SUPPORTING INFORMATION

Discovery and optimization of thiazolidinyl- and pyrrolidinyl- derivatives as

inhaled PDE4 inhibitors for respiratory diseases

Laura Carzaniga,* Amari Gabriele, Andrea Rizzi, Carmelida Capaldi, Renato De Fanti, Eleonora Ghidini, Gino Villetti, Chiara Carnini, Nadia Moretto, Fabrizio Facchinetti, Paola Caruso, Gessica Marchini, Loredana Battipaglia, Riccardo Patacchini, Valentina Cenacchi, Roberta Volta, Francesco Amadei, Alice Pappani, Silvia Capacchi, Valentina Bagnacani, Maurizio Delcanale, Paola Puccini, Silvia Catinella, Maurizio Civelli and Elisabetta Armani*

Table of Contents

1. Preparation of not commercially available acids $\mathbf{1 3 c}$ and 13d S 2
2. Preparation of Intermediates $\mathbf{1 5}$ and $\mathbf{1 6}$ S4
3. Preparation of Intermediates 20 and 21 S5
4. Preparation of intermediates 25 S7
5. Preparation of Intermediates 26 and 27 S9
6. Preparation of Intermediates 29, 30, 31, 32, $\mathbf{3 3}$ and $\mathbf{3 4}$ S11
7. Summary of Crystallographic Data of the h PDE4Bcat-UCR in complex with the
inhibitor ($S^{*}, S^{* *}$)-18e.

1. Preparation of not commercially available acids 13c, 13d

1.1: Synthesis of acid 13c

Step a): synthesis of methyl 1-(phenylsulfonyl)-1H-pyrrole-2-carboxylate (13cA). To a mixture of methyl 1 H -pyrrole-2-carboxylate ($1 \mathrm{~g}, 7.99 \mathrm{mmol}$), tetrabutylammonium hydrogen sulfate $(0.271 \mathrm{~g}$, 0.799 mmol) and NaOH $(2.88 \mathrm{~g}, 71.9 \mathrm{mmol})$ in water (5 ml) and DCM (40 ml) under vigorous stirring, a solution of benzenesulfonyl chloride ($1.794 \mathrm{ml}, 13.99 \mathrm{mmol}$) in DCM (5 ml) was added drop-wise over 10 minutes at RT. The reaction was stirred at the RT for 3 h . The mixture was diluted with water (50 ml) and DCM $(100 \mathrm{ml})$, the organics were separated, washed with brine (50 ml) and dried over sodium sulfate. The solvent was evaporated and the residue was purified by flash chromatography on silica gel column (petroleum ether/acetone $8 / 2$) to afford 1.448 g of (13cA) (yield 68\%). MS/ESI $287.9[\mathrm{MNa}]^{+}$.

Step b): synthesis of 1-(phenylsulfonyl)-1H-pyrrole-2-carboxylic acid (13c). To a solution of methyl 1-(phenylsulfonyl)-1H-pyrrole-2-carboxylate (13cA) ($500 \mathrm{mg}, 1.885 \mathrm{mmol}$) in $\mathrm{MeOH}(7 \mathrm{ml})$ and THF (7 ml) cooled to $0^{\circ} \mathrm{C}$, aqueous $1 \mathrm{~N} \mathrm{KOH}(2.827 \mathrm{ml}, 2.83 \mathrm{mmol})$ was added drop-wise and the resulting mixture was stirred at RT for 24 h . The mixture was poured into ice-water and washed with DCM. The aqueous phase was acidified with $37 \% \mathrm{HCl}(\mathrm{pH}=2)$ and extracted with DCM. The organic layer was dried over sodium sulfate, filtered and evaporated to afford a mixture of compound (13c). This mixture was used as such in the next step. (MS/ESI $252.0[\mathrm{MH}]^{+}$) and methyl 1H-pyrrole-2-carboxylate (MS/ESI $\left.126.0[\mathrm{MH}]^{+}\right)$(234 mg , ratio about 3/7).

1.2: Synthesis of acid 13d

Step a): synthesis of ethyl 2-(phenylthio)benzoate (13dA). Ethyl 2-bromobenzoate ($347 \mu \mathrm{~L}, 2.183$ mmol), benzenethiol ($224 \mu \mathrm{~L}, 2.183 \mathrm{mmol}$) were dissolved in dry DMF (4 ml) and $\mathrm{Cu}_{2} \mathrm{O}(468 \mathrm{mg}, 3.27$ mmol) was added. The reaction mixture was heated at $150^{\circ} \mathrm{C}$ overnight and almost complete conversion was noticed. The solid was filtered off and the filtrate was treated with water (50 ml) and extracted with AcOEt (150 ml). The organic phase was washed several times with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give a residue that was purified by flash chromatography on silica gel eluting with petroleum ether/DCM 95/5 to give ethyl 2(phenylthio)benzoate 13dA ($550 \mathrm{mg}, 2.129 \mathrm{mmol}, 98 \%$ yield) as a colourless oil. MS/ESI $259.34[\mathrm{MH}]$ $+$

