An Asymmetric Dehydrogenative Diels-Alder Reaction for the Synthesis of Chiral Tetrahydrocarbazole Derivatives

Xiang Wu,,${ }^{\dagger}{ }^{\dagger}$ Hai-Jie Zhu, ${ }^{\dagger}$ Shi-Bao Zhao, ${ }^{\dagger}$ Shu-Sen Chen, ${ }^{\dagger}$ Yun-Fei Luo, ${ }^{\dagger}$ and You-Gui Li ${ }^{\dagger}$

${ }^{\dagger}$ Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China. \#Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
\qquad1. General DataS2
2. Screening of palladium species and oxophilic Lewis acids S3
3. General procedure for the asymmetric synthesis of tetrahydrocarbazoles S4
4. $1 \mathrm{mmol}-\mathrm{scale}$ reaction of 2 a with 3 a S5
5. Product derivatization S6
6. Characterization Data for the Products S7
7. X-ray Single Crystal Data for 4aa S24
8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for the Product S26
9. HPLC Analysis for Pruduct. S59

1. General Data

NMR spectra were recorded on Aglient-600 MHz or Brucker-400 MHz spectrometer. Mass spectra were recorded on a Thermo LTQ Orbitrap XL (ESI+) or a P-SIMS-Gly of Brucker DaltonicsInc (EI+). HPLC analysis was performed on waters 2489, 2487 and Agilent 1200 (UV detection monitored at 254nm). Chiralpak OD-H, AD-H, columns were purchased from Daicel Chemical Industries, LTD. Optical rotations were measured on Perkin Elmer Model 343 Polarimeter. UV detection was monitored at 220 nm . Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. All chemicals were used without purification as commercially available unless otherwise noted. Indole substrates were prepared according to the literature procedures ${ }^{[1,2]}$. Cinnamic aldehyde substrates were prepared according to the literature procedures ${ }^{[3]}$. α, α-Diarylprolinol ethers were synthesized according to the literature procedures ${ }^{[4]}$.

[^0]
2. Screening of palladium species and oxophilic Lewis acids

Reaction conditions: 2a (0.15 mmol), 3a(0.3 mmol), benzoic acid $(0.03 \mathrm{mmol})$, catalyst $\mathbf{1}(0.03$ mmol), Additive $(0.03 \mathrm{mmol})$, DDQ $(0.18 \mathrm{mmol}), 4 \AA \mathrm{MS}(50 \mathrm{mg})$ in $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ under N_{2} at $50^{\circ} \mathrm{C}$ for 72 h .

Several palladium species were screened. $\mathrm{Pd}(\mathrm{OAc})_{2}$ performed better than other species (entry 1 vs entries 2-6). AlCl_{3} could improve the diastereoselectivity to $>10: 1$ and maintian the enantioselectivity, however the yield decreased to 33%. When $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was added to the reaction system, there is no obvious product and the starting material 2a decomposed.

3. General procedure for the asymmetric synthesis of tetrahydrocarbazoles

3-Benzyl-2-methyl-1H-indole 2a ($33 \mathrm{mg}, 0.15 \mathrm{mmol}$), DDQ ($41 \mathrm{mg}, 0.18 \mathrm{mmol}$), $\mathrm{PhCO}_{2} \mathrm{H}(3.7 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(7.3 \mathrm{mg}, 0.03 \mathrm{mmol}), 4 \AA(50 \mathrm{mg})$ and catalyst $\mathbf{1}(9.8 \mathrm{mg}, 0.03 \mathrm{mmol})$ were added in an oven-dried Schlenk tube. The tube was then sealed, evacuated, and backfilled with nitrogen using standard Schlenk technique. $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ and Cinnamic aldehyde ($40 \mathrm{mg}, 0.3 \mathrm{mmol}$), were sequentially added by syringe at ambient temperature. The resulting mixture was heated to $50{ }^{\circ} \mathrm{C}$ (oil bath) for 72 hours. Solvents were evaporated under reduced pressure. The residue was directed purified by column chromatography on silica gel (petroleum ether/EtOAc $=30 / 1$ to 20/1) to afford crude aldehyde compound. The D-A product was dissolved in MeOH , then NaBH_{4} (1.2 equiv.) was added. After the reaction was completed (monitored by TLC), the solvent was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc=8/1 to $5 / 1$) to afford separable pure product 4aa.

4. $1 \mathbf{m m o l}$-scale reaction of 2 a with 3 a

A 1 mmol scale reaction of $\mathbf{2 a}$ with 3a was performed smoothly to give the product in slightly decreased yield (51\%) and excellent enatioselectivity (>99\% ee).

3-Benzyl-2-methyl-1H-indole 2a (221 mg, 1.0 mmol), DDQ ($272 \mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathrm{PhCO}_{2} \mathrm{H}(22.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(44.8 \mathrm{mg}, 0.2 \mathrm{mmol}), 4 \AA(350 \mathrm{mg})$ and catalyst $1(65 \mathrm{mg}, 0.2 \mathrm{mmol})$ were added in an oven-dried Schlenk tube. The tube was then sealed, evacuated, and backfilled with nitrogen using standard Schlenk technique. $\mathrm{CHCl}_{3}(7 \mathrm{~mL})$ and Cinnamic aldehyde ($264 \mathrm{mg}, 2.0 \mathrm{mmol}$), were sequentially added by syringe at ambient temperature. The resulting mixture was heated to $50{ }^{\circ} \mathrm{C}$ (oil bath) for 72 hours. Solvents were evaporated under reduced pressure. The residue was directed purified by column chromatography on silica gel (petroleum ether/EtOAc $=$ 30/1 to 20/1) to afford crude aldehyde compound. The D-A product was dissolved in MeOH , then NaBH_{4} (1.2 equiv.) was added. After the reaction was completed (monitored by TLC), the solvent was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc=8/1 to $5 / 1$) to afford separable pure product 4aa.

5. Product derivatization

Diversity-oriented derivatization of the cycloaddition products was conducted. A Wittig reaction of unstable 4aa' with methyl (triphenylphosphoranylidene) acetate gave the E-selective unsaturated ester D1. In the presence of 4-bromobenzoyl chloride and pyridine, esterification of $\mathbf{4 a} \mathbf{a}$ afforded the $\mathbf{D} \mathbf{2}$ in 65% yield (Scheme 4).

