Supporting Information

Asymmetric Nanochannel-Ionchannel Hybrid for Ultrasensitive and Label-free Detection of Copper Ions in Blood

Xiao-Ping Zhao,^{1,2} Shan-Shan Wang,¹ Muhammad Rizwan Younis,² Xing-Hua Xia,*² Chen Wang*¹

¹Key Laboratory of Biomedical Functional Materials, School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China

²State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

*To whom correspondence should be addressed. E-mail: <u>xhxia@nju.edu.cn;</u> wangchen@cpu.edu.cn

Scheme S1. The chemical structural formula of PGA.

Figure S1. ICR ratio for different ionic transport process.

Figure S2. Cu²⁺-PGA recognition kinetics.

Figure S3. *I-V* curve of PGA-free PAA with and without Cu^{2+} (10 μ M).

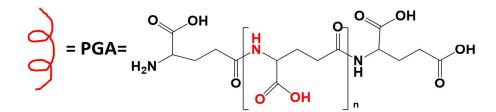

Figure S4. *I-V* curve of PGA- modified symmetric PAA membranes in the present of different Cu^{2+} (the amplify inset).

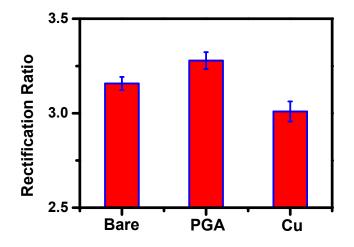
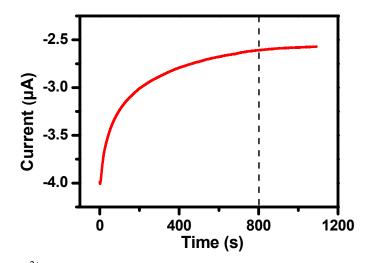
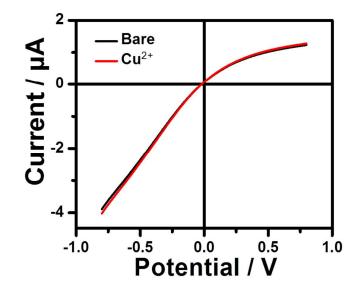
Figure S5. The *I-V* profiles of the PGA modified nanochannel-ionchannel hybrid for detection of Cu^{2+} using different methods.

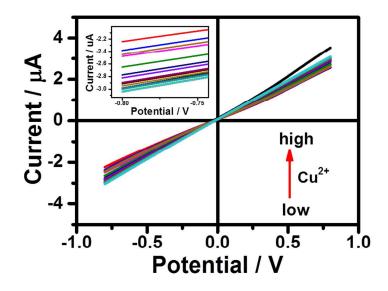
Figure S6. Cu²⁺-PGA recognition kinetics for different systems.

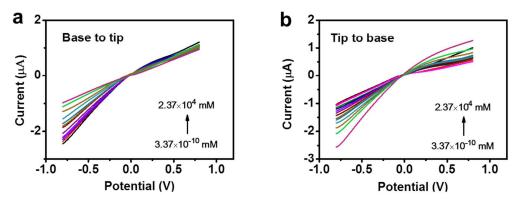
Figure S7. The current values versus of Cu^{2+} concentrations.

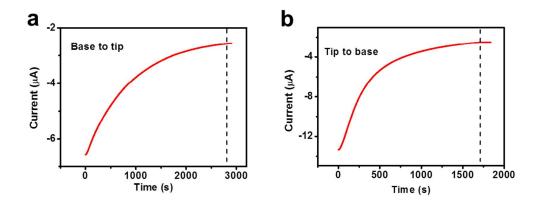
Figure S8. The *I-V* profiles of different concentrations of Cu^{2+} in tap water samples.

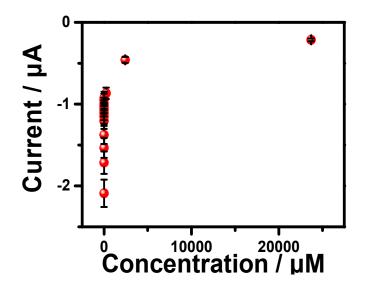
Scheme S1. The chemical structural formula of PGA.


Figure S1. ICR ratio for different processes.


Figure S2. Cu^{2+} -PGA recognition kinetics. The dashed line means the time needed for PGA-Cu²⁺ recognition equilibrium. The Cu²⁺ concentration is 3.37 x 10⁻¹⁰ μ M.


Figure S3. *I-V* curve of PGA-free PAA with and without Cu^{2+} (10 μ M).


Figure S4. *I-V* curve of PGA- modified symmetric PAA membranes in the present of different Cu^{2+} (the amplify inset).

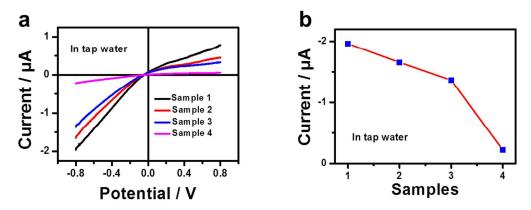

Figure S5. The *I-V* profiles of the PGA modified nanochannel-ionchannel hybrid for detection of Cu^{2+} using different methods. (a) Cu^{2+} ions were added in the nanochannel side of PAA membrane (b) Cu^{2+} ions were added in the ionchannel side of PAA membrane.

Figure S6. Cu^{2+} -PGA recognition kinetics for different systems. (a) Cu^{2+} ions were added in the nanochannel side of PAA membrane (b) Cu^{2+} ions were added in the ionchannel side of PAA membrane. The dashed line means the time needed for PGA-Cu²⁺ recognition equilibrium. The Cu²⁺ concentration is 3.37 x 10⁻¹⁰ μ M.

Figure S7. The current values versus of Cu^{2+} concentrations.

Figure S8. (a) The *I-V* profiles of different concentrations of Cu^{2+} in tap water samples. (Sample 1: no additional Cu^{2+} in tap water; Sample 2: added 5 x 10⁻⁷ μ M in tap water; Sample 3: added 5 x 10⁻³ μ M in tap water; Sample 4: added 5 x 10⁵ μ M in tap water). (b) The ionic current at -0.8 V versus different tap water samples.

Sample	Added Cu^{2+} (μM)	Measured $Cu^{2+}(\mu M)$	Recovery (%)
Sample 1	0	2.27 x 10 ⁻⁸	/
Sample 2	5 x 10 ⁻⁷	4.99 x 10 ⁻⁷	99.9
Sample 3	5 x 10 ⁻³	4.67 x10 ⁻³	93.4
Sample 4	5 x 10 ⁵	5.63×10^5	112.6

Table S1. Results of the detection of Cu^{2+} in real tap water samples.