Expedient Synthesis of Highly Functionalized Abnormal Carbene Gold(I) Complexes

Mariana Flores Jarillo,^a Verónica Salazar-Pereda,^a Franciso J. Ruiz-Mendoza,^a Álvarez-Hernández,^a Oscar R. Suarez-Castillo,^b Daniel Mendoza-Espinosa^{*b}

a) Área Académica de Química, Universidad Autónoma del Estado Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo, México
b) CONACYT. Área Académica de Química, Universidad Autónoma del Estado Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, Hidalgo, México

Supporting information

Contents:

1) General experimental methods	S2
2) Synthetic procedures:	
a) Imidazolium salts 3 and 4	S3
b) aNHC-Au(I) complexes 5 and 6	S3
c) Imidazolium salts 7a-e	S4
d) aNHC-Au(I) complexes 8a-e	S6
3) References.	S8
4) Sample ¹ H and ¹³ C NMR spectra for new products	S9

Experimental section

General methods

Commercially available reagents and solvents were used as received. NHCs 1 and 2 were synthesized according to the methods reported in the literature.¹ Imidazoliums 3 and 4 were synthesized with a slightly modified literature procedure, and their characterization is consistent with the reported data.¹ All manipulations related to the synthesis of imidazolium salts **7a-e** and gold complexes **8a-e** were performed under an atmosphere of dry nitrogen using standard Schlenk techniques. Elemental analyses were obtained with a Thermo Finnegan CHNSO-1112 apparatus and a Perkin Elmer Series II CHNS/O 2400 instruments. X-ray diffraction analyses were collected in an Agilent Gemini diffractometer using Cu K α radiation ($\lambda = 1.54184$ Å). Data were integrated, scaled, sorted, and averaged using the CrysAlisPro software package. The structures we solved using direct methods, using SHELX 2014 and refined by full matrix least squares against F^{2.5} All non hydrogen atoms were refined anisotropically. The position of the hydrogen atoms were kept fixed with common isotropic display parameters. The crystallographic data and some details of the data collection and refinement are given in Table S1.

5	
Formula	$C_{41}H_{44}AuClN_2O_2$
Fw	829.20
cryst syst	Monoclinic
Space group	P 21/c
Т, К	293(2)
a, Å	20.6312(2)
b, Å	16.2870(1)
<i>c</i> , Å	11.5582(1)
α , deg	90
β , deg	104.311(1)
γ, deg	90
$V, Å^3$	3763.27(6)
Ζ	4
$d_{calc} \mathrm{g.cm}^{-3}$	1.464
μ , mm ⁻¹	8.270
refl collected	26638
T_{\min}/T_{\max}	0.815
$N_{ m measd}$	6520
$[R_{int}]$	0.0746
$R [I > 2 \operatorname{sigma}(I)]$	0.0373
R (all data)	0.0516
$R_w[I > 2 \operatorname{sigma}(I)]$	0.0876
R_w (all data)	0.0989
GOF	1.077

Table S1. Crystallographic Data and Summary of data Collection and Structure Refinement

Imidazolium salt 3. A solution of NHC 1 (0.202 g, 0.410 mmol) in 15 mL of THF was added slowly to a solution of benzolyl chloride (0.057 g, 0.408 mmol) in 5 mL of THF, and the resulting mixture was allowed stirring for 12 h at room temperature. The resulting suspension was evaporated under reduced pressure and the residue was washed with diethyl ether ($3 \times 30 \text{ mL}$) to