(2R,3R,4R)-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazole-3-carbaldehyde (4aa') ($52 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, then $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(100 \mathrm{mg}$, 2.0 equiv) was added. After the reaction was completed (monitored by TLC), the solvent was evaporated and the residue was purified by column chromatography on silica gel to afford separable pure product $\mathbf{D} 1(25 \mathrm{mg}, 41 \%$ yield).
((2R,3R,4R)-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4aa) (67 $\mathrm{mg}, 0.2 \mathrm{mmol}$), pyridine ($79 \mathrm{mg}, 5.0$ equiv) and DMAP ($2.4 \mathrm{mg}, 0.1$ equiv) was dissolved in toluene, then 4-bromobenzoyl chloride ($131.4 \mathrm{mg}, 3.0$ equiv) was added. The reaction was stirred at $50{ }^{\circ} \mathrm{C}$ After the reaction was completed (monitored by TLC), the mixture was cooled to room temperature and extracted with dichloromethane. Then, the combined organic layer was dried by anhydrous sodium sulfate. After concentration under vacuum, the crude product was purified by flash chromatography on silica gel to afford the product D2 (70 mg, 41% yield).

6. Characterization Data for the Products

((2S,3S,4S)-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4aa)

4aa (39 mg) was obtained as a white semisolid in 74% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak AD-H column (20% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) = 10.52 \min , t (minor) $=15.54 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+12.0\left(\mathrm{c} 0.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.17(\mathrm{~m}, 9 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=10.5$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dd, $J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=16.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}$, $J=16.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.46$, $142.54,136.44,134.25,128.76,128.48,128.37,128.12,127.43,126.64,126.33$, 121.29, 119.29, 119.21, 111.21, 110.51, 61.69, 50.89, 39.97, 37.94, 26.65. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}: 354.1858$, observed: 354.1858.
((2S,3S,4S)-2-phenyl-4-(o-tolyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ba)

4ba (36 mg) was obtained as a white semisolid in 66% yield after flash chromatography and the enantiomeric excess was determined to be 94% by HPLC analysis on Chiralpak AD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , t $($ major $)=23.17 \mathrm{~min}, \mathrm{t}($ minor $)=9.83 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+4.3\left(\mathrm{c} 0.054, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.22-7.20 (m, 4H), $7.11(\mathrm{~m}, 3 \mathrm{H}), 7.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J$ $=11.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=11.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=16.8,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.09(\mathrm{dd}, J=16.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.90,142.46,138.87,136.30,133.40,132.36,131.26,130.11$, $129.69,129.15,129.03,128.45,123.85,122.23,121.70,114.47,113.11,66.10,49.47$, 42.15, 37.85, 22.37. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}: 368.2009$,
observed: 368.2007.
((2S,3S,4S)-2-phenyl-4-(m-tolyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ca)

4ca (39 mg) was obtained as a white semisolid in 72% yield after flash chromatography and the enantiomeric excess was determined to be 98% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=10.54 \mathrm{~min}, \mathrm{t}($ minor $)=18.43 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+13.9\left(\mathrm{c} 0.122, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.15$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (brs, 1H), 3.65-3.63 $(\mathrm{m}, 1 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=16.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (dd, $J=16.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.01,145.19,140.46,139.05,136.80,132.06,131.09,130.83,130.77$, $130.12,129.77,129.25,128.49,123.85,121.93,121.88,113.10,64.45,53.41,42.61$, 40.60, 32.40, 24.21. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}: 368.2009$, observed: 368.2012.
((2S,3S,4S)-2-phenyl-4-(p-tolyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4da)

4da (37 mg) was obtained as a white semisolid in 67% yield after flash chromatography and the enantiomeric excess was determined to be 91% by HPLC analysis on Chiralpak OD-H column (15\%

2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=12.39$ \min , t (minor) $=17.52 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+12.5\left(\mathrm{c} 0.08, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (brs, 1H), 3.63-3.62 (m, 1H), $3.57(\mathrm{dd}, \mathrm{J}=10.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, \mathrm{J}=10.6,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=16.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=16.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.37(\mathrm{~m}$,
$1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.60, 141.31, 136.42, 135.71, $134.15,129.06,128.58,128.43,128.11,127.49,126.58,121.24,119.26,119.25$, 110.45, 61.82, 50.91, 39.58, 37.99, 21.11. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}: 368.2009$, observed: 368.2004.

((2S,3S,4R)-4-(2-chlorophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)me thanol (4ea)

4ea (41 mg) was obtained as a white solid in 71% yield after flash chromatography and the enantiomeric excess was determined to be more than 99% by HPLC analysis on Chiralpak OD-H column (15\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=27.14$ \min , t (minor) $=16.42 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+5.71\left(\mathrm{c} 0.07, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H})$, $7.21-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.48$ $-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=11.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=$ $16.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77 \mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.46, 142.19, $138.88,136.55,136.47,134.22,132.35,131.37,130.44,130.32,129.40,129.37$, 129.31, 124.12, 121.99, 121.61, 114.29, 113.11, 65.79, 49.18, 41.81, 38.50. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClNO}: 388.1463$, observed: 388.1465 .
((2S,3S,4S)-4-(3-chlorophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4fa)

4fa (39 mg) was obtained as a white semisolid in 68% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , t (major) = $11.52 \mathrm{~min}, \mathrm{t}$ (minor) $=22.46 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+13.0\left(\mathrm{c} 0.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.13-7.10(\mathrm{~m}$, 4H), $6.97-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.17$ (brs, 1H), 3.59-3.57 (m, 1H), 3.56-3.44 (m, 2H), 3.21 $(\mathrm{dd}, J=16.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 149.53,144.88,139.06,137.03,136.83,132.26,131.35$,
131.16, 130.65, 129.85, 129.63, 129.36, 129.24, 124.10, 122.09, 121.62, 113.23, 63.89, 53.52, 42.31, 40.35, 32.39. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClNO}: 388.1463$, observed: 388.1461 .

