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Materials and Methods 

Samples 

The natural rubber (NR) samples were prepared from a pre-vulcanized latex resin 

(from Siquiplas), cast into a cylindrical plaster mold. A resin feeder was used to prevent the 

formation of cavities due to the shrinkage of the latex while drying.  We made two samples 

with the following dimensions: 12 mm (diameter) and 19.5 mm (length); 8 mm (diameter) 

and 21.1 mm (length). The density of the samples is 902(7) kg m-3. For pressures ≤ 173 

MPa, we used the 12 mm-diameter sample; above 173 MPa, the 8-mm-diameter sample 

was used. We characterized the 12-mm-diameter sample via Fourier transform infrared 

spectroscopy (FTIR) from 450 to 4000 cm−1, with a fixed step of 2 cm−1, using a FTIR 

spectrometer from PerkinElmer® (model Spectrum Two). The absorption bands observed in 

the spectrum (Fig. S1) are typical of NR samples. 

 

        
 

Figure S1. FTIR spectrum of the 12-mm-diameter sample of natural rubber. 

 

Experimental setup 

The experimental setup consists of a customized piston-cylinder carbon-steel 

chamber surrounded by a copper coil, enabling the circulation of cooling/heating fluids 

(water or liquid nitrogen, for instance). Two tubular heating elements (NP 38899, HG 
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Resistências), placed in the proper holes in the chamber, are responsible for thermal 

stability when liquid nitrogen is used. Temperature is measured by two type-K 

thermocouples. A thermostatic bath (TE 184, Tecnal) was used to pump water in the copper 

coil above 280 K. Below 280 K, liquid nitrogen was employed to cool down the sample. 

Uniaxial load is applied by a manual 15,000-kgf hydraulic press (P15500, Bonevau). A 

load cell (3101C, ALFA Instrumentos) measures the contact force. Sample displacement is 

probed by a precise linear length gauge (METRO 2500, Heidenhain Co). Temperatures are 

collected and controlled (if heating elements are used) by Cryogenic Temperature 

Controller (Model 335, Lake Shore Cryotronic). This system is described in details by Bom 

et al (ref. 31, main text).  

Description of the barocaloric experiments 

The direct measurements of barocaloric temperature changes (ΔTS) were obtained 

by the following procedure: i) the sample was submitted to compressive stresses quasi-

adiabatically, resulting in an immediate increase in temperature; ii) the load was kept 

constant, until the temperature decreases down to the initial temperature; iii) the load was 

released adiabatically, causing an abrupt decrease in the sample’s temperature. ΔTS curves 

for 273 and 390 MPa were measured from the maximum temperature (~314 K) down to 

minimum temperature (~223 K). Before starting the actual measurements, we have always 

performed several cycles in the maximum pressure until stabilizing the ΔTS value. The 

experiments were carried out only when the temperature in the sample was stable. Strains 

vs. temperature curves for NR (Fig. S2), used in the calculation of entropy variations shown 

in Fig. 3 (main text), were measured at different constant pressures (8.7 – 173 MPa). 

Temperature was varied continuously by the thermostatic bath within the temperature range 

of ~ 285 − 330 K. 

Glass-transition temperature vs. pressure data 

The glass-transition temperatures (Tg) for NR at different pressures were measured 

by differential scanning calorimetry (DSC) and strain (ε) vs. temperature (T) curves. DSC 

measurement was carried out under atmospheric pressure, with heating rate of 10 K/min, 

from 186 K to 416 K. ε vs. T curves for obtaining Tg were measured in an analogous 
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manner of ε vs. T curves for ΔST, but within a temperature range of 173–303 K; here, the 

Tg values were obtained during heating process, when d3ε/dT3 = 0. 

 

Figure S2. Strain vs. temperature curves for natural rubber at constant pressures of 8.7(2), 43.4(9), 

87(2), 130(3) and 173(3) MPa measured on cooling, which were used to calculate the isothermal 

entropy change shown in Fig. 3 (main text). 

 

 

 

 
 

Figure S3. Temperature vs. time for NR at initial temperature of ~293 K; the peaks (or the valleys) 

are related to the adiabatic temperature change (ΔTS) when the pressures of 273(8) and 390(12) 

MPa are applied (or released). 
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Table S1. Fitting parameters of –ΔTS vs. σmax curves for NR, obtained from the power law 

−∆𝑻(𝑻, 𝝈𝒎𝒂𝒙) = 𝒂𝑻𝝈𝒎𝒂𝒙
𝒏𝑻  (equation (2), main text). 

 

Temperature  

(K) 

aT  

(K GPa-n
T) 

nT 

273 

293 

313 

54(3) 

61(5) 

63(4) 

0.96(4) 

0.98(6) 

0.96(5) 

 

 

Table S2. Fitting parameters of –ΔST vs. σmax curves for NR (Fig. 4b), obtained from the power law 

−∆𝑺(𝑺, 𝝈𝒎𝒂𝒙) = 𝒂𝑺𝝈𝒎𝒂𝒙
𝒏𝑺  (equation (2), main text) and from the quadratic function ∆𝑺(𝑻, 𝝈) =

𝒂𝟏(𝑻)𝝈 + 𝒂𝟐(𝑻)𝝈
𝟐 (equation (4), main text). 