give the title product as a white solid in 75% yield (194 mg, 0.306 mmol). ¹H NMR (CD₃CN, 400 MHz) $\delta = 1.09$ (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.13 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.26 (two doublets overlapping, 12H, CH(CH₃)₂), 2.69 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 2.82 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 7.31 (d, J = 7.8 Hz, 2H, CH_{ar}), 7.35 (d, J = 7.8 Hz, 2H, CH_{ar}), 7.52 (t, J = 7.8 Hz, 2H, CH_{ar}), 7.58-7.66 (m, 3H, CH_{ar}), 7.72-7.77 (m, 3H, CH_{ar}), 8.03 (d, J = 7.6 Hz, 2H, CH_{ar}), 8.70 (s, 1H, CH_{imid}). ¹³C NMR (CD₃CN, 100 MHz) $\delta = 22.6, 23.7, 25.2, 26.3, 30.3, 30.4, 126.4, 126.5, 129.4, 130.2, 130.3, 130.5, 130.9, 131.3, 131.5, 132.4, 132.8, 133.3, 134.1, 135.9, 136.3, 136.9, 138.7, 146.4, 146.5, 180.2, 182.9. Anal. Calcd. for C₄₁H₄₅ClN₂O₂: C, 77.76; H, 7.16; N, 4.42; Found: C, 78.01, H, 7.22, N, 4.17.$

Imidazolium salt 4. A solution of NHC 2 (0.235 g, 0.410 mmol) in 15 mL of THF was added slowly to a solution of benzolyl chloride (0.057 g, 0.408 mmol) in 5 mL of THF, and the resulting mixture was allowed stirring for 12 h at room Ph₂l temperature. The resulting suspension was evaporated under reduced pressure and the residue was washed with diethyl ether (3 x 30 mL) to give the title product as a white solid in 85% yield (248 mg, 0.347 mmol). ¹H NMR (CD₃CN, 400 MHz) δ 1.01 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$, 1.03 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.16 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, $CH(CH_3)_2$), 1.27 (d, J = 6.6 Hz, CH(CH6.6 Hz, 6H, CH(CH₃)₂), 3.03 (sept, J = 6.4 Hz, 2H, CH(CH₃)₂), 3.31 (sept, J = 6.4 Hz, 2H, $CH(CH_3)_2$), 6.82 (d, J = 7.6 Hz, 2H, CH_{ar}), 6.89 (d, J = 7.6 Hz, 2H, CH_{ar}), 6.96-7.03 (m, 4H CH_{ar}), 7.08 (t, J = 7.6 Hz, 2H, CH_{ar}), 7.29-7.33 (m, 4H, CH_{ar}), 7.67 (t, J = 7.6 Hz, 3H, CH_{ar}), 7.74 (d, J = 7.6 Hz, 3H, CH_{ar}), 7. 7.6 Hz, 1H, CHar), 7.88 (d, J = 7.6 Hz, 1H, CHar), 8.29 (d, J = 7.4 Hz, 2H, CHar), 8.62 (s, 1H, CH_{imid}). ¹³C NMR (CD₃CN, 100 MHz) δ = 23.2, 25.1, 25.5, 27.0, 29.8, 30.0, 125.8, 129.5, 130.0, 130.5, 130.8, 131.0, 131.8, 132.9, 132.5, 133.0, 133.9, 134.8, 135.0, 135.9, 136.9, 141.4, 141.6, 146.3, 147.8, 181.6. ³¹P NMR (CD₃CN, 121 MHz) δ = -36.8 ppm. Anal. Calcd. for C₄₆H₅₀ClN₂OP: C, 77.45; H, 7.07; N, 3.93; Found: C, 77.76, H, 6.85, N, 4.17.

Synthesis of aNHC-Au complexes 5 and 6

Claude Normal Struct Struct absence of light, silver(I) oxide (18 mg, 0.079 mmol) and triazolium **3** (100 mg, 0.158 mmol) were charged in a Schlenk flask and dry dichloromethane (10 mL) was added. The resulting suspension was stirred for 24 h at room temperature. The final dark brown suspension was filtered and transferred via cannula to a second Schlenk containing a solution of choloro(dimethylsulfide)gold (46.5 mg, 0.158 mmol) in 5 mL of dichlorometane. The resulting dark grey suspension was stirred for 6 h. After cannula filtration and removal of the solvent, the crude product is dissolved in 1 mL of DCM and purified by column chromatography using dichloromethane yielding the title product in 54 % yield (71 mg, 0.085 mmol) as white solid.

