Supporting information

Pyridine-Functionalized and Metallized Meso-Macroporous Polymers for Highly Selective Capture and Catalytic Conversion of CO₂ into Cyclic Carbonates

Qin Wu[‡], Kuan Huang[&], Fujian Liu^{*†}, Pengfei Zhang^{*§} and Lilong Jiang^{*†}

[†] National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou 350002, Fujian, PR China. E-mail: <u>filiu1982@gmail.com</u>, <u>jll@fzu.edu.cn</u>

[‡] College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.

§ School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail: <u>chemistryzpf@sjtu.edu.cn</u>

[&] Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.

*Correspondence concerning this article should be addressed to <u>fjliu1982@gmail.com, jll@fzu.edu.cn</u>

Samples	CO ₂ capacities at 0 °C (mmol/g) 0.15 bar	References
Co@PDVB-VP-0.25	0.89	This work
Co@PDVB-VP-0.5	0.82	This work
Co@PDVB-VP-1.0	0.58	This work
PINK	1.15	J. Mater. Chem. A, 2016 , 4, 2517-2523
СРР	1.50	J. Mater. Chem. A, 2015 , 3, 10284-10288
PIN1	0.79	J. Mater. Chem. A, 2015 , 3, 18492-18504
TPI-2@IC	0.85	J Mater. Chem. A, 2015 , 3, 878-885
PP1-2-tren	1.47	J. Mater. Chem. A, 2015 , 3, 16229-16234
A1B1-0.030	1.12	J. Mater. Chem. A, 2015 , 3, 10990-10998
NAN-2	0.61	J. Mater. Chem. A, 2016 , 4, 8190-8197
PPN-81	1.22	J. Mater. Chem. A 2015, 3,

Table S1 A summary of CO_2 selective capture property on different porous polymers reported in the literature.

3252-3256

Porous materials	Temperatur e (°C)	Method	CO ₂ /N ₂ selectivities	Refs.		
Cu/BF ₄ /BIPLP-1	25	Henry's law	64	J. Phys. Chem. C 2015, 119, 8174		
COP-19	25	IAST	131	<i>Faraday Discuss.</i> 2015 , <i>183</i> , 401		
Azo-COP-2	25	IAST	110	Nat Commun 2013 , 4, 1357		
TB-COP-1	25	IAST	69	J. Mater. Chem. A 2014, 2, 12507		
PPN-6-SO ₃ Li	22	IAST	414	J. Am. Chem. Soc. 2011, 133, 18126		
PPN-6-SO ₃ NH ₄	22	Henry's law	196	Energ. Environ. Sci. 2013, 6, 3559		
PPN-6-DETA	22	IAST	442	Angew. Chem. In Ed. 2012 , 51, 7480		
PPN-81	25	IAST	4716	J. Mater. Chem. A 2015, 3, 3252		
PFPOP-3	25	IAST	57	RSC Adv. 2015 , 5, 71095		
DA-CMP-1	25	IAST	60	J. Mater. Chem. A 2015, 3, 21185		
TB-MOP	25	Henry's law	51	ACS Macro. Lett. 2013, 2, 660		
PAF-3	25	Henry's law	87	Energ. Environ. Sci 2011 , 4, 3991		
PAF-33-NH ₂	25	Henry's law	80	<i>Polymer Chem.</i> 201 5, 2266		
[HO ₂ C] _{100%} -H ₂ P -COF	25	IAST	77	Angew. Chem. Int. Ed. 2015 , 54, 2986		
СРР	25	Henry's law	94	J. Mater. Chem. A		

Table S2 A summary of CO_2/N_2 selectivities on different porous polymers reported in the literature

2015, *3*, 10284

om-ph-MR	25	Henry's law	100	J. Am. Chem. Soc. 2015, 137, 7210
SNW-1	25	IAST	50	<i>Adv. Mater.</i> 2014 , <i>26</i> , 3644
TCPF-4	25	Henry's law	56	<i>Polymer Chem.</i> 2015 , 6, 7410
TBMID	25	Henry's law	59	<i>RSC Adv.</i> 2015 , <i>5</i> , 100322
FCTF-1	25	IAST	31	<i>Energy Environ. Sci.,</i> 2013 , <i>6</i> , 3684.
$[Cu(tba)_2]_n$	25	IAST	45	J. Am. Chem. Soc. 2014 , 136, 10906.
Co@PDVB-VP- 1.0	25	IAST	163.5	This work
Co@PDVB-VP- 0.5	25	IAST	144.5	This work