((2S,3S,4S)-4-(4-chlorophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4ga)

4ga (42 mg) was obtained as a white semisolid in 73% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , t $($ major $)=12.73 \mathrm{~min}, \mathrm{t}($ minor $)=24.99 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+14.9(\mathrm{c}$ $0.134, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{brs}, 1 \mathrm{H}), 3.59-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.23$ (dd, $J=16.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=16.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 145.76,144.98,139.09,136.98,134.57,132.69,131.16$, $131.12,130.64,129.89,129.35,124.10,122.08,121.65,113.22,63.96,53.66,41.96$, 40.47. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClNO}: 388.1463$, observed: 388.1465 .
((2S,3S,4S)-4-(4-bromophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4ha)
 4ha (37 mg) was obtained as a white solid in 57% yield after flash chromatography and the enantiomeric excess was determined to be 94% by HPLC analysis on Chiralpak OD-H column (15\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , t (major) $=14.08$ $\min , \mathrm{t}($ minor $)=26.22 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+23.0\left(\mathrm{c} 0.018, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 1 \mathrm{H}), 4.17$ (brs, 1H), 3.62-3.53(m, 2H), 3.50-3.48(m, 1H), $3.22(\mathrm{dd}, J=16.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=16.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.34(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.29,144.94,139.08,136.97,134.06,133.10$, $131.15,130.62,129.86,129.34,124.11,122.68,122.09,121.64,113.20,63.94,53.62$, 42.01, 40.46. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BrNO}: 432.0958$, observed: 432.0960 .

((2S,3S,4S)-2-phenyl-4-(4-(trifluoromethyl)phenyl)-2,3,4,9-tetrahydro-1H-carbaz ol-3-yl)methanol (4ia)

4ia (35 mg) was obtained as a white semisolid in 56% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=10.63$ $\min , \mathrm{t}($ minor $)=20.92 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-11.5\left(\mathrm{c} 0.104, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=13.9,8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.31$ - $7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 1 \mathrm{H}), 4.31$ (brs, $1 \mathrm{H}), 3.63-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{dd}, J=16.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=16.4,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41-2.39(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.50, 144.80, 139.07, $137.10,131.65,131.20,130.60,129.77,129.42,127.95$ (q, $J=7.5,3.8 \mathrm{~Hz}$), 126.11, 124.20, 122.15, 121.51, 113.28, 63.76, 53.60, 42.34, 40.40, 32.38. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}: 422.1726$, observed: 422.1723.

4-((2S,3S,4S)-3-(hydroxymethyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-4-yl)b enzonitrile (4ja)

4ja (34 mg) was obtained as a white semisolid in 60% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=18.15 \mathrm{~min}, \mathrm{t}($ minor $)=37.80 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-28.3\left(\mathrm{c} 0.06, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-$ $7.13(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.25 (brs, 1 H), $3.45(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=16.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=$ $16.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.28(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.23,144.62$,
$139.09,137.19,134.86,132.15,131.23,130.50,129.64,129.47,124.33,122.25$, $121.73,121.30,113.34,112.81,63.60,53.60,42.64,40.47,34.26,32.31$. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 379.1805$, observed: 379.1807.

methyl4-((2S,3S,4S)-3-(hydroxymethyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol -4-yl)benzoate (4ka)

 4ka (34 mg) was obtained as a white semisolid in 56% yield after flash chromatography and the enantiomeric excess was determined to be 98% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=18.83 \mathrm{~min}, \mathrm{t}($ minor $)=31.19 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+15.2(\mathrm{c}$ $0.021, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.27 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.11$ (m, 3H), $7.07-6.99$ (m, $3 \mathrm{H}), 6.85-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.70(\mathrm{~m}, 1 \mathrm{H}), 4.16($ brs, 1 H$), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.51$ -3.49(m, 1H), 3.45-3.42 (m, 1H), 3.42-3.38 (m, 1H), $3.14(\mathrm{dd}, J=16.2,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.02(\mathrm{dd}, J=16.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $169.94,152.96,144.86,139.05,137.08,132.38,131.46,131.16,130.88,130.67$, 129.81, 129.37, 124.09, 122.06, 121.56, 113.27, 63.84, 54.75, 53.48, 42.56, 40.45. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{3}: 412.1907$, observed: 412.1904.

((2S,3S,4S)-4-(4-methoxyphenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl) methanol (4la)

4la (30 mg) was obtained as a white semisolid in 53% yield after flash chromatography and the enantiomeric excess was determined to be more than 99% by HPLC analysis on Chiralpak OD-H column (15\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=19.73 \mathrm{~min}, \mathrm{t}($ minor $)=26.52$ $\min ;[\alpha]_{\mathrm{D}}{ }^{20}=+2.9\left(\mathrm{c} 0.138, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.33$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 3 \mathrm{H})$, $6.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.08$ (brs, 1H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.35(\mathrm{~m}, 1 \mathrm{H})$,
3.26 (dd, $J=16.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=16.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.37(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.03,142.60,136.43,134.12,129.61,128.45$, 128.11, 127.46, 126.60, 121.25, 119.28, 119.27, 113.71, 110.47, 61.81, 55.23, 50.96, 39.13, 38.01. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{2}$: 384.1958, observed: 384.1960.
((2S,3S,4S)-4-(naphthalen-1-yl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)me thanol (4ma)

4ma (23 mg) was obtained as a white solid in 38% yield after flash chromatography and the enantiomeric excess was determined to be 98% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , t $($ major $)=31.72 \mathrm{~min}, \mathrm{t}($ minor $)=25.21 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-33.0(\mathrm{c} 0.1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.90(\mathrm{~m}, 2 \mathrm{H})$, $7.81-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 3 \mathrm{H})$, $7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{q}, J=11.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=16.9,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=11.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=16.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.79$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.89, 140.07, 138.99, 136.72, 134.71, 131.77, 131.33, 130.20, 130.12, 129.81, 129.67, 129.24, 128.84, 128.12, 127.82, 125.73, 123.90, 122.35, 121.70, 114.47, 113.09, 65.74, 49.89, 41.76, 36.63. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}: 404.2009$, observed: 404.2006.
((2S,3S,4R)-2-phenyl-4-(thiophen-2-yl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)meth anol (4na)
 4na (27 mg) was obtained as a white semisolid in $\mathbf{5 1 \%}$ yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , t $($ major $)=15.37 \mathrm{~min}, \mathrm{t}($ minor $)=27.38 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-70\left(\mathrm{c} \mathrm{0.066}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.06(\mathrm{~m}, 9 \mathrm{H}), 6.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ - $6.88(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.63-$
$3.47(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.03,145.03,138.89,136.31,131.16,130.57,130.09,129.31,129.16,127.97$, 126.36, 124.12, 122.16, 121.55, 113.23, 63.78, 54.40, 40.54, 38.11. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NOS}: 360.1428$, observed: 360.1422 .