Method B: In strict absence of light, choloro(dimethylsulfide)gold (46.5 mg, 0.158 mmol) potassium hexamethyl disylazide (38 mg, 0.189 mmol) and triazolium **3** (100 mg, 0.158 mmol), were combined in a Schlenk flask and dissolved in THF (7 mL) at -78°C. The resulting mixture was stirred for 16 h. The final clear suspension was dried under vacuum and the residue was dissolved in 1 mL of dichloromethane and precipitated with hexane (10 mL). The solid is filtered and dried under vacuum yielding the title product in 87 % yield (114 mg, 0.137 mmol) as white solid. Single crystals were obtained by vapor diffusion of hexanes into a concentrated dichloromethane solution. ¹H NMR (CDCl₃, 400 MHz) $\delta = 1.21$ (d, J = 6.9 Hz, 6H, CH(CH₃)₂), 1.24 (d, J = 6.9 Hz, 6H, CH(CH₃)₂), 1.37 (d, J = 6.9 Hz, 6H, CH(CH₃)₂), 1.41 (d, J = 6.9 Hz, 6H, CH(CH₃)₂), 2.59 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 2.66 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 7.16-7.19 (m, 2H, CH_{ar}), 7.28-7.31 (m, 4H, CH_{ar}), 7.32-7.38 (m, 3H, CH_{ar}), 7.49-7.56 (m, 3H, CH_{ar}), 7.66 (t, J = 7.6 Hz, 2H, CH_{ar}), 1³C NMR (CDCl₃, 100 MHz) $\delta = 24.0$, 24.3, 24.5, 24.6, 28.8, 29.4, 123.1, 124.0, 124.3, 124.5, 127.4, 128.3, 129.0, 129.6, 130.6, 130.7, 131.2, 133.0, 133.9, 137.0, 146.2, 146.3, 146.6, 155.1 (Au=C), 180.1, 181.2. Anal. Calcd. for C₄₁H₄₄AuClN₂O₂: C, 59.39; H, 5.35; N, 3.38; Found: C, 59.07, H, 5.22, N, 3.56.

Complex 6. *Method A: In strict absence of light*, silver(I) oxide (18 mg, 0.079 mmol) and triazolium 4 (113 mg, 0.158 mmol) were charged in a Schlenk flask and dry dichloromethane (10 mL) was added. The resulting suspension was stirred for 24 h at room temperature. The final dark brown suspension was

