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Table S1. Crystallographic data and parameters for [3a]OTf.

Compd

([3a]OTf),-0.5(CH.Cl,)

formula

formula weight
crystal system
space group

a(A)

b (A)

c (A)

a (%)

B()

7 (%)

V (A%

Z

Pealc (9 cm™)

g (mm™)

F(000)

T (K)

scan mode

hkl range

measd reflns
unique reflns [Rin]
reflns used for refinement
refined parameters
R1% (1> 25(1))
wR2" all data
GOF on F?

prin (Max/min) (e A™%)

Céa.5H51CIFsN20gS,Sh,
1439.14
triclinic
P-1
13.768(2)
14.800(2)
15.370(2)
76.320(7)
84.711(6)
77.513(6)
2968.3(7)
2

1.610
1.103
1442
110(2)

multi-scan

-19—17, —21-20, 2122

81660
17876 [0.0335]
17876

823

0.0316

0.0940

1.045

1.928, —1.586

AR1 = Y||Fo| - |Fc|/2|Fol. > wR2 = [[Xw(Fo? — Fc?)?)/[Zw(Fo?)*]].
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Figure S1. Crystal structures of [3a]OTf (left: molecule A, right: molecule B) (30% thermal ellipsoids).
H atoms and solvent molecules were omitted for clarity.

Table S2. Selected bond lengths (A) and angles (deg) for [3a]OTT.

A B
Lengths
Sh(1)-C(16) 2.112(2) Sh(2)-C(48) 2.1050(19)
Sb(1)-C(19) 2.102(2) Sh(2)-C(51) 2.098(2)
Sh(1)-C(25) 2.104(2) Sb(2)-C(57) 2.0972(19)
Sb(1)-C(31) 2.092(2) Sh(2)-C(63) 2.096(2)
Angles
C(16)-Sb(1)-C(19) 99.73(8) C(48)- Sh(2)-C(51) 102.63(8)
C(16)-Sb(1)-C(25) 104.71(8) C(48)— Sh(2)-C(57)  105.04(7)
C(16)-Sb(1)-C(31) 109.22(8) C(48)— Sh(2)-C(63)  105.56(8)
C(19)-Sb(1)-C(25) 113.85(8) C(51)- Sh(2)-C(57)  109.26(8)
C(19)-Sb(1)-C(31) 110.95(10) C(51)- Sh(2)-C(63)  112.59(9)
C(25)-Sb(1)-C(31) 116.67(9) C(57)- Sh(2)-C(63)  119.93(8)
/PXZ-Phenylene? 67.29 /PXZ-Phenylene®  66.28

& PXZ = phenoxazine ring.
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Figure S3. 'H (bottom) and **C (top) NMR spectra of 2b.
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Figure S4. 'H (bottom) and **C (top) NMR spectra of 2c (* from residual H,O in CDCl5).
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Figure S5. *H (bottom), *3C (middle), and *°F (top) NMR spectra of [3a]OTf.
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Figure S6. 'H (bottom), *3C (middle), and *°F (top) NMR spectra of [3b]OTT.
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Figure S7. 'H (bottom), *3C (middle), and ‘°F (top) NMR spectra of [3c]OTH.

S9



=re.29

T T T T T T T T T T T
-0 -20 -30 -40 -50 -60 -70 -80 -50 -100

ppm

T N T
£ 2% g £&Z ™
S - C =
(I
I
|
1 H
|
[
| 1 |
A TOAA Ty iy Sl
T T T T T T T T T T T T T T T T T
170 160 180 140 130 120 110 100 90 80 70 EOD 50 40 30 20 10
ppm
RETSBEELETTTESICURSSINY BnE3858EmASES =
U W
{ /
] i
| | -
| l i
o Il [ || F |
)f J I ! J | /I
O N SbPh,Me
|
| |
|
.
- 1 T
E I =z b =] 2
I T = = I:}7 T = T = T T T T T T T = T T
9.0 85 8.0 7.5 7.0 B85 6.0 55 50 4.5 40 35 3.0 25 20 1.5 1.0

PR
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Figure S9. 'H (bottom), *3C (middle), and ‘°F (top) NMR spectra of 3b—F.
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Figure S10. *H (bottom), **C (middle), and *°F (top) NMR spectra of 3c—F.
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Figure S11. Transient PL decay curve of 3c—F in MeCN at 298 K (Aex = 330 nm).
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Figure S12. (a) UV/Vis absorption and (b) PL spectra of [3c]OTf and 3c-F in PMMA film (10 wt%).
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Figure S13. Changes in the (a) absorption and (b) fluorescence of 3c—F in MeCN upon addition of
water.
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Figure S14. *H NMR spectral changes for [3c]OTf (0.015 M) upon addition of KF (0-10 equiv) in
CD30OD (* and  from residual H,O and CD3;OD).
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Figure S15. Linear regressions of fluorescence intensities of [3c]OTf titrated with TBAF in MeOH.
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DFT Computational Results

