SUPPORTING INFORMATION FOR:

Recyclable nanocomposite of flowerlike MoS₂@hybrid acid-doped PANI immobilized on porous PAN nanofibers for the efficient removal of Cr (VI)

Jinli Qiu[†], Fuqiang Liu^{*[†], ‡}, Song Cheng[†], Lidan Zong[†], Changqing Zhu[†], Chen Ling[†],

Aimin Li^{\dagger, \ddagger}

[†]State Key Laboratory of Pollution Control and Resources Reuse, School of the

Environment, Nanjing University, Nanjing 210023, P.R. China

[‡]State Environmental Protection Engineering Center for Organic Chemical Industrial

Waste Water Disposal Resource Reuse, Nanjing 210023, P. R. China

15 pages, 14 figures, 7 tables

*To whom correspondence should be addressed: jogia@163.com

Figure S1. The physical appearance of the prepared MoS₂@PANI/PAN nanocomposite.

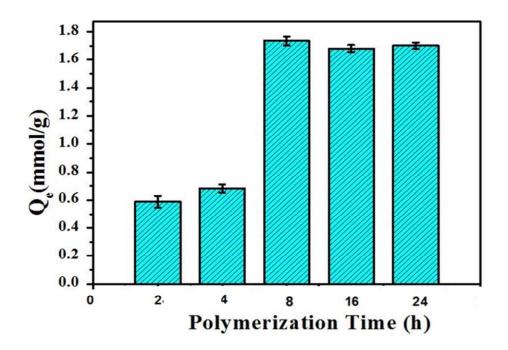


Figure S2. The effect of the polymerization time on the Cr(VI) removal capacity of the nanocomposite.