filtered and transferred via cannula to a second Schlenk containing a solution of choloro(dimethylsulfide)gold (46.5 mg, 0.158 mmol) in 5 mL of dichlorometane. The resulting dark grey suspension was stirred for 6 h. After cannula filtration and removal of the solvent, the crude product is dissolved in 1 mL of DCM and purified by column chromatography using dichloromethane yielding the title product in 51 % yield (72 mg, 0.079 mmol) as white solid. Method B: In strict absence of light, choloro(dimethylsulfide)gold (46.5 mg, 0.158 mmol) potassium hexamethyl disylazide (38 mg, 0.189 mmol) and triazolium 4 (113 mg, 0.158 mmol), were combined in a Schlenk flask and dissolved in THF (7 mL) at -78°C. The resulting mixture was stirred for 16 h. The final clear suspension was dried under vacuum and the residue was dissolved in 1 mL of dichloromethane and precipitated with hexane (10 mL). The solid is filtered and dried under vacuum yielding the title product in 93 % yield (134 mg, 0.147 mmol) as white solid. ¹H NMR (CDCl₃, 400 MHz) $\delta = 1.27$ (d, J = 6.6 Hz, 6H, CH(CH₃)₂), 1.40 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$, 1.45 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 1.48 (d, J = 6.6 Hz, 6H, $CH(CH_3)_2$), 2.37 (sept, J =6.4 Hz, 2H, CH(CH₃)₂), 2.65 (sept, J = 6.4 Hz, 2H, CH(CH₃)₂), 7.22-7.24 (m, 4H, CH_{ar}), 7.31-7.35 (m, 8H, CH_{ar}), 7.46-7.48 (m, 3H CH_{ar}), 7.54 (d, J = 7.6 Hz, 2H, CH_{ar}), 7.62 (t, J = 7.6 Hz, 2H, CH_{ar} , 7.71 (d, J = 7.6 Hz, 1H, CH_{ar}), 7.71 (t, J = 7.6 Hz, 1H, CH_{ar}). ¹³C NMR (CDCl₃, 100 MHz) δ = 22.4, 23.7, 24.7, 26.3, 29.1, 29.6, 118.2, 125.4, 126.6, 126.8, 127.8, 128.8, 130.5, 132.3, 133.0, 139.9, 140.8, 145.2, 145.4, 145.6, 147.4, 147.6, 148.5, 149.7, 157.3 (Au=C), 179.2. ³¹P NMR $(CDCl_3, 121 \text{ MHz}) \delta = -37.4 \text{ ppm}$. Anal. Calcd. for $C_{46}H_{49}AuClN_2OP$: C, 60.76; H, 5.43; N, 3.08; Found: C, 60.56, H, 5.67, N, 3.33.

Synthesis of imidazolium salts 7a-e

Imidazolium salt **7a.** A solution of NHC **1** (0.202 g, 0.410 mmol) in 15 mL of THF was added slowly to a solution of 2-furoyl chloride (0.053 g, 0.410 mmol) in 5 mL of THF, and the resulting mixture was allowed stirring for 12 h at room temperature. The resulting suspension was evaporated under reduced pressure and the residue was washed with diethyl ether (3 x 30 mL)

to give the title product as a white solid in 83% yield (211 mg, 0.336 mmol). ¹H NMR (CD₃CN, 400 MHz) $\delta = 1.22$ (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.25 (two doublets overlapping, 12H, CH(CH₃)₂), 1.28 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 2.45 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 2.65 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 6.65 (dd, J = 2.8 Hz, 1H, CH), 7.02-7.06 (m, 3H, CH_{ar}), 7.11-7.13 (m, 4H, CH_{ar}, CH), 7.26-7.28 (m, 3H, CH_{ar}) 7.42 (t, J = 7.8 Hz, 2H, CH_{ar}), 7.55 (t, J = 7.8 Hz, 1H, CH_{ar}), 8.16 (dd, J = 2.8 Hz, 1H, CH_{ar}), 8.64 (s, 1H, CH_{imid}). ¹³C NMR (CD₃CN, 100 MHz) $\delta = 22.5$, 23.6, 24.5, 25.9, 29.1, 29.3, 112.2, 114.1, 116.1, 118.2, 125.1, 126.4, 126.7, 126.8, 127.8, 127.9, 130.5, 132.3, 133.0, 139.8, 139.9, 140.8, 146.6, 165.3, 180.2. Anal. Calcd. for C₃₉H₄₃ClN₂O₃: C, 75.16; H, 6.95; N, 4.49; Found: C, 75.01, H, 7.09, N, 4.23.

Imidazolium salt **7b.** Following the general procedure but using chlorodiphenylphosphine (0.090 g, 0.410 mmol) the title product is isolated as a white solid in 71% yield (208 mg, 0.291 mmol) after recrystallization from