((2S,3S,4S)-7-methyl-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (40a)

$40 \mathbf{a}(26 \mathrm{mg})$ was obtained as a white semisolid in 48% yield after flash chromatography and the enantiomeric excess was determined to be 94% by HPLC analysis on Chiralpak AD-H column (20% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , t (major) $=16.03 \mathrm{~min}, \mathrm{t}($ minor $)=27.46 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+8.3\left(\mathrm{c} 0.036, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 10.74$ ($\mathrm{s}, 1 \mathrm{H}$), 7.24-7.22 (m, 4H), 7.16-7.15 (m, 2H), 7.11 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (d, $1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO) $\delta 148.73,146.05,140.01,137.34,132.14,131.40,131.23$, $131.15,130.91,129.21,128.92,128.09,122.78,120.77,113.85,82.29,61.58,39.89$, 24.48. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}: 368.2011$, observed: 368.2013.

((2S,3S,4S)-7-fluoro-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4pa)

4pa (30 mg) was obtained as a white semisolid in 54% yield after flash chromatography and the enantiomeric excess was determined to be more than 99% by HPLC analysis on Chiralpak AD-H column (20\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=10.46 \mathrm{~min}, \mathrm{t}($ minor $)=14.20 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+8.0(\mathrm{c}$ $0.05, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.19$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.14 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.67(\mathrm{~m}, 1 \mathrm{H})$, 6.65-6.63 (m, 1H), 4.11 (brs, 1H), 3.63-3.61 (m, 1H), 3.56-3.54 (m, 1H), 3.49-3.47 (m, $1 \mathrm{H}), 3.24$ (dd, $J=16.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.37$ (m,

1H). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.92,161.35,146.86,145.04,137.06,131.32$, $131.08(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 130.70,129.31,129.07,126.58,122.32(\mathrm{~d}, J=9.9 \mathrm{~Hz})$, $110.40,110.24,99.86,99.68,64.26,53.43,42.50,40.52$. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$ calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{FNO}$: 372.1758, observed: 372.1760.
methyl(2S,3S,4S)-3-(hydroxymethyl)-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazo le-7-carboxylate (4qa)

4qa (37 mg) was obtained as a white solid in 61% yield after flash chromatography and the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD-H column (20\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=13.58 \mathrm{~min}, \mathrm{t}($ minor $)=24.55 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-23.6(\mathrm{c}$ $\left.0.072, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.16$ (m, 2H), $7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.50$ (m, 2H), 3.28 (dd, $J=16.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (dd, $J=16.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.37$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.33,142.98,141.10,137.15,134.70$, $130.07,127.60,127.46,127.40,126.98,125.68,125.44,121.72,119.49,117.57$, 111.72, 110.86, 60.42, 50.90, 49.70, 38.69, 36.66. HRMS (ESI) m/z $(M+H)^{+}$ calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NO}_{3}$: 412.1907, observed: 412.1909.
((2S,3S,4S)-6-methyl-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ra)

4ra (31 mg) was obtained as a white solid in 57% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol $/ \mathrm{n}$-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=12.89 \mathrm{~min}, \mathrm{t}($ minor $)=10.56 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-12.3\left(\mathrm{c} 0.106, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 3 \mathrm{H})$, 7.23-7.22 (m, 4H), 7.15 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, 4.20 (brs, 1H), 3.60-3.58 (m, 1H), 3.56-3.54 (m, 1H), 3.54-3.49 (m, 1H), 3.20 (dd, J
$=15.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.28,145.29,137.41,137.04,131.35,131.14,131.08$, $130.97,130.66,130.40,129.20,128.86,125.45,121.53,112.81,64.26,53.85,42.63$, 40.40, 24.07. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}: 368.2011$, observed: 368.2014.
((2S,3S,4S)-6-fluoro-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4sa)

4sa (29 mg) was obtained as a white solid in 53% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak AD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=10.90 \mathrm{~min}, \mathrm{t}($ minor $)=21.44 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-60.0\left(\mathrm{c} 0.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 5 \mathrm{H})$, $7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.12$ (brs, 1H), 3.63-3.62 (m, 1H), 3.57-3.54 (m, 1H), 3.52-3.47 (m, 1H), $3.23(\mathrm{dd}, J=$ $16.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=16.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}) $\delta 146.59,144.91,138.44,137.42,131.24,131.22,131.13,131.12,130.62$, 129.33, 129.17, 127.64, 124.17, 121.25, 114.04, 64.16, 53.55, 42.44, 40.36. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{FNO}: 372.1758$, observed: 372.1757.
((2S,3S,4S)-6-chloro-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ta)

4ta (37 mg) was obtained as a white solid in 64% yield after flash chromatography and the enantiomeric excess was determined to be 97% by HPLC analysis on Chiralpak AD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=11.85 \mathrm{~min}, \mathrm{t}$ $($ minor $)=17.84 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+4.05\left(\mathrm{c} 0.074, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.94(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{brs}, 1 \mathrm{H}), 3.66-3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.56-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=16.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}$,
$J=16.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.96$, $159.41,146.56,144.97,138.81,135.51,131.28,131.13,131.11,130.70,129.33$, 129.17, 113.55, 113.49, 112.00, 111.83, 107.03, 106.87, 64.27, 53.40, 42.53, 40.54. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{CINO}: 388.1463$, observed: 388.1462 .
((2S,3S,4S)-6-methoxy-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methan ol (4ua)

4ua (37 mg) was obtained as a white semisolid in 65% yield after flash chromatography and the enantiomeric excess was determined to be more than 99% by HPLC analysis on Chiralpak AD-H column (20\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}), \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}($ major $)=14.63 \mathrm{~min}, \mathrm{t}($ minor $)=21.21 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-15.0(\mathrm{c}$ $0.02, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.19(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=$ $10.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=16.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.5,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.65,144.26,142.52,135.05,131.45$, $128.79,128.46,128.37,128.13,127.92,126.63,126.32,111.04,110.80,101.52$, 61.72, 55.63, 50.75, 39.97, 37.94. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{2}$: 384.1958, observed: 384.1956 .

