#]These three authors contributed equally

*Corresponding authors. shuaowang@suda.edu.cn. (SHUAO WANG) Tel: +86-512-65883945; Fax: +86-512-65883945.; liuyong81668@163.com; pgwnh78@163.com.

Contents

Figure S1. ¹ H-NMR spectrum of $Ir(ppy)_2(2,2)^2-Br_2-5,5)^2-bpy)^+(CI)^-$ in CDCI ₃ S1
Figure S2. TGA curve of Ir-PAFS2
Figure S3. UV absorption spectrum of Ir-PAFS3
Figure S4. EDS of ReO₄ ⁻ @Ir-PAFS4
Figure S5. The emission intensity of Ir-PAF before and after adsorbing ReO ₄ - in different solid- to-liquid ratiosS5
Figure S6. PXRD of Ir-PAF after irradiated by various doses of β rayS6
Figure S7. Fluorescence change ratio before and after perrhenate uptake with irradiated samples treated with various doses
Figure S8. Solid fluorescence spectra of Ir-PAF with three adsorption/desorption cyclesS8
Figure S9. Fluorescence lifetime for a) CI-@Ir-PAF, b) NO ₃ -@Ir-PAF and c) ReO ₄ -@Ir-PAF. S9
Figure S10. Fluorescence quantum yield for a) Cl ⁻ @Ir-PAF, b) NO ₃ ⁻ @Ir-PAF and c) ReO ₄ -@Ir- PAFS11
Table S1. Detection limits for different chemical sensors S13

Figure S1. ¹H-NMR spectrum of Ir(ppy)₂(2,2'-Br₂-5,5'-bpy)⁺(Cl)⁻ in CDCl₃.

Figure S4. EDS of ReO₄-@Ir-PAF.

Figure S5. The emission intensity of Ir-PAF before and after adsorbing ReO₄- in different solid-to-liquid ratios.

Figure S6. PXRD of Ir-PAF after irradiated by various doses of β ray.

Figure S8. Solid fluorescence spectra of Ir-PAF with three adsorption/desorption cycles.

Figure S9. Fluorescence lifetime for a) Cl⁻@Ir-PAF, b) NO₃-@Ir-PAF and c) ReO₄-@Ir-PAF.

a) Cl⁻@Ir-PAF

b) NO3-@Ir-PAF

c) ReO₄-@Ir-PAF

Figure S10. Fluorescence quantum yield for a) Cl⁻@Ir-PAF, b) NO₃-@Ir-PAF and c) ReO₄-@Ir-PAF.

a) Cl⁻@Ir-PAF

b) NO3-@Ir-PAF

C) ReO₄-@Ir-PAF

Sensors	Detection method	Target preparation	Detection limit
MOR-1	Fluorescent	Re solution	0.36 ppm ^[1]
MOR-2	Fluorescent	Re solution	0.15 ppm ^[1]
Cage 1H ₆ ⁶⁺	Fluorescent	Tc/Re solution	[2]
		(2 < pH < 4)	
Auramine O	Fluorescent	Re solution	270 µM ^[3]
Thioflavin-T	Fluorescent	Re solution	260 µM ^[4]
1.SbF6	Fluorescent	Tc solution	$2.6 imes 10^{-10} \ \mathrm{M^{[5]}}$
Ir-PAF	Fluorescent	Tc/Re solution	$2.99~\mu M^{This~work}$

Table S1. Detection limits for different chemical sensors.

Reference

[1] Rapti, S; Diamantis, S. A.; Dafnomili, A.; Pournara, A.; Skliri, E.; Armatas, G. S.; Tsipis, A. C.; Spanopoulos, I.; Malliakas, C.D.; Kanatzidis, M. G.; Plakatouras, J. C.; Noli, F.; Lazarides, T.; Manos, M. J. J. Mater. Chem. A **2018**, *6*, 20813–20821.

[2] Amendola, V.; Bergamaschi, G.; Boiocchi, M.; Alberto, R.; Braband, H. Chem. Sci. 2014, 5, 1820-1826.

[3] Desai, A. M.; Singh, P. K. Sensors Actuat. B Chem. 2018, 277, 205-209.

[4] Desai, A. M.; Singh, P. K. Chem. Eur. J. 2019, 25, 2035-2042.

[5] Chatterjee, S.; Norton, A. E.; Edwards, M. K.; Peterson, J. M.; Taylor, Stephen D.; Bryan, S. A.; Andersen, A.; Govind, N.; Albrecht-Schmitt, T. E.; Connick, W. B.; Levitskaia, T. G. *Inorg. Chem.* **2015**, *54*, 9914–9923.