bipp acetonitrile/diethylether. ¹H NMR (CD₃CN, 400 MHz) $\delta = 1.11$ (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.19 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.27 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.45 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 2.57 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 2.67 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 7.41-7.47 (m, 6H, CH_{ar}), 7.51-7.58 (m, 4H, CH_{ar}), 7.59-7.63 (m, 3H, CH_{ar}), 7.69-7.74 (m, 3H, CH_{ar}), 7.57-7.81 (m, 4H, CHar), 8.73 (s, 1H, CH_{imid}). ¹³C NMR (CD₃CN, 100 MHz) $\delta = 22.5, 23.7, 24.7, 26.4, 29.1, 29.6, 123.1, 124.1, 124.3, 124.6, 127.1, 127.7, 128.5, 129.0, 129.1, 129.8, 129.9, 130.0, 130.7, 131.2, 132.0, 132.9, 133.1, 134.0, 145.6, 179.2. ³¹P NMR (CD₃CN, 121 MHz) <math>\delta = -38.7$ ppm. Anal. Calcd. for C₄₆H₅₀ClN₂OP: C, 77.45; H, 7.07; N, 3.93; Found: C, 77.76, H, 6.85, N, 4.17.

Imidazolium salt **7c.** Following the general procedure but using chlorotrimethylsilane (0.045 g, 0.410 mmol) the title product is isolated as a white solid in 68% yield (168 mg, 0.279 mmol) after recrystallization from acetonitrile/diethylether. ¹H NMR (CD₃CN, 400 MHz) $\delta = -0.28$ (s, 9H, CH₃),

1.07 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.20 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.25 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.29 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 2.17 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 2.45 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 7.02-7.06 (m, 2H CH_{ar}), 7.11-7.15 (m, 4H, CH_{ar}), 7.26-7.28 (m, 2H, CH_{ar}), 7.29.7.33 (m, 1H, CHar), 7.42-7.45 (m, 1H, CH_{ar}), 7.57 (t, J = 7.8 Hz, 1H, CH_{ar}), 8.26 (s, 1H, CH_{imid}). ¹³C NMR (CD₃CN, 100 MHz) $\delta = -1.72$, 22.5, 22.9, 24.0, 24.5, 28.9, 29.3, 112.2, 114.1, 116.1, 125.4, 126.8, 127.8, 128.7, 129.3, 129.7, 133.0, 131.4, 131.7, 140.8, 146.5, 149.7, 180.3. Anal. Calcd. for C₃₇H₄₉ClN₂OSi: C, 73.90; H, 8.21; N, 4.66; Found: C, 73.27, H, 8.22, N, 4.81.

Imidazolium salt **7d.** NHC **1** (0.202 g, 0.410 mmol) and hexacholorethane (0.107 g, 0.450 mmol) were combined in a Schlenk flask and dissolved in acetonitrile (15 mL). The resulting solution was sonicated for 24 h at room temperature. Removal of the volatiles under vacuum gave a light yellow solid

that was washed with toluene (10 mL) and recrystallized from acetonitrile/diethylether to give the title product as a white solid in 57% yield (132 mg, 0.234 mmol). ¹H NMR (CD₃CN, 400 MHz) $\delta = 1.07$ (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.24 (two doublets overlapping, 12H, CH(CH₃)₂), 1.34 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 2.23 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 2.61 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 7.13 (d, J = 7.8 Hz, 2H, CH_{ar}), 7.22-7.28 (m, 3H CH_{ar}), 7.32 (d, J = 7.8 Hz, 2H, CH_{ar}), 7.50 (t, J = 7.8 Hz, 1H, CH_{ar}), 7.58 (t, J = 7.8 Hz, 1H, CH_{ar}), 7.92 (d, J = 7.6 Hz, 2H, CH_{ar}), 8.53 (s, 1H, CH_{imid}). ¹³C NMR (CD₃CN, 100 MHz) $\delta = 23.9$, 24.1, 24.5, 24.7, 28.5, 28.7, 123.6, 123.7, 124.3, 127.3, 128.5, 128.9, 129.7, 130.1, 130.6, 130.8, 133.7, 134.5, 134.7, 136.4, 146.6, 180.4. Anal. Calcd. for C₃₄H₄₀Cl₂N₂O: C, 72.46; H, 7.15; N, 4.97; Found: C, 72.01, H, 7.22, N, 4.58.