 

Temperature  

(K) 

aS  

(K GPa-n
S) 

nS a1 

(kJ kg-1 K-1 GPa-1) 

a2 

(kJ kg-1 K-1 GPa-2) 

295 

300 

305 

0.74(4) 

0.67(5) 

0.48(8) 

1.16(2) 

1.16(3) 

1.09(7) 

0.42(2) 

0.37(2) 

0.37(2) 

0.8(1) 

0.8(2) 

0.3(3) 

 

 

 

Appendix A: Derivation of the expression for ΔS (T,σ) from a modified Landau’s 

theory of elasticity  

Let us regard the Helmholtz free energy per unit volume as the following series 

expansion:1 

𝐹(𝑇, 𝜀𝑖𝑗) = 𝐹0(𝑇) − 𝐵𝛼(𝑇 − 𝑇0)𝜀𝑘𝑘 −
1

2
𝐵[𝛽(𝑇 − 𝑇0)

2 − 1]𝜀𝑘𝑘
2 + 𝐺 (𝜀𝑖𝑗 −

1

3
𝜀𝑘𝑘𝛿𝑖𝑗)

2

 

where F0 is the free energy of the unstrained samples, α is the thermal expansion 

coefficient; β accounts for a non-linear thermal deformation of the sample; B and G are the 

bulk and shear moduli, respectively; 𝛿𝑖𝑗 is the unit tensor. The notation above implies 

summation over repeated indexes (which can be x, y or z in Cartesian coordinates). 

Furthermore, T0 is a reference temperature where the sample experiences no thermal 
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deformation. The expansion above converts the components of a rank-two tensor (the strain 

tensor 𝜀𝑖𝑗) into a scalar. 

It is possible to obtain the entropy through the derivative of the free energy with 

respect to temperature: 

                                         𝑆 = −
𝜕𝐹

𝜕𝑇
= 𝑆0 + 𝐵𝛼𝜀𝑘𝑘 + 𝐵𝛽(𝑇 − 𝑇0)𝜀𝑘𝑘

2                                 (1) 

On the other hand, the internal stress is obtained differentiating the free energy with 

respect to the strain: 

𝜎𝑖𝑗 =
𝜕𝐹

𝜕𝜀𝑖𝑗
= −𝐵𝛼(𝑇 − 𝑇0)𝛿𝑖𝑗 − 𝐵𝛽(𝑇 − 𝑇0)

2𝜀𝑘𝑘𝛿𝑖𝑗 + 𝐵𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝐺 (𝜀𝑖𝑗 −
1

3
𝜀𝑘𝑘𝛿𝑖𝑗)     (2) 

Let us now consider the case of confined compression by a uniaxial stress, and let us 

assume that the stress is applied along the z axis. Therefore, the only non-vanishing 

component of the strain tensor is εzz. From equation (2), the component σzz is: 

                                𝜎𝑧𝑧 = −𝐵𝛼(𝑇 − 𝑇0) + {𝐵[1 − 𝛽(𝑇 − 𝑇0)
2] +

4

3
𝐺} 𝜀𝑧𝑧                      (3) 

Finally, combining equations (1) and (3), the entropy change can be expressed as a 

second-degree polynomial of the applied compressive stress: 

∆𝑆(𝑇, 𝜎) = 𝑎1(T)𝜎 + 𝑎2(T)𝜎
2 

 

Appendix B: Satisfying the isostatic condition 

The zz-component of the stress tensor above is related to the external applied stress 

𝜎𝑧𝑧 = −𝜎 (negative because the stress is compressive). The other diagonal components are: 

𝜎𝑥𝑥 = 𝜎𝑦𝑦 = −𝐵𝛼(𝑇 − 𝑇0) + {𝐵[1 − 𝛽(𝑇 − 𝑇0)
2] −

2

3
𝐺} 𝜀𝑧𝑧 

which are the components of the stress applied by the walls confining the sample and are 

responsible for keeping 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 0. If one considers, for the sake of simplicity, the 

temperature 𝑇 = 𝑇0, then the ratio 𝜎𝑥𝑥 𝜎𝑧𝑧⁄  becomes: 

𝜎𝑥𝑥
𝜎𝑧𝑧

=
3𝐵 − 2𝐺

3𝐵 + 4𝐺
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For natural rubber, 𝐵 = 2 × 109 Pa and 𝐺 = 3.33 × 104 Pa,2 which results in 𝜎𝑥𝑥 𝜎𝑧𝑧⁄ =

0.999967. Therefore, uniaxial compression of natural rubber is actually an isostatic 

compression. 
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