Step b): synthesis of 2-(phenylthio)benzoic acid (13d). Ethyl 2-(phenylthio)benzoate 13dA (708 mg, 2.74 mmol) was dissolved in $\mathrm{EtOH}(40 \mathrm{ml})$ and 1 M aqueous $\mathrm{NaOH}(4.10 \mathrm{~mL}, 4.10 \mathrm{mmol})$ was added. The reaction mixture was stirred at RT over three days and complete conversion was noticed. The mixture was portioned between ethyl acetate and 1 N HCl . The organic layer was washed with brine and dried over sodium sulfate. The solvent was removed under reduced pressure to afford 2(phenylthio)benzoic acid 13d ($620 \mathrm{mg}, 2.69 \mathrm{mmol}, 98 \%$ yield) as white solid that was used for the next steps without any further purification. MS/ESI $231.04[\mathrm{MH}]^{+}$

2. Preparation of Intermediates $\mathbf{1 5}$ and 16

Step a): Synthesis of 4-((S)-2-((S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carbonyloxy)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-ethyl)-3,5-dichloropyridine 1 -oxide ($S^{*}, S^{* *}$)15.
(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-hydroxyethyl) pyridine 1oxide (S) - $\mathbf{1 2}$ ($550 \mathrm{mg}, 1.309 \mathrm{mmol}$), ((S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid (282 mg , $1.309 \mathrm{mmol})$, EDC ($251 \mathrm{mg}, 1.309 \mathrm{mmol}$) and DMAP ($160 \mathrm{mg}, 1.309 \mathrm{mmol}$) were dissolved in DMF (5 mL). The reaction was stirred at rt for 48 h to achieve completion. After that time, the reaction was quenched with HCl 1 M and extracted with EtOAc. The organic extract was washed with HCl 1 M (x3) and with $\mathrm{K}_{2} \mathrm{CO}_{3} 5 \%$ (x3) before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to yield 800 mg of desired product ($1.29 \mathrm{mmol}, 98 \%$ yield). $\mathrm{m} / \mathrm{z} 617.16[\mathrm{MH}]^{+}$

Synthesis of 4-((S)-2-(((R)-1-(tert-butoxycarbonyl)pyrrolidine-2-carbonyl)oxy)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide ($R^{*}, S^{* *}$)-15. Compound $\left(R^{*}, S^{* *}\right) \mathbf{- 1 5}$ was synthesized following the same procedure as for compound $\left(S^{*}, S^{* *}\right) \mathbf{- 1 5}$: (S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-hydroxyethyl) pyridine 1oxide (S)-12 ($300 \mathrm{mg}, 0.714 \mathrm{mmol}$), (R)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid (154 mg , $\mathrm{mmol})$, EDC ($137 \mathrm{mg}, 0.714 \mathrm{mmol}$), DMAP ($87 \mathrm{mg}, 0.714 \mathrm{mmol}$), DMF (5 mL), rt for $48 \mathrm{~h}, 300 \mathrm{mg}$ of desired product (0.486 mmol , yield 68%). $\mathrm{m} / \mathrm{z} 617.16[\mathrm{MH}]^{+}$

Synthesis of 3,5-dichloro-4-((S)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-((S)-pyrrolidine-2-carbonyloxy)ethyl)-pyridine 1-oxide ($S^{*}, S^{* *}$)-16.

4-((S)-2-((S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carbonyloxy)-2-(3-(cyclopropylmethoxy)-4-
(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide $\left(S^{*}, S^{* *}\right) \mathbf{- 1 5}(300 \mathrm{mg}, 0.486 \mathrm{mmol})$ was dissolved in $\mathrm{HCl} /$ Dioxane $(4 \mathrm{M}, 2 \mathrm{~mL})$ and stirred at rt for 8 h . After that time, the solvent was removed under reduced pressure and dried in a vacuum oven overnight to yield $\left(S^{*}, S^{* *}\right)$ - $\mathbf{1 6}$ as an hydrochloride salt ($200 \mathrm{mg}, 0.39 \mathrm{mmol}, 80 \%$ yield $) . \mathrm{m} / \mathrm{z} 517.2[\mathrm{MH}]^{+} ; t_{\mathrm{R}}=3.75 \mathrm{~min}(\operatorname{Method} \mathrm{~A})$. When $\left(S^{*}, S^{* *}\right)$ - $\mathbf{1 6}$ was used as free base, $\left(S^{*}, S^{* *}\right)$ - $\mathbf{1 6}$ hydrochloride underwent a basic work-up with aqueous $\mathrm{NaHCO}_{3} 5 \%$ and ethyl acetate.