Synthesis of aNHC-Au(I) complexes 8a-e

Complex 8a. In strict absence of light, choloro(dimethylsulfide)gold (46.5 mg, 0.158 mmol) potassium hexamethyl disylazide (38 mg, 0.189 mmol) and triazolium 7a (98 mg, 0.158 mmol), were combined in a Schlenk flask and dissolved in THF (7 mL) at -78° C. The resulting mixture was stirred for 16 h. The final clear suspension was dried under vacuum and the residue was

Dipp The final clear suspension was dried under vacuum and the residue was dissolved in 1 mL of dichloromethane and precipitated with hexane (10 mL). The solid is filtered and dried under vacuum yielding the title product as a white solid in 91% yield (93 mg, 0.114 mmol). ¹H NMR (CDCl₃, 400 MHz) $\delta = 1.14$ (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.16 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.21 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.26 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 2.51 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 2.55 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 6.69-6.60 (dd, J = 2.6 Hz, 1H CH), 6.91-6.92 (m, 1H CH), 7.01-7.06 (m, 2H, CH_{ar}), 7.11-7.15 (m, 4H, CH_{ar}), 7.26-7.30 (m, 2H, CH_{ar}), 7.42 (t, J = 7.6 Hz, 2H, CH_{ar}), 7.56 (t, J = 7.6 Hz, 1H, CH_{ar}), 8.33 (m, 1H, CH). ¹³C NMR (CDCl₃, 100 MHz) $\delta = 23.4$, 23.6, 24.5, 24.6, 29.0, 29.1, 112.3, 115.5, 118.2, 121.2, 125.1, 126.7, 129.0, 129.7, 130.5, 132.3, 137.6, 139.7, 141.1, 142.1, 145.3, 145.4, 147.5, 157.6, 163.5, 179.9. Anal. Calcd. for C₃₉H₄₂AuClN₂O₃: C, 57.18; H, 5.17; N, 3.42; Found: C, 57.01, H, 5.09, N, 3.23.

Complex 8b. Following the general procedure but using imidazolium salt 7b (113 mg, 0.158 mmol), the title product is isolated as a white solid in 84% yield (121 mg, 0.158 mmol). ¹H NMR (CDCl₃, 400 MHz) $\delta = 1.20$ (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.27 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.47 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.56 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 2.43 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 7.33 (d, J = 7.8 Hz, 2H, CH_{ar}), 7.39-7.53 (m,

3H, CH_{ar}), 7.48-7.51 (m, 5H, CH_{ar}), 7.55-7.57 (m, 4H, CH_{ar}), 7.64-7.68 (m, 5H, CH_{ar}), 7.69-7.72 (m, 2H, CH_{ar}). ¹³C NMR (CDCl₃, 100 MHz) δ = 20.8, 21.1, 22.8, 24.9, 29.3, 29.7, 109.4, 116.4, 117.8, 121.5, 122.8, 132.3, 123.9, 124.3, 126.4, 127.1, 130.3, 131.0, 131.6, 134.1, 134.5, 153.4, 177.6. ³¹P NMR (CDCl₃, 121 MHz) δ = -35.2 ppm. Anal. Calcd. for C₄₆H₄₉AuClN₂OP: C, 60.76; H, 5.43; N, 3.08; Found: C, 60.79, H, 5.67, N, 3.17.

Complex 8c. Following the general procedure but using imidazolium salt 7c (116 SiMe Ph(O)C Dipp

CI.