((2S,3S,4S)-4-phenyl-2-(p-tolyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ab)

4ab (30 mg) was obtained as a white solid in 54% yield after flash chromatography and the enantiomeric excess was determined to be more than 99% by HPLC analysis on Chiralpak OD-H column (15\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}), \mathrm{UV} 254 \mathrm{~nm}, \mathrm{t}($ major $)=10.03 \mathrm{~min}, \mathrm{t}($ minor $)=21.42 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+28.0(\mathrm{c}$ $\left.0.082, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{brs}, 1 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}$,
$1 \mathrm{H}), 3.52-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=16.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=16.4,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.13, 142.09, 139.07, 138.80, 136.92, 131.78, 131.38, 130.96, 130.60, 130.10, 128.91, 123.87, $121.89,121.85,113.08,64.50,53.52,42.65,40.33,23.64$. HRMS (ESI) m/z (M+H) ${ }^{+}$ calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}: 368.2009$, observed: 368.2010.
((2S,3S,4S)-2-(4-fluorophenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4ac)

4ac (26 mg) was obtained as a white semisolid in 47% yield after flash chromatography and the enantiomeric excess was determined to be 98% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=10.73$ \min , t (minor) $=21.47 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+32.5\left(\mathrm{c} 0.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (brs, 1H), 3.66-3.64 (m, 1H), 3.56-3.53 (m, $J=$ $10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=16.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=$ $16.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 162.83,160.40$, $144.22,138.02(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 136.44,133.95,129.63(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}), 128.75,128.41$, 127.31, 126.43, 121.36, 119.30 (d, J = 8.5 Hz), 115.26, 115.05, 110.53, 61.60, 50.61, 39.97, 37.24, 29.74. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{FNO}: 372.1763$, observed: 372.1764 .
((2S,3S,4S)-2-(4-chlorophenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4ad)

4ad (27 mg) was obtained as a white semisolid in 48% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak OD-H column (15\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=12.73 \mathrm{~min}, \mathrm{t}($ minor $)=24.99 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+19.3(\mathrm{c}$ $0.088, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.29-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{t}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{brs}, 1 \mathrm{H}), 3.67-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H})$, $3.46-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=16.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.4,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.08,139.79,135.37,132.77,131.24$, 128.53, 127.66, 127.42, 127.36, 126.21, 125.39, 120.31, 118.28, 118.19, 109.48, 60.46, 49.44, 38.89, 36.28. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClNO}$: 388.1465, observed: 388.1467 .
((2S,3S,4S)-2-(4-bromophenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)me thanol (4ae)

4ae (26 mg) was obtained as a white semisolid in 41% yield after flash chromatography and the enantiomeric excess was determined to be more than 99% by HPLC analysis on Chiralpak OD-H column (15\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=11.54 \mathrm{~min}, \mathrm{t}($ minor $)=$ $26.02 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+30.9\left(\mathrm{c} 0.084, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}$, $1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (brs, $1 \mathrm{H}), 3.57-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=16.4,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=16.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.10,141.39,136.45,133.74,131.44,129.97$, 128.71, 128.41, 127.28, 126.44, 121.39, 120.41, 119.35, 119.26, 110.49, 61.57, 50.45, 39.98, 37.46. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BrNO}: 432.0958$, observed: 432.0954.

((2S,3S,4S)-2-(2-bromophenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4af)

4af (29 mg) was obtained as a white solid in 45% yield after flash chromatography and the enantiomeric excess was determined to be more than 99% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV 254 nm , t $($ major $)=19.50 \mathrm{~min}, \mathrm{t}($ minor $)=32.71 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-47.3\left(\mathrm{c} 0.074, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR
($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.97$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55($ brs, 1H), $3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.59(\mathrm{~m}, 2 \mathrm{H})$, 3.20-3.17 (m, 1H), $2.96(\mathrm{dd}, J=16.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.04,144.08,139.13,136.73,136.26,131.54,131.14,130.74$, 130.26, 129.92, 128.77, 127.90, 124.18, 122.08, 121.71, 113.17, 112.44, 63.91, 51.55, 42.67, 39.57. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{BrNO}: 432.0958$, observed: 432.0955.

((2S,3S,4S)-2-(2-methoxyphenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl) methanol (4ag)

4ag (38 mg) was obtained as a white semisolid in 66% yield after flash chromatography and the enantiomeric excess was determined to be more than 99% by HPLC analysis on Chiralpak OD-H column (15\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=14.93 \mathrm{~min}, \mathrm{t}($ minor $)=26.23 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+11.63$ (c $\left.0.086, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.17$ (m, 6H), 7.12 - 7.04 (m, 2H), 6.89-6.87 (m, 1H), 6.86 - 6.79 (m, 2H), $6.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{brs}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J$ $=11.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=16.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.78,144.03$, 136.37, 134.41, 130.76, 128.93, 128.18, 127.93, 127.68, 127.38, 126.23, 121.51, 121.12, 119.36, 119.19, 110.45, 110.41, 62.31, 55.67, 49.26, 39.99, 29.71. HRMS (ESI) m/z (M+H) ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}: 368.2009$, observed: 368.2006 .

((2S,3S,4S)-2-(naphthalen-1-yl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)me thanol (4ah)

4ah (34 mg) was obtained as a white semisolid in 57% yield after flash chromatography and the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD-H column (20\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$
$($ major $)=9.98 \mathrm{~min}, \mathrm{t}($ minor $)=7.09 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=-186.4\left(\mathrm{c} 0.066, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45-7.26(\mathrm{~m}, 8 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.64(\mathrm{~m}, 2 \mathrm{H})$, 3.37-3.35 (m, 1H), $2.93(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.48(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.92,138.35,136.50,134.95,134.06,131.59,128.87,128.83,128.38$, $127.83,127.37,126.34,126.02,125.46,124.99,123.52,123.07$, 121.58, 119.51, $118.92,110.60,109.21,61.28,50.69,40.00,32.69,24.29$. HRMS (ESI) m/z (M+H) ${ }^{+}$ calculated for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}: 404.2009$, observed: 404.2007.