Gas Phase Ground State Optimization

Structures for the free [3c]” and the fluoride-bound form 3c-F were first optimized in the gas phase. For
3c-F, there are three possible geometries: A) F trans to carbazole, B) F trans to Ph, and C) F trans to Me.
The crystal structure of PhsSbMeF* has shown that Ph has a stronger trans-effect than Me, so geometry
C (F trans to Me) was first ruled out. Optimizations were performed on geometries A and B, and
geometry A is 1.3 kcal/mol more stable than geometry B, thus geometry A (F trans to carbazole) was
determined to be the geometry of compound 3c-F.

The frontier orbitals of the free stibonium and the anion-bound compounds are shown in Figure S16.
With HOMO localized on the carbazole & orbital and LUMO mostly localized on the Sb-Ph o* orbitals,
the nonemissive stibonium [3c]” features a HOMO—LUMO charge transfer transition. In the anion-
bound form 3c-F, the HOMO and LUMO are localized in the carbazole = and n* orbitals, as expected
for its fluorescence.

(3c]* ‘ . 3c-F
Figure S16. Frontier orbitals of [3c]” and 3c-F. Isovalue = 0.05.

Solution Phase Excited State Optimization

The following approach was taken to calculate the solution phase excited state geometry: First, the
ground state (So) geometry of [3c]” was optimized with the acetonitrile solvation (PCM) and resulted in
a Se-optimized geometry (R®%) without imaginary frequencies. Then a single-point TD-DFT calculation
was performed with the default non-equilibrium solvation to examine the vertical excitation energy of
the first few excited states. The first excited state was confirmed to be a singlet (S;) with significant
oscillation strength (f = 0.4625), and has primarily HOMO—LUMO transition. Then a TD-DFT
geometry optimization was done with equilibrium, linear response solvation to find the minimum
energy point of the excited state potential energy surface, resulting in the S;-optimized geometry (RF®).
Unfortunately, we were not able to carry the vibrational frequencies of the optimized excited structure
due to the limitations of our computing resources. Both the vertical excitation (3.98 eV) from the ground
state to the excited state, and the vertical emission (3.67 eV) from the relaxed excited state geometry to
the ground state, were computed with state-specific equilibrium solvation, as the energy diagram shown
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in Figure S17. The energy difference from the relaxation of the geometry in the first excited state is
0.06 eV.

Sq
Vertical excitation Vertical emission
3.98 eV 3.67 eV
v S
0.25eV ] °
So hhhhhhhh bbbttty
RGS RES

Figure S17. Energies calculated for the So- (R®°) and S;- (R®) optimized ground and excited states of
[3c]".

The frontier orbitals of the Se-optimized (R®®) and the S;-optimized (R°) geometries of [3c]" in solution
phase are shown in Figure S18. Both geometries feature a tetrahedral antimony center. As in the gas
phase, the HOMO of the Sp-optimized geometry is localized at the carbazole = orbital. However, the
LUMO mostly resides on the ©* orbital of the phenylene linker between the carbazole and the stibonium
moieties with a small contribution of Sh-Ph o* orbitals in the solution phase. Note that LUMO+1 bears
a large contribution from Sh-Ph o* orbitals. The frontier orbitals of the S;-optimized geometry are
almost identical to those of the Sp-optimized geometry, with a shrunk HOMO-LUMO gap as the HOMO
is 0.06 eV higher and the LUMO is 0.39 eV lower in energies (Table S3). The HOMO—LUMO
transition being the carbazole m to [Ph,MeSh-(p-(CeHa))] n*—c* charge transfer suggests that [3c]” is
nonemissive in the solution phase as well. Refer to the main text for additional discussion.
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Figure S18. Frontier orbitals of Sp-optimized and S;-optimized geometries of [3c]. Isovalue = 0.05.

Table S3. Energy (eV) of the frontier orbitals of Se-optimized and S;-optimized geometries of [3c]".

[3c]”(Se-optimized)  [3c]*(S:i-optimized) Energy difference due to
excited-state relaxation
LUMO+1 -0.36 -0.33 +0.03
LUMO -0.49 -0.88 -0.39
HOMO -7.21 -7.15 +0.06

S19



References
(1) Bordner, J.; Andrews, B. C.; Long, G. G. Cryst. Struct. Commun. 1976, 5, 801.

S20