Ph(O)C

mg, 0.158 mmol), the title product is isolated as a white solid in 88% yield (111 mg, 0.139 mmol). ¹H NMR (CDCl₃, 400 MHz) $\delta = -0.32$, 1.16 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.19 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.25 (d, J = 7.2 Hz, 6H, $CH(CH_3)_2$, 1.27 (d, J = 7.2 Hz, 6H, $CH(CH_3)_2$), 2.46 (sept, J = 6.8 Hz, 2H, $CH(CH_{3})_{2}$, 2.87 (sept, J = 6.8 Hz, 2H, $CH(CH_{3})_{2}$), 7.21-7.24 (m, 4H, CH_{ar}), 7.36-7.40 (m, 2H, CH_{ar}), 7.43-7.46 (m, 2H, CH_{ar}), 7.51 (d, J = 7.6 Hz, 2H, CH_{ar}), 7.61 (t, J = 7.6 Hz, 1H, CH_{ar}). ¹³C NMR (CDCl₃, 100 MHz) $\delta = -2.42, 23.7, 24.9, 25.9, 27.6, 30.3, 30.7, 125.8, 126.2, 127.8, 130.0, 125.8, 126.2, 127.8, 126.2, 126.2, 127.8, 126.2,$ 130.3, 130.7, 131.2, 133.6, 134.6, 137.8, 139.8, 140.6, 142.2, 146.4, 150.7, 180.5. Anal. Calcd. for C₃₇H₄₈AuClN₂OSi: C, 55.74; H, 6.07; N, 3.51; Found: C, 55.41, H, 6.22, N, 3.81.

> Complex 8d. Following the general procedure but using imidazolium salt 7d (89 mg, 0.158 mmol), the title product is isolated as a white solid in 75% yield (90 mg, 0.119 mmol). ¹H NMR (CDCl₃, 400 MHz) $\delta = 1.17$ (d, J = 7.2 Hz, 6H, CH(CH₃)₂),

1.20 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.25 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.27 (d, JDipp = 7.2 Hz, 6H, $CH(CH_3)_2$), 2.44 (sept, J = 6.8 Hz, 2H, $CH(CH_3)_2$), 2.93 (sept, J = 6.8 Hz, 2H, $CH(CH_3)_2$, 7.02-7.06 (m, 2H, CH_{ar}), 7.11-7.15 (m, 3H, CH_{ar}), 7.26-7.29 (m, 2H, CH_{ar}), 7.34 (d, J =7.8 Hz, 1H, CH_{ar}), 7.42 (t, J = 7.6 Hz, 2H, CH_{ar}), 7.55 (t, J = 7.6 Hz, 1H, CH_{ar}). ¹³C NMR (CDCl₃, 100 MHz) $\delta = 23.7, 24.0, 24.5, 25.6, 28.8, 29.1, 123.1, 124.1, 124.3, 124.6, 127.1, 127.7, 129.1,$ 129.9, 130.7, 131.2, 132.0, 132.9, 133.1, 146.0, 152.2, 175.3. Anal. Calcd. for C₃₄H₃₉AuCl₂N₂O: C, 53.76; H, 5.18; N, 3.69; Found: C, 53.91, H, 5.40, N, 3.71.

Complex 8e. Following the general procedure but using imidazolium salt 7e Dipp (107 mg, 0.158 mmol), the title product is isolated as a white solid in 81% yield (112 mg, 0.128 mmol). ¹H NMR (CDCl₃, 400 MHz) $\delta = 1.07$ (d, J = 7.2 Hz, Ph(O)C 6H, CH(CH₃)₂), 1.20 (d, J = 7.2 Hz, 6H, CH(CH₃)₂), 1.25 (d, J = 7.2 Hz, 6H, $CH(CH_3)_2$, 1.29 (d, J = 7.2 Hz, 6H, $CH(CH_3)_2$), 2.16 (sept, J = 6.8 Hz, 2H, $CH(CH_3)_2$), 2.45 (sept, J = 6.8 Hz, 2H, CH(CH₃)₂), 7.02-7.06 (m, 2H, CH_{ar}), 7.12 (d, J = 7.6 Hz, 3H, CH_{ar}), 7.26-7.30 (m, 2H, CH_{ar}), 7.34 (d, J = 7.6 Hz, 1H, CH_{ar}), 7.44 (t, J = 7.6 Hz, 2H, CH_{ar}), 7.55 (t, J = 7.8 Hz, 1H, CH_{ar}). ¹³C NMR (CDCl₃, 100 MHz) δ = 22.5, 23.8, 24.7, 26.4, 29.1, 29.6, 120.1, 121.5 (q, J (C,F) = 328 Hz), 122.0, 124.6, 127.3, 128.8, 128.9, 129.1, 129.6, 132.4, 136.6, 141.0, 145.2, 161.8, 181.7.