Catalyst	CO ₂ (MPa)	Co-cataly sts	Temp. (°C)	Time (h)	Yield (%)	Refs	
Co@PDVB-VP -0.5	1.0(CO ₂ /N ₂ = 0.15/0.85)	<i>n-</i> Bu ₄ NB r	30	48	99.2	This work	
Co@PDVB-VP -0.5	1.0(CO ₂ /N ₂ = 0.15/0.85)	<i>n-</i> Bu ₄ NB r	100	0.75	98.9	This work	
USTC-253-TF A	0.1	n-Bu₄NB r	25	72	81.3	ChemSusChem, 2015, 8, 878-885.	
Co-CMP 100	0.1	<i>n-</i> Bu ₄ NB r	25	48	81.5	<i>Nat. Commun.</i> , 2014 , <i>4</i> , 1960.	
Co/POP-TPP	0.1	<i>n-</i> Bu ₄ NB r	29	24	98.5	J. Catal., 2016 , 338, 202.	
Zn/HAzo-POP- 1	3.0	n-Bu₄NB r	100	0.5	86.0	Angew. Chem., Int. Ed., 2016 , 55, 9685.	
Cu/POP-Bpy	0.1	n-Bu₄NB r	29	48	99.0	ChemSusChem, 2017 , 10, 1186.	
Silicon-based poly-imidazoliu m salts	1.0	-	110	2	94.0	Green Chem., 2014 , 16, 4515	
Chitosan	2.0	-	120	4	96.0	Green Chem.,	

Table S3 Catalytic activity of different catalysts for cycloaddition of CO_2 to producepropylene carbonate.

functionalized					2012 , <i>14</i> , 654		
ionic liquid							
CS-EMImBr							
Co@R/HMTA-	1.0	<i>n</i> -Bu ₄ NB	100	1.5	97.1	Adv.	Mater.,
0.30		r				2017,	29,
						1700445.	
TBB-Bpy@Sal en-Co	1.0	-	60	6	99.2		<i>Eur. J.</i> , 22, 8368.

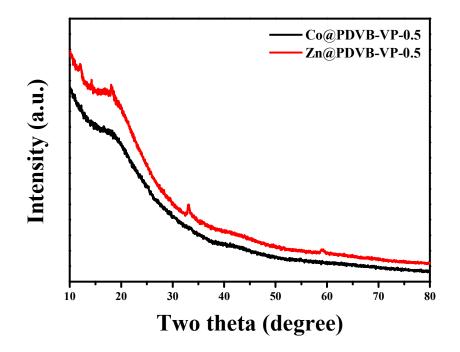


Figure S1 Wide angle XRD patterns of Co@PDVB-VP-0.5 (black) and

Zn@PDVB-VP-0.5 (red).

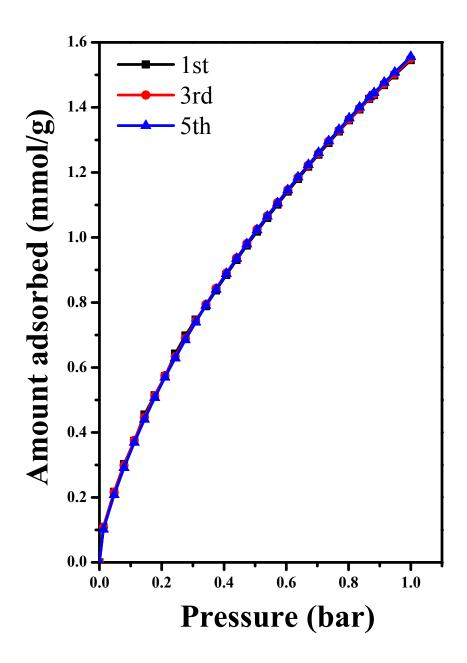


Figure S2 The reuse study of Zn@PDVB-VP-0.5 in the selective capture of CO_2 at 0 °C.

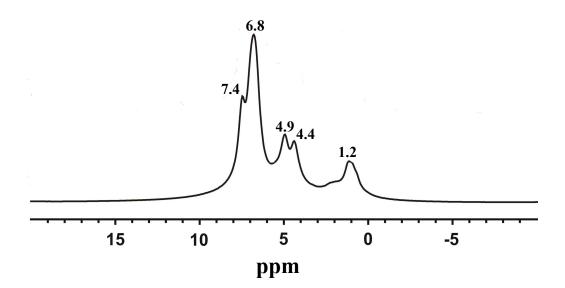


Figure S3 ¹H solid state NMR spectra of pyrrole adsorbed on Co@PDVB-VP-0.5.