Synthesis of 3,5-dichloro-4-((S)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(((R)-pyrrolidine-2-carbonyl)oxy)ethyl)pyridine 1-oxide, ($R^{*}, S^{* *}$)-16.
$\left(R^{*}, S^{* *}\right)-\mathbf{1 5}(200 \mathrm{mg}, 0.324 \mathrm{mmol})$ was dissolved in $\mathrm{HCl} /$ Dioxane $(4 \mathrm{M}, 5 \mathrm{~mL})$ and stirred at rt for 8 h . After that time, the reaction was quenched with aq $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with ethyl acetate. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to yield $\left(R^{*}, S^{* *}\right)$-16 $(120 \mathrm{mg} ; \mathbf{7 1 . 6} \%$ yield). $m / z 517.16[\mathrm{MH}]+$

3. Preparation of Intermediates 20 and 21

Step a): Synthesis of 4-((S)-2-(((S)-3-(tert-butoxycarbonyl)thiazolidine-2-carbonyl)oxy)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* *}$)-20 (S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-hydroxyethyl) pyridine 1-oxide (S)-12 (40 g, 95 mmol), (S)-3-(tert-butoxycarbonyl)thiazolidine-2-carboxylic acid ($33.3 \mathrm{~g}, 143$ mmol), EDC ($73 \mathrm{~g}, 381 \mathrm{mmol}$) and DMAP ($13.9 \mathrm{~g}, 114 \mathrm{mmol}$) were dissolved in DMF (556 mL). The
reaction was stirred at rt for 2 h to achieve completion. After that time, the reaction was poured onto water (8 Liter), the solid filtered off and dissolved with DCM (1.2 Liter), washed with water before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to yield 60.5 mg of desired product (quantitative yield) . $m / z 635.2[H]^{+}$. LC-MS $t_{\mathrm{R}} \min 4.34 / 4.37$; Diastereomeric Ratio=5/95 (Method B). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta \operatorname{ppm} 8.65(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.96$ (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.23(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.42$ (dd, $J=14.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.01-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{td}, J=7.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.05-1.45$ $(\mathrm{m}, 10 \mathrm{H}), 0.52-0.61(\mathrm{~m}, 2 \mathrm{H}), 0.25-0.41(\mathrm{~m}, 2 \mathrm{H})$

Compounds $\left(S^{*}, R^{* *}\right)-\mathbf{2 0},\left(R^{*}, R^{* *}\right)-\mathbf{2 0},\left(R^{*}, S^{* *}\right)$ - $\mathbf{2 0}$ were synthesized following the same procedure starting from the corresponding alcohols (S) - $\mathbf{1 2}$ or $(R)-\mathbf{1 2}$.

Step b: Synthesis of 3,5-dichloro-4-((S)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(((S)-thiazolidine-2-carbonyl)oxy)ethyl)pyridine 1-oxide ($S^{*}, S^{* *}$)-21

To a solution of 4-((S)-2-(((S)-3-(tert-butoxycarbonyl)thiazolidine-2-carbonyl)oxy)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* *}$)- 20 (70 $\mathrm{g}, 110 \mathrm{mmol})$ in $\mathrm{AcOEt}(620 \mathrm{~mL}), \mathrm{HCl} / \mathrm{AcOEt}(5.72 \mathrm{M}, 400 \mathrm{~mL})$ was added and the mixture stirred at rt for 20 min . After that time, the hydrochloride salt, which spontaneously precipitates from the reaction mixture, was filtered at room temperature to yield 52 grams of $\left(S^{*}, S^{* *}\right)$-21 as an hydrochloride salt (yield 83%). $m / z 535.2[\mathrm{MH}]^{+}$. LC-MS $t_{\mathrm{R}} \min 3.26$; Diastereomeric Ratio $=>99: 1$ (Method B). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta \operatorname{ppm} 8.57$ (s, 2 H), 7.19 (d, J=7.94 Hz, 1 H), $7.12(\mathrm{~d}, \mathrm{~J}=1.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (t, $\mathrm{J}=75.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-7.00(\mathrm{~m}, 1 \mathrm{H}), 5.89-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{~J}=7.06 \mathrm{~Hz}, 2 \mathrm{H}), 3.37$ $-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.31(\mathrm{~m}, 3 \mathrm{H}), 2.77-2.93(\mathrm{~m}, 2 \mathrm{H}), 1.05-1.36(\mathrm{~m}, 1 \mathrm{H}), 0.51-0.63(\mathrm{~m}, 2 \mathrm{H})$, $0.34(\mathrm{~d}, \mathrm{~J}=4.85 \mathrm{~Hz}, 2 \mathrm{H})$. Alternatively $\mathrm{NaHCO} 35 \%$ is added to the reaction mixture till basic pH and the two phases separated. The organic phase was dired over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated in vacuo to afford
$\left(S^{*}, S^{* *}\right)-\mathbf{2 1}$ as a free base.
Compounds $\left(S^{*}, R^{* *}\right) \mathbf{- 2 1},\left(R^{*}, R^{* *}\right) \mathbf{- 2 1},\left(R^{*}, S^{* *}\right)$ - $\mathbf{2 1}$ were synthesized following the same procedure starting from the corresponding Boc-protected intermediates $\left(S^{*}, R^{* *}\right) \mathbf{2 0},\left(R^{*}, R^{* *}\right) \mathbf{- 2 0},\left(R^{*}, S^{* *}\right)$-20.