¹⁹F NMR (CDCl₃, 282 MHz) δ = -76.8. Anal. Calcd. for C₃₅H₃₉AuClF₃N₂O₄S: C, 48.14; H, 4.50; N, 3.21; Found: C, 47.96, H, 4.09, N, 3.58.

References:

- 1) D. Mendoza-Espinosa, B. Donnadieu and G. Bertrand, J. Am. Chem. Soc., 2010, 132, 7264.
- 2) G. M. Sheldrick, G. M. SHELXS-2014, Program for Crystal Structure Solution and Refinement; Institut Für Anorganishe Chemie, Göttingen, Germany, 2013.

Figure S1. ¹H NMR (400 MHz) spectrum of complex 5 in CDCl_{3.}

Figure S2. ¹³C-NMR (100 MHz) spectrum of complex 5 in CDCl₃

Figure S3. ¹H NMR (400 MHz) spectrum of complex 6 in CDCl₃

Figure S4. ¹³C-NMR (100 MHz) spectrum of complex 6 in CDCl₃

Figure S5. ³¹P-NMR (126 MHz) spectrum of complex **6** in CDCl₃

Figure S6. ¹H NMR (400 MHz) spectrum of salt 7a in CD₃CN

Figure S7. ¹³C NMR (100 MHz) spectrum of salt 7a in CD₃CN

Figure S8. ¹H NMR (400 MHz) spectrum of salt 7b in CD₃CN

Figure S9. ¹³C NMR (100 MHz) spectrum of salt 7b in CD₃CN

Figure S10. ³¹P-NMR (126 MHz) spectrum of salt 7b in CD₃CN

Figure S11. ¹H NMR (400 MHz) spectrum of salt 7c in CD₃CN

Figure S12. ¹³C NMR (100 MHz) spectrum of salt 7c in CD₃CN

Figure S13. ¹H NMR (400 MHz) spectrum of salt 7d in CD₃CN

Figure S14. ¹³C NMR (100 MHz) spectrum of salt 7d in CD₃CN

Figure S15. ¹H NMR (400 MHz) spectrum of salt 7e in CD₃CN

Figure S16. ¹³C NMR (100 MHz) spectrum of salt 7e in CD₃CN

Figure S17. ¹H NMR (400 MHz) spectrum of complex 8a in CDCl₃

Figure S18. ¹³C NMR (100 MHz) spectrum of complex 8a in CDCl₃

Figure S19. ¹H NMR (400 MHz) spectrum of complex 8b in CDCl₃

Figure S20. ¹³C NMR (100 MHz) spectrum of complex 8b in CDCl₃

Figure S21. ³¹P NMR (126 MHz) spectrum of complex **8b** in CDCl₃

Figure S22. ¹H NMR (400 MHz) spectrum of complex 8c in CDCl₃

Figure S23. ¹³C NMR (100 MHz) spectrum of complex 8c in CDCl₃

Figure S24. ¹H NMR (400 MHz) spectrum of complex 8d in CDCl₃

Figure S25. ¹³C NMR (100 MHz) spectrum of complex 8d in CDCl₃

Figure S26. ¹H NMR (400 MHz) spectrum of complex 8e in CDCl₃

Figure S27. ¹³C NMR (100 MHz) spectrum of complex 8e in CDCl₃