The basic strength of Co@PDVB-VP-0.5 was investigated by using solid-state ¹H NMR technique involving pyrrole as the probe molecule (Figure S3), which is frequently used to investigate the basic properties of solid catalysts, mainly because of the hydrogen-bonding interaction between the NH group of pyrrole and the basic sites in catalysts. The solid-state ¹H NMR technique is a reliable and *state-of-the-art* approach to determine the basic strength of various kinds of solid base catalysts ^{S1-S4}. Notably, Co@PDVB-VP-0.5 shows multiple ¹H resonance peaks centered at around 1.2, 4.4, 4.9, 6.8 and 7.4 ppm, which indicates the presence of variously basic sites with different basic strength in the sample. The peak at around 1.2 ppm may be assigned to the signals of physical absorbed pyrrole in Co@PDVB-VP-0.5. The resonances at around 4.4 and 4.9 ppm can be attributed to absorbed pyrrole on the pyridinic sites, which partially coordinate with Co²⁺, further resulting in relatively weak basic strength. The strong peaks at around 6.8 and 7.4 ppm should be attributed to the absorbed pyrrole on exposed pyridinic sites, which show relatively strong basic

strength and confined inside different environments. The base property of Co@PDVB-VP-0.5 was in the range of medium strength ^{S1-S6}, which results in its competitive property for the selective capture of CO_2 .

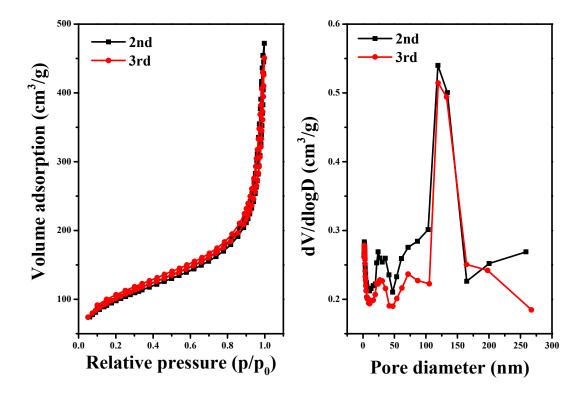


Figure S4 N_2 isotherms and pore size distribution of recycled Co@PDVB-VP-0.5 for (black) two and (red) three times.

Figure S4 showed N₂ isotherms and pore size distribution of recycled Co@PDVB-VP-0.5 (two and three times recycling) in catalyzing conversion of CO₂. Compared with fresh Co@PDVB-VP-0.5, the obvious changes of isotherms and nanopore sizes of recycled Co@PDVB-VP-0.5 can not be observed (Figure 1). In addition, fresh Co@PDVB-VP-0.5 shows the BET surface area and pore volume at 479 m²/g and 0.61 cm³/g, and nearly no decreasing of BET surface areas and pore volumes for the 2^{nd} (482 m²/g, 0.63 cm³/g) and 3^{rd} (476 m²/g, 0.60 cm³/g) recycled Co@PDVB-VP-0.5. The above results confirm very stable porous structure of Co@PDVB-VP-0.5, which was very important for it used as stable and reusable catalysts for the capture and conversion of CO₂.

References

- (S1) Sánchez-Sánchez, M.; Blasco, T. Investigation on the nature of the adsorption sites of pyrrole in alkali-exchanged zeolite Y by nuclear magnetic resonance in combination with infrared spectroscopy. J. Am. Chem. Soc., 2002, 124 (13), 3443–3456.
- (S2) Lavalley, J. C. Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. *Catal. Today*, **1996**, *27*, 377–401.
- (S3) Wang, Y.; Han, X. W.; Ji, A.; Shi, L. Y.; Hayashi, S. Basicity of potassium-salt modified hydrotalcite studied by 1 H MAS NMR using pyrrole as a probe molecule. *Micro. Meso. Mater.*, 2005, 77, 139–145.
- (S4) Yi, X. F.; Li, G. C.; Huang, L.; Chu, Y. Y.; Liu, Z. Q.; Xia, H. Q.; Zheng, A. M.;
 Deng, F. An NMR Scale for Measuring the Base Strength of Solid Catalysts with
 Pyrrole Probe: A Combined Solid-State NMR Experiment and Theoretical
 Calculation Study. J. Phys. Chem. C, 2017, 121, 3887–3895
- (S5) Zheng, A. M.; Li, S.; Liu, S. B.; Deng, F. Acidic Properties and Structure-Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy. Acc. Chem. Res., 2016, 49, 655–663.
- (S6) Zheng, A. M.; Liu, S. B.; Deng, F. ³¹P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts, 2017, Chem. Rev., 10.1021/acs.chemrev.7b00289.