4. Preparation of intermediates (S)-25a-b

Step a): synthesis of 4-((S)-2-((S)-2-acetoxy-2-phenylacetoxy)-2-(3-(cyclopropyl-methoxy)-4-(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* *}$)-25aA.

A mixture of (S)-2-acetoxy-2-phenylacetic acid ($0.924 \mathrm{~g}, 4.76 \mathrm{mmol}$), (S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-hydroxyethyl)pyridine 1-oxide (S)-12 (1.0 g, $2.380 \mathrm{mmol})$, EDC $(0.684 \mathrm{~g}, 3.57 \mathrm{mmol})$ and $\operatorname{DMAP}(0.436 \mathrm{~g}, 3.57 \mathrm{mmol})$ in DCM $(150 \mathrm{ml})$ was stirred at RT for 24 hrs. More (S)-2-acetoxy-2-phenylacetic acid ($0.350 \mathrm{~g}, 1.802 \mathrm{mmol}$), EDC $(0.456 \mathrm{~g}, 2.380$ mmol) and DMAP $(0.300 \mathrm{~g}, 2.456 \mathrm{mmol})$ were added and the stirring was continued for 3 hrs to complete conversion. The reaction mixture was washed twice with aqueous 1 N HCl and then with aqueous $1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$; the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was triturated with $\operatorname{iPrOH}(30 \mathrm{ml})$ and filtered to afford 1.27 g of $\left(S^{*}, S^{* *}\right) \mathbf{- 2 5 a A}\left(89 \%\right.$ yield). MS/ESI ${ }^{+}$ $596.18[\mathrm{MH}]^{+}$

Step b): synthesis of 4-((S)-2-((S)-2-acetoxy-2-phenylacetoxy)-2-(4-(difluoromethoxy)-3-hydroxyphenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* *}$)-25aB

4-((S)-2-((S)-2-acetoxy-2-phenylacetoxy)-2-(3-(cyclopropylmethoxy)-4-
(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* *}$)-25aA ($1.27 \mathrm{~g}, 2.129 \mathrm{mmol}$) was
treated with trifluoroacetic acid ($15 \mathrm{ml}, 195 \mathrm{mmol}$) and the resulting solution was stirred at RT for 20 hrs. The reaction mixture was diluted with DCM and washed twice with water; the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by chromatography on silica gel $(\mathrm{DCM} / E t O A c=3: 2$ to $1: 1)$. The mixed fractions were combined and triturated with a mixture of $\mathrm{iPr}_{2} \mathrm{O} / \mathrm{Et}_{2} \mathrm{O}$ (10:1). The collected solid was then combined to pure fractions from chromatography to afford 1.08 g of $\left(S^{*}, S^{* *}\right) \mathbf{- 2 5 a B}(94 \%$ yield $) ; \mathrm{MS}^{2} \mathrm{ESI}^{+} 542.11[\mathrm{MH}]^{+} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) δ $\operatorname{ppm} 8.56(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.50(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}), 6.81(\mathrm{~d}, 1 \mathrm{H}), 7.00(\mathrm{t}, 1 \mathrm{H}), 6.54(\mathrm{dd}, 1 \mathrm{H}), 5.89$ (dd, 1 H), 5.84 ($\mathrm{s}, 1 \mathrm{H}$), 3.40 (dd, 1 H), 3.18 (dd, 1 H), 2.13 ($\mathrm{s}, 3 \mathrm{H}$)

Step c): synthesis of 4-((S)-2-((S)-2-acetoxy-2-phenylacetoxy)-2-(4-(difluoromethoxy)-3-methoxyphenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* *}$)-25aC

A suspension of 4-((S)-2-((S)-2-acetoxy-2-phenylacetoxy)-2-(4-(difluoromethoxy)-3-hydroxyphenyl)ethyl)-3,5-dichloropyridine 1 -oxide ($S^{*}, S^{* *}$)-25aB ($1.080 \mathrm{~g}, 1.991 \mathrm{mmol}$), methyl iodide ($0.162 \mathrm{ml}, 2.59 \mathrm{mmol}$) and potassium carbonate $(0.550 \mathrm{~g}, 3.98 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{ml})$ was vigorously stirred at RT for 20 hrs . The reaction mixture was partitioned between DCM and water and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum to afford 0.984 g of $\left(S^{*}, S^{* *}\right) \mathbf{- 2 5 a C}(89 \%$ yield $)$ that was used without further purification. MS/ESI ${ }^{+} 556.17[\mathrm{MH}]^{+}$.