((2S,3S,4S)-4-phenyl-2-(thiophen-3-yl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)meth anol (4ai)

4ai (27 mg) was obtained as a white semisolid in 51% yield after flash chromatography and the enantiomeric excess was determined to be more than 99% by HPLC analysis on Chiralpak AD-H column (20\% 2-propanol/n-hexane, 1 $\mathrm{mL} / \mathrm{min})$, UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=10.98 \mathrm{~min}, \mathrm{t}($ minor $)=12.06 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+15.8(\mathrm{c}$ $0.076, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 1 \mathrm{H})$, 6.89-6.87 (m, 1H), 6.87 - $6.85(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (brs, 1H), 3.78 $-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=16.3,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.01(\mathrm{dd}, J=16.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $147.01,145.70,139.08,136.47,131.40,131.00,130.85,129.97,129.00,127.92$, 123.93, 123.62, 121.94, 121.86, 113.12, 64.87, 52.77, 42.87, 36.92. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{22}$ NOS: 360.1417, observed: 360.1415.

((2S,3R,4S)-4-phenyl-2-(thiophen-2-yl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)meth anol (4aj)

4aj (24 mg) was obtained as a white solid in 45% yield after flash chromatography and the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak OD-H
column (15\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=12.58 \mathrm{~min}, \mathrm{t}$ $($ minor $)=17.25 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+50.0\left(\mathrm{c} 0.034, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.89 (s, 1H), 7.32 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.09$ $-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (d, $J=26.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=16.1,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.42(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.83,139.23,135.72,131.44,131.03,129.89,129.07,129.00,127.85$, 126.34, 124.04, 121.97, 121.95, 113.13, 64.79, 53.04, 42.93, 37.66. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{22}$ NOS: 360.1417, observed: 360.1415.

((2S,3R,4S)-2-(furan-2-yl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methan ol (4ak)

4ak (32 mg) was obtained as a white semisolid in 62% yield after flash chromatography and the enantiomeric excess was determined to be 95% by HPLC analysis on Chiralpak OD-H column (15% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ $($ major $)=13.69 \mathrm{~min}, \mathrm{t}($ minor $)=21.54 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+7.14\left(\mathrm{c} 0.084, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.09(\mathrm{~m}, 7 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 1 \mathrm{H})$, $6.87-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{q}, J=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{dd}, J=16.4,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{dd}, J=16.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.42(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.67,144.26,141.01,136.37,133.11,128.67,128.35,127.41,126.35,121.35$, 119.32, 119.12, 110.47, 110.30, 105.67, 62.51, 49.01, 40.09, 32.53. HRMS (ESI) m/z $(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2}$: 344.1645, observed: 344.1641.
methyl(E)-3-((2S,3S,4S)-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)acryla te (D1)

D1 (25 mg) was obtained as a white solid in 41% yield after flash chromatography and the enantiomeric excess was determined to be 99% by HPLC analysis on Chiralpak AD-H column (15\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}($ major $)=6.53 \mathrm{~min}, \mathrm{t}($ minor $)=5.40$
$\min ;[\alpha]_{\mathrm{D}}{ }^{20}=+41.38\left(\mathrm{c} 0.058, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H})$, 7.36 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{dd}, J=15.4,7.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.04(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.97$ (dd, $J=15.8,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (brs, $1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=16.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=$ $16.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.00(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.39,151.09$, $146.29,144.53,139.11,136.88,131.15,131.01,131.00,130.58,129.99,129.37$, $129.14,125.55,124.23,122.11,121.51,113.20,55.05,54.09,45.78,32.37$. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{2}: 407.1885$, observed: 407.1882.

((2S,3S,4S)-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methyl

4-bromobenzoate (D2)

D2 (70 mg) was obtained as a white semisolid in 65% yield after flash chromatography and the enantiomeric excess was determined to be 96% by HPLC analysis on Chiralpak AD-H column (15\% 2-propanol/n-hexane, $1 \mathrm{~mL} / \mathrm{min}$), UV $254 \mathrm{~nm}, \mathrm{t}$ (major) $=9.16 \mathrm{~min}$, $\mathrm{t}($ minor $)=10.89 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{20}=+11.76\left(\mathrm{c} 0.068, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta$ $8.00(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{dd}, J=14.9,7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.32 - 4.25 (m, 2H), $4.23-4.17$ (m, 1H), 3.64 (brs, 1H), 3.31 (d, $J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=16.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.76(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.31,146.50,144.66,139.13,136.54,134.27,133.66,131.67,131.26$, $131.21,131.13,130.64,130.48,130.00,129.37,129.19,124.13,122.04,121.73$, 113.17, 67.44, 50.20, 43.24, 32.36. HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calculated for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{BrNO}_{2}: 536.1212$, observed: 536.1225.

7. X-ray Single Crystal Data for 4aa

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=66.658^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
cu_dm16449_0m
C27 H27 N O2
397.50

130 K
1.54178 Å

Orthorhombic
P 212121
$a=14.0799(3) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=14.3773(3) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=44.2794(10) \AA \quad \gamma=90^{\circ}$.
8963.5(3) \AA^{3}

16
$1.178 \mathrm{Mg} / \mathrm{m}^{3}$
$0.576 \mathrm{~mm}^{-1}$
3392
$0.12 \times 0.1 \times 0.03 \mathrm{~mm}^{3}$
1.995 to 66.658°.
$-16<=\mathrm{h}<=16,-17<=\mathrm{k}<=9,-52<=1<=52$
41784
$15250[\mathrm{R}(\mathrm{int})=0.1282]$
99.5%
Semi-empirical from equivalents
0.7528 and 0.5466

Full-matrix least-squares on F^{2}
15250 / 0 / 1090
1.004
$\mathrm{R} 1=0.0696, \mathrm{wR} 2=0.1718$
$\mathrm{R} 1=0.0979, \mathrm{wR} 2=0.1947$

Absolute structure parameter	$0.3(3)$
Extinction coefficient	$0.00110(13)$
Largest diff. peak and hole	0.284 and -0.259 e. \AA^{-3}

8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for the Product

(2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4aa)

(4-(4-chlorophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ga)

๕ ๕ ๕ ๕

(4-(4-bromophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ha)

(2-phenyl-4-(4-(trifluoromethyl)phenyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4ia)

4-3-(hydroxymethyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-4-yl)benzonitrile (4ja)

methyl4-(3-(hydroxymethyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-4-yl)benzo ate (4 ka)

(4-(4-methoxyphenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4la)

MeO

(4-(naphthalen-1-yl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ma)

$\stackrel{\text { ® }}{\underset{1}{\infty}}$

methyl-3-(hydroxymethyl)-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazole-7-carbo xylate (4qa)

(6-methyl-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ra)

(6-fluoro-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4sa)

ABM
AB
in
in
in

(2-(4-chlorophenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ad)