Synthesis of 4-((S)-2-((S)-2-acetoxy-2-phenylacetoxy)-2-(3-(cyclopentyloxy)-4-(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* *}$)-25bC
$\left(S^{*}, S^{* *}\right)$ - $\mathbf{2 5 b} \mathbf{b}$ was prepared following an analogous procedure as for $\left(S^{*}, S^{* *}\right) \mathbf{- 2 5 a C}$, from 4-((S)-2-((S)-2-acetoxy-2-phenylacetoxy)-2-(4-(difluoromethoxy)-3-hydroxyphenyl)ethyl)-3,5-dichloropyridine 1-oxide $\left(S^{*}, S^{* *}\right)$-25aB ($1.2 \mathrm{~g}, 2.2 \mathrm{mmol}$), bromocyclopentane $(0.47 \mathrm{ml}, 4.43 \mathrm{mmol})$, potassium carbonate $(0.61 \mathrm{~g}, 4.43 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(70 \mathrm{ml}), \mathrm{RT}, 18 \mathrm{hrs}$. The reaction mixture was partitioned between AcOEt and water and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under
vacuum to afford 1.3 g of $\left(S^{*}, S^{* *}\right)$-25bC (97% yield). MS/ESI $612.17[\mathrm{MH}]^{+}$.
Step d): synthesis of (S)-3,5-dichloro-4-(2-(4-(difluoromethoxy)-3-methoxyphenyl)-2hydroxyethyl)pyridine $\mathbf{1 - o x i d e}(S)-25 a$

4-((S)-2-((S)-2-acetoxy-2-phenylacetoxy)-2-(4-(difluoromethoxy)-3-methoxyphenyl)ethyl)-3,5-
dichloropyridine 1-oxide $\left(S^{*}, S^{* *}\right)$ - $\mathbf{2 5 a C}(984 \mathrm{mg}, 1.769 \mathrm{mmol}$) was dissolved in a mixture of MeOH $(50 \mathrm{ml})$ and $\mathrm{DCM}(10 \mathrm{ml})$. Aqueous sat. NaHCO_{3} solution $(10 \mathrm{ml}, 11.00 \mathrm{mmol})$ was added and the resulting suspension was stirred at RT for 2 hrs. The reaction mixture was partitioned between water and DCM; the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to afford the desired compound ($650 \mathrm{mg}, 1.71 \mathrm{mmol}, 97 \%$ yield). MS/ESI $380.17[\mathrm{MH}]^{+}$.

Synthesis of (S)-3,5-dichloro-4-(2-(3-(cyclopentyloxy)-4-(difluoromethoxy)phenyl)-2hydroxyethyl)pyridine $\mathbf{1 - o x i d e}(S)-25 b$
$(S) \mathbf{- 2 5 b}$ was prepared following an analogous procedure as for $(S) \mathbf{- 2 5 a}$, from $\left(S^{*}, S^{* *}\right) \mathbf{- 2 4 b C}(1.31 \mathbf{g}$, $2.15 \mathrm{mmol})$, $\mathrm{MeOH}(70 \mathrm{ml})$ and aqueous sat. NaHCO_{3} solution ($20 \mathrm{ml}, 22 \mathrm{mmol}$), RT, 2 hrs. 470 mg of (S)-25b (50\% yield). MS/ESI $434.26[\mathrm{MH}]^{+}$.
5. Preparation of Intermediates $\left(S^{*}, S^{* *}\right)$-26a-b and $\left(S^{*}, S^{* *}\right)$-27a-b

Step a): synthesis of 4-((S)-2-((S)-3-(tert-butoxycarbonyl)thiazolidine-2-carbonyloxy)-2-(4-(difluoromethoxy)-3-methoxyphenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* *}$)-26a.

A solution of (S)-3-(tert-butoxycarbonyl)thiazolidine-2-carboxylic acid ($479 \mathrm{mg}, 2.052 \mathrm{mmol}$), (S)-3,5-dichloro-4-(2-(4-(difluoromethoxy)-3-methoxyphenyl)-2-hydroxyethyl)pyridine 1-oxide (S)-25a(650
$\mathrm{mg}, 1.710 \mathrm{mmol})$, EDC ($492 \mathrm{mg}, 2.56 \mathrm{mmol}$) and DMAP ($313 \mathrm{mg}, 2.56 \mathrm{mmol}$) in DCM (60 mL) was stirred at rt for 3 h . The reaction mixture was diluted with DCM and washed twice with aqueous 1 N HCl ; the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to afford 1.017 g of $\left(S^{*}, S^{* *}\right)$ 26a (quantitative yield). $m / z 595.24[\mathrm{MH}]^{+}$. The resulting compound was used without further characterization.

Synthesis of 4-((S)-2-(((S)-3-(tert-butoxycarbonyl)thiazolidine-2-carbonyl)oxy)-2-(3-(cyclopentyloxy)-4-(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* * *}$)-26b. $\left(S^{*}, S^{* *}\right)$-26b was prepared following an analogous procedure as for $\left(S^{*}, S^{* *}\right)$-26a from (S)-3-(tert-butoxycarbonyl)thiazolidine-2-carboxylic acid (278 mg, 1.19 mmol), (S)-3,5-dichloro-4-(2-(3-(cyclopentyloxy)-4-(difluoromethoxy)phenyl)-2-hydroxyethyl)pyridine 1-oxide (S)-25b ($345 \mathrm{mg}, 0.79$ mmol), EDC ($457 \mathrm{mg}, 2.38 \mathrm{mmol}$), DMAP ($146 \mathrm{mg}, 1.19 \mathrm{mmol}$), DCM (8 mL), rt, 3 h .502 mg of 26b (97% yield). $m / z 649.5[\mathrm{MH}]^{+}$. The resulting compound was used without further characterization.

Step b: synthesis of 3,5-dichloro-4-((S)-2-(4-(difluoromethoxy)-3-methoxyphenyl)-2-((S)-thiazolidine-2-carbonyloxy)ethyl)pyridine 1-oxide hydrochloride ($S^{*}, S^{* *}$)-27a.

To a solution of 4-((S)-2-((S)-3-(tert-butoxycarbonyl)thiazolidine-2-carbonyloxy)-2-(4-(difluoromethoxy)-3-methoxyphenyl)ethyl)-3,5-dichloropyridine 1-oxide ($S^{*}, S^{* *}$)-26a(1.017 $\mathrm{g}, 1.710$ mmol) in EtOAc (10 mL) cooled at $0^{\circ} \mathrm{C}, \mathrm{HCl}, 4 \mathrm{M}$ solution in EtOAc ($10 \mathrm{~mL}, 40.0 \mathrm{mmol}$) was added and the resulting mixture was stirred at rt for 2 h . More $\mathrm{HCl}, 4 \mathrm{M}$ solution in EtOAc ($10 \mathrm{~mL}, 40.0 \mathrm{mmol}$) was added and the solution was stirred at $0^{\circ} \mathrm{C}$ for additional 2 h to reach complete conversion. The solution was concentrated to 10 mL under reduced pressure, then $\mathrm{iPr}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the product precipitated as a sticky gummy solid. The solid was allowed to settle down and the solvent was removed by aspiration. The residue was dried in vacuo at rt to afford 0.890 g of $\left(S^{*}, S^{* *}\right)$-27a (1.674 mmol, 97% yield), which underwent next step without any additional purification. $\mathrm{m} / \mathrm{z} 494.97$ [MH].

The resulting compound was used without further characterization.
Synthesis of 3,5-dichloro-4-((S)-2-(3-(cyclopentyloxy)-4-(difluoromethoxy)phenyl)-2-(((S)-thiazolidine-2-carbonyl)oxy)ethyl)pyridine 1-oxide hydrochloride ($S^{*}, S^{* *}$)-27b.
$\left(S^{*}, S^{* *}\right)$-27b was prepared following an analogous procedure as for $\left(S^{*}, S^{* *}\right)$-27a from $\left(S^{*}, S^{* *}\right)$-26b $(502 \mathrm{mg}, 0.77 \mathrm{mmol})$, EtOAc (6 mL), HCl 4.5 M in AcOEt ($6.088 \mathrm{~mL}, 27.4 \mathrm{mmol}$) rt, 3 h .390 mg of $\left(S^{*}, S^{* *}\right)-\mathbf{2 7 b}\left(86 \%\right.$ yield). $m / z 549.5[\mathrm{MH}]^{+}$.
6. Preparation of Intermediates 29, 30, 31, 32, 33 and 34.