(2-(4-bromophenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ae)

(2-(naphthalen-1-yl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol

 (4ah)

(4-phenyl-2-(thiophen-2-yl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4aj)

(2-(furan-2-yl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ak)

methyl(E)-3-(2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)acrylate (D1)

9．HPLC Analysis for Pruduct．

（（2S，3S，4S）－2，4－diphenyl－2，3，4，9－tetrahydro－1H－carbazol－3－yl）methanol（4aa）

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	10.517	未知	10353779	99.93	494511	99.92	VV	85	9.850	11.267
2	15.535	未知	7247	0.07	393	0.08	BV	35	15.233	15.817

((2S,3S,4S)-2-phenyl-4-(o-tolyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ba)

((2S,3S,4S)-2-phenyl-4-(m-tolyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methanol (4ca)

（（2S，3S，4S）－2－phenyl－4－（p－tolyl）－2，3，4，9－tetrahydro－1H－carbazol－3－yl）methanol （4da）

	$\begin{aligned} & \mathrm{RT} \\ & (\mathrm{~min}) \end{aligned}$	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time （min）	End Time （min）
1	12.768	未知	6576967	49.68	139008	59.84	BB	192	11.617	14.817
2	19.752	未知	6660789	50.32	93272	40.16	VB	225	18.400	22.150

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	12.393	未知	1231655	95.38	27506	94.40	BV	186	11.233	14.333
2	17.519	未知	59650	4.62	1633	5.60	BB	96	16.683	18.283

((2S,3S,4R)-4-(3-chlorophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)me thanol (4ea)

((2S,3S,4S)-4-(3-chlorophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4fa)

((2S,3S,4S)-4-(4-chlorophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4ga)

Peak	RetTime	Type	Width	Area		Height		Area
\#	[min]		[min]	mAU	* 3	[mAU]	\%
1	13.506		0.7809	4.13	1 e 4	776	3036	51.5142
2	25.673	VB	1.4087	3.88	5 e4	400	0239	48.4858


```
Peak RetTime Type Width Area Height Area
    # [min] [min] mAU *s [mAU ] %
----|------- |---- |------- | |-----------------------------------------
    1 12.725 BB 
```

((2S,3S,4S)-4-(4-bromophenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4ha)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				mAU	* 3	[mAU]	\%
1	14.080	VB	0.7358	2.26	3 e 4	461	1267	96.9638
2	26.216	BB	1.3728	708	87012		50753	3.0362

((2S,3S,4S)-2-phenyl-4-(4-(trifluoromethyl)phenyl)-2,3,4,9-tetrahydro-1H-carbaz ol-3-yl)methanol (4ia)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	* 3	[mAU]	\%
1	10.245	VV	0.5701	2.71	8e4	706.	2684	51.9806
2	21.417	VBA	1.1863	2.50	6 e4	310.	6713	48.0194

| Peak
 RetTime
 [min] | Type | Width | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [min] mAU | ms | [mAU |] | | |

4-((2S,3S,4S)-3-(hydroxymethyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-4-yl)b enzonitrile (4ja)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				mAU	* 3	[mAU]	
1	18.211	BV	1.0590	2.94	1 e 4	416	2723	50.7173
2	37.113	VB	2.1930	2.86	$4 \mathrm{e}^{4}$	169	5695	49.2827

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	* 3	[mAU]	\%
1	18.154	BB	0.9888	2.73	5 e 4	361.	19360	99.6016
2	37.797	BV	0.8236	109	47755		74858	0.3984

methyl4－（（2S，3S，4S）－3－（hydroxymethyl）－2－phenyl－2，3，4，9－tetrahydro－1H－carbazol －4－yl）benzoate（4ka）

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	18.833	未知	74614538	98.25	890503	99.01	VB	345	17.200	22.950
2	31.190	未知	1327692	1.75	8896	0.99	BB	327	28.967	34.417

((2S,3S,4S)-4-(4-methoxyphenyl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl) methanol (4la)

((2S,3S,4S)-4-(naphthalen-1-yl)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)me thanol (4ma)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area		Height		Area
				mAU	* 3	[mAU]	\%
1	23.729	VB	1.2919	3.14	2 e 4	334	483	50.4209
2	30.461	BV	2.2633	3.08	8 e 4	185	5058	49.5791

（（2S，3S，4R）－2－phenyl－4－（thiophen－2－yl）－2，3，4，9－tetrahydro－1H－carbazol－3－yl）meth anol（4na）

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	16.222	未知	7054358	50.54	127498	62.55	BV	167	15.133	17.917
2	28.419	未知	6902675	49.46	76329	37.45	BB	258	26.633	30.933

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height $($ 礦）	\％Height	Integration Type	Peak Codes	Points Across Peak	Start Time (min)
1	15.367	未知	30612170	99.20	569362	99.44	BB		207	14.300
2	27.383	未知	245993	0.80	3199	0.56	BB	108	159	26.033

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	16.027	未知	2354214	97.02	77099	98.43	VV	94	15.383	16.950
2	27.455	未知	72222	2.98	1228	1.57	BB	134	26.450	28.683

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	10.433	未知	10035823	50.20	509541	63.49	VB	64	10.050	11.117
2	14.187	未知	9954085	49.80	293028	36.51	BB	98	13.733	15.367

methyl（2S，3S，4S）－3－（hydroxymethyl）－2，4－diphenyl－2，3，4，9－tetrahydro－1H－carbazo le－7－carboxylate（4qa）

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height $($ 礦	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	13.583	未知	56227930	97.95	1773515	98.97	VV	140	12.900	15.233
2	24.546	未知	1175830	2.05	18509	1.03	VB	222	22.617	26.317

	$\begin{aligned} & \text { RT } \\ & (\mathrm{min}) \end{aligned}$	Peak Type	$\begin{gathered} \text { Area } \\ \text { (磺*sec) } \end{gathered}$	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time （min）	$\begin{aligned} & \text { End } \\ & \text { Time } \\ & (\mathrm{min}) \end{aligned}$
1	10.557	末知	91410	0.36	2997	0.58	BB	69	10.183	11.333
2	12.888	末知	24994303	99.64	514852	99.42	BB	209	11.817	15.300

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	10.922	未知	3801925	50.40	188071	71.83	BV	81	10.267	11.617
2	20.732	未知	3740857	49.60	73749	28.17	BB	160	20.000	22.667