Step a): synthesis of 4-((S)-2-(((R)-3-(tert-butoxycarbonyl)thiazolidine-4-carbonyl)oxy)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide ($R^{*}, S^{* *}$)-29
(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-hydroxyethyl) pyridine 1oxide (S)-12 ($550 \mathrm{mg}, 1.309 \mathrm{mmol}$), (R)-3-(tert-butoxycarbonyl)thiazolidine-4-carboxylic acid (250 mg ,
$1.07 \mathrm{mmol})$, EDC ($411 \mathrm{mg}, 2.14 \mathrm{mmol}$) and DMAP ($105 \mathrm{mg}, 0.86 \mathrm{mmol}$) were dissolved in DMF (5 mL). The reaction was stirred at rt for 3 h to achieve completion. After that time, the reaction was quenched with HCl 1 M and extracted with EtOAc. The organic extract was washed with HCl 1 M (x3) and with $\mathrm{K}_{2} \mathrm{CO}_{3} 5 \%$ (x3) before being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude was purified by preparative HPLC (Method 1) to afford 320 mg of $\left(R^{*}, S^{* *}\right) \mathbf{2 9}(70 \%$ yield); $\mathrm{m} / \mathrm{z} 634.1$ $[\mathrm{MH}]^{+}$. The resulting compound was used without further characterization.

Compounds $\mathbf{3 0}$ and $\mathbf{3 1}$ were synthesized following the same protocol described for $\mathbf{2 9}$ starting from corresponding alcohol (S)-12.

Step b): synthesis of 3,5-dichloro-4-((S)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2(((R)-thiazolidine-4-carbonyl)oxy)ethyl)pyridine 1-oxide ($\left.R^{*}, S^{* *}\right)$-32

4-((S)-2-(((R)-3-(tert-butoxycarbonyl)thiazolidine-4-carbonyl)oxy)-2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)ethyl)-3,5-dichloropyridine 1-oxide ($R^{*}, S^{* *}$)-29 ($320 \mathrm{mg}, 0.50 \mathrm{mmol}$) was dissolved in $\mathrm{HCl} /$ Dioxane $4 \mathrm{M}(5 \mathrm{~mL})$ and stirred at rt for 2 h . After that time, NaHCO_{3} sat. sol. was added till $\mathrm{pH}=8$ and the acqueous phase extracted with AcOEt to yield 250 mg of $\left(R^{*}, S^{* *}\right)$ - $\mathbf{3 2}$ as a free base (yield 93\%). m/z 535.2[MH] ${ }^{+}$. LC-MS $t_{\mathrm{R}} \min 3.19$; Diastereomeric Ratio= 99:1 (Method B). $\left[\alpha_{\mathrm{D}}\right]=$ -45.77(c = $\left.0.48 ; \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta \mathrm{ppm} 8.56(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=7.94 \mathrm{~Hz}, 1 \mathrm{H})$, 7.04-7.13(m, 2 H), $6.97(\mathrm{dd}, \mathrm{J}=8.16,1.54 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-6.03(\mathrm{~m}, 1 \mathrm{H}), 3.97-4.15(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{~d}$, $\mathrm{J}=7.06 \mathrm{~Hz}, 2 \mathrm{H}$), 3.43 (dd, J=14.11, $9.26 \mathrm{~Hz}, 1 \mathrm{H}$), 3.24 (dd, J=14.11, $4.85 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, J=10.14, $7.06 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=10.14,5.73 \mathrm{~Hz}, 1 \mathrm{H}), 1.14-1.28(\mathrm{~m}, 1 \mathrm{H}), 0.48-0.67(\mathrm{~m}, 2 \mathrm{H}), 0.26-0.46$ (m, 2 H).

Compounds $\mathbf{3 3}$ and $\mathbf{3 4}$ were synthesized following the same protocol described for $\mathbf{3 2}$ starting from corresponding Boc-protected intermediates $\mathbf{3 0}$ and $\mathbf{3 1}$.
7. Summary of Crystallographic Data of the hPDE4Bcat-UCR in complex with the inhibitor

$\left(S^{*}, S^{* *}\right)-18 e$.

Data Collection

X-ray source
Wavelength (A)
Detector
Space group
Unit cell parameters
a (\AA)
b (A)
c (Å)
Resolution range (\AA)
Total observations
Number of unique reflections ($\mathrm{I} \geq 0$)
Completeness (\%)
Multiplicity
I04-1, Diamond Light Source, Didcot (UK)
0.92

Pilatus 2M - Dectris Ltd.
P2 ${ }_{1} 2_{1} 2_{1}$
<I/ σ (I)>
55.27
55.73
225.56
29.61-1.51 (1.55-1.51) ${ }^{\mathrm{a}}$

544788 (8392)
85681 (2246)
$\mathrm{R}_{\text {merge }}{ }^{\mathrm{b}}{ }^{\mathrm{b}}$
77.7 (28.3)
6.4 (3.7)
22.4 (2.6)
$\mathrm{R}_{\text {merge }}{ }_{\mathrm{E}}{ }^{\mathrm{R}}{ }^{\text {pim }}{ }_{\mathrm{b}} \mathrm{R}_{\text {meas }}$
$\mathrm{CC}_{1 / 2}$
0.046 (0.467)
0.041 (0.149)
0.019 (0.276)
$\mathrm{CC}_{1 / 2}$
0.999 (0.791)