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height $($ 礦	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	10.901	未知	6884624	99.69	342136	99.84	BB	92	10.183	11.717
2	21.441	未知	21295	0.31	546	0.16	BB	77	20.883	22.167

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height $($（礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	11.882	未知	7166182	50.81	321919	65.48	BB	134	11.033	13.267
2	17.181	未知	6938805	49.19	169739	34.52	BB	164	16.133	18.867

	$\begin{aligned} & \mathrm{RT} \\ & (\mathrm{~min}) \end{aligned}$	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time （min）	End Time （min）
1	11.848	未知	13441502	98.70	599443	99.25	VB	98	11.083	12.717
2	17.838	未知	177480	1.30	4503	0.75	VB	96	17.017	18.617

((2S,3S,4S)-6-methoxy-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methan ol (4ua)

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	10.008	未知	27138878	100.00	789499	100.00	VV	141	9.267	11.617

((2S,3S,4S)-2-(4-fluorophenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4ac)

((2S,3S,4S)-2-(4-chlorophenyl)-4-phenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)met hanol (4ad)

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	Area		Height		Area
				mAU	* 3	[mAU]	\%
1	10.513	VV	0.5171	4.70	28 e 4	1369.	62402	99.0190
2	27.623	BV	1.8724	465	96320		61105	0.9810

（（2S，3S，4S）－2－（4－bromophenyl）－4－phenyl－2，3，4，9－tetrahydro－1H－carbazol－3－yl）me thanol（4ae）

	RT (min)	Peak Type	Area （礦 * sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	11.332	未知	10175629	50.34	261227	71.29	BB	173	10.017	12.900
2	25.866	未知	10038398	49.66	105219	28.71	BB	305	24.133	29.217

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	11.544	未知	18847596	100.00	441664	100.00	VV	157	10.783	13.400

（（2S，3S，4S）－2－（2－bromophenyl）－4－phenyl－2，3，4，9－tetrahydro－1H－carbazol－3－yl）met hanol（4af）

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	19.506	未知	11353268	100.00	161831	100.00	BB	294	18.050	22.950

（（2S，3S，4S）－2－（2－methoxyphenyl）－4－phenyl－2，3，4，9－tetrahydro－1H－carbazol－3－yl） methanol（4ag）

	RT （min）	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	14.931	未知	24610269	99.65	420912	99.72	VV	203	13.483	16.867
2	26.226	未知	86757	0.35	1192	0.28	VB	119	25.233	27.217

（（2S，3S，4S）－2－（naphthalen－1－yl）－4－phenyl－2，3，4，9－tetrahydro－1H－carbazol－3－yl）me thanol（4ah）

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time （min）	End Time （min）
1	7.036	未知	14674588	50.17	1136433	59.05	BB	48	6.717	7.517
2	10.007	未知	14575432	49.83	788173	40.95	BB	57	9.600	10.550

	RT (min)	Peak Type	Area $\left(\right.$ 礦 $\left.^{*} \sec \right)$	\％Area	Height $($ 礦	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	7.085	未知	375904	1.60	28058	2.24	VB	33	6.867	7.417
2	9.982	未知	23178136	98.40	1224486	97.76	BV	81	9.533	10.883

（（2S，3S，4S）－4－phenyl－2－（thiophen－3－yl）－2，3，4，9－tetrahydro－1H－carbazol－3－yl）meth anol（4ai）

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height $($（礦	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	10.996	未知	19214650	49.58	974011	56.86	VV	59	10.567	11.550
2	12.077	未知	19542497	50.42	738840	43.14	VV	84	11.550	12.950

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	10.987	未知	22426811	100.00	1134957	100.00	BB	61	10.600	11.617

（（2S，3R，4S）－4－phenyl－2－（thiophen－2－yl）－2，3，4，9－tetrahydro－1H－carbazol－3－yl）meth anol（4aj）

	RT (min)	Peak Type	Area （礦 $\left.{ }^{*} \mathrm{sec}\right)$	\％Area	Height $($（礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	13.040	未知	16548907	50.38	315566	52.12	BB	210	12.250	15.750
2	17.330	未知	16298871	49.62	289917	47.88	BB	179	16.133	19.117

	RT (min)	Peak Type	Area （礦＂sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	12.584	未知	20719213	97.68	442216	98.18	VV	247	11.917	16.033
2	17.247	未知	492540	2.32	8183	1.82	VB	155	16.033	18.617

（（2S，3R，4S）－2－（furan－2－yl）－4－phenyl－2，3，4，9－tetrahydro－1H－carbazol－3－yl）methan ol（4ak）

	RT (min)	Area （礦＊sec）	\％Area	Height （礦）	\％ Height
1	12.892	22300860	51.01	501315	60.55
2	21.325	21419911	48.99	326610	39.45

	RT (min)	Peak Type	Area （礦＊sec）	\％Area	Height （礦）	\％Height	Integration Type	Points Across Peak	Start Time (min)	End Time (min)
1	13.693	未知	4996193	97.39	99401	98.23	VB	254	11.783	16.017
2	21.537	未知	133882	2.61	1789	1.77	VV	119	20.717	22.700

methyl(E)-3-((2S,3S,4S)-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)acryla te

	$R T$ $(\mathrm{~min})$	Area $\left(V^{*}\right.$ sec $)$	\% Area	Height (V)	\% Height
1	5.409	6812378	49.96	716606	55.23
2	6.554	6823805	50.04	580776	44.77

	$R T$ $(\mathrm{~min})$	Area $\left(V^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	5.403	78732	0.77	9596	1.08
2	6.534	10096897	99.23	880773	98.92

((2S,3S,4S)-2,4-diphenyl-2,3,4,9-tetrahydro-1H-carbazol-3-yl)methyl

4-bromobenzoate

[^0]: ${ }^{1}$ L.-L. Cao, D.-S. Wang, G.-F. Jiang, Y.-G. Zhou, Tetrahedron Lett. 2011, 52, 2837-2839.
 ${ }^{2}$ S. L. Zhang, Z. L. Yu, Org. Biomol. Chem. 2016, 14, 10511-10515.
 ${ }_{4}^{3}$ A. Schmidt, G. Hilt, Org. Lett. 2013, 15, 2708-2711.
 ${ }^{4}$ M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jorgensen, Angew. Chem. Int. Ed. 2005, 44, 794-797.