Refinement Statistics

Resolution range (\AA)
Number of reflections ($\mathrm{F}_{\mathrm{o}} \geq 0$)
29.61-1.60 (1.64-1.60) ${ }^{\text {a }}$
$\mathrm{R}_{\text {all }}{ }^{\text {c }}$
$\begin{array}{ll}\mathrm{R}_{\text {work }}{ }_{\mathrm{c}} & 0.184(0.255) \\ \mathrm{R}_{\text {free }}\end{array}$

Number of atoms

Non-hydrogen protein 5434
Non-hydrogen waters 165
Non-hydrogen CHD_4 ligands 96
Cations $\left(\mathrm{Mg}^{2+}, \mathrm{Zn}^{2+}\right) \quad 4$
R.m.s.d bond lengths/bond angles $\left(\AA^{\circ},{ }^{\circ}\right)^{\mathrm{e}} \quad 0.02 / 1.9$

Ramachandran plot (\%) favored/allowed regions (\%) ${ }^{\mathrm{f}} 98.4$ / 99.7
Average Temperature Factors (\AA^{2})
Protein 22.6
Water
27.0

CHD_4 ligands 19.6
Cations $\left(\mathrm{Mg}^{2+}, \mathrm{Zn}^{2+}\right) \quad 11.4$
R.m.s.d. $\Delta B\left(\AA^{2}\right)^{\mathrm{g}} \quad 1.95$

[^0]${ }^{\mathrm{b}} \mathrm{R}_{\text {merge }}=\sum_{\mathbf{h}} \sum_{i}\left|\mathrm{I}_{\mathbf{h} i}-<\mathrm{I}_{\mathbf{h}}>\right| / \sum_{\mathbf{h}} \sum_{i} \mathrm{I}_{\mathbf{h} i}$, with $\mathrm{I}_{\mathbf{h}}$ is the i th measurement of reflection \mathbf{h}, and $<\mathrm{I}_{\mathbf{h}}>$ is the (weighted) average of all symmetry-related or replicate observations of the unique reflection \mathbf{h}. The summations include all " n " observed reflections; $\mathrm{R}_{\text {pim }}=\sum_{\mathbf{h}}(1 / \mathrm{n}-1)^{1 / 2} \sum_{i}\left|\mathrm{I}_{\mathbf{h} i}-<\mathrm{I}_{\mathbf{h}}>\left|/ \sum_{\mathbf{h}} \sum_{i} \mathrm{I}_{\mathbf{h} i} ; \mathrm{R}_{\text {meas }}=\sum_{\mathbf{h}}(\mathrm{n} / \mathrm{n}-1)^{1 / 2} \sum_{i}\right| \mathrm{I}_{\mathbf{h} i}-<\mathrm{I}_{\mathbf{h}}>\right| / \sum_{\mathbf{h}} \sum_{i} \mathrm{I}_{\mathbf{h} i}$ ${ }^{\mathrm{c}} \mathrm{R}_{\text {work }}=\sum_{\mathrm{h}}\left|F_{o}\right|-\left|F_{c}\right| / \sum_{\mathrm{h}}\left|F_{o}\right|$, where $\left|F_{o}\right|$ and $\left|F_{c}\right|$ are the observed and calculated structure factor amplitudes for reflection h. The summation is extended over all unique reflections to the specified resolution.
${ }^{\mathrm{d}} \mathrm{R}_{\text {free }}, \mathrm{R}$ factor calculated using 4027 randomly chosen reflections (5\%) set aside from all stages of refinement.
${ }^{\mathrm{e}}$ Stereochemical criteria are those of Engh and Huber. ${ }^{1}$
${ }^{\mathrm{f}}$ The reliability of the protein structure has been assessed using the MolProbity package. ${ }^{2}$ There were 2 outliers (phi, psi): A $541 \operatorname{Ser}\left(112.9^{\circ},-26.5^{\circ}\right)$ and B 547 Asp $\left(-49.8^{\circ},-74.7^{\circ}\right)$
${ }^{\mathrm{g}}$ R.m.s.d ΔB is the r.m.s. deviation of the B factor of bonded atoms (all atoms). ${ }^{3}$

References

1. Engh, R.A.; Huber, R. Structure quality and target parameters. International Tables for Crystallography Vol. F, Ch. 2012, 18(3), 474-484.
2. Chen, V.B.; Arendall, W.B., 3rd; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12-21.
3. Kleywegt, G. J. Validation of protein models from C_{α} coordinates alone. J. Mol. Biol. 1997, 273, 37

[^0]: ${ }^{a}$ Number in parentheses refer to the highest resolution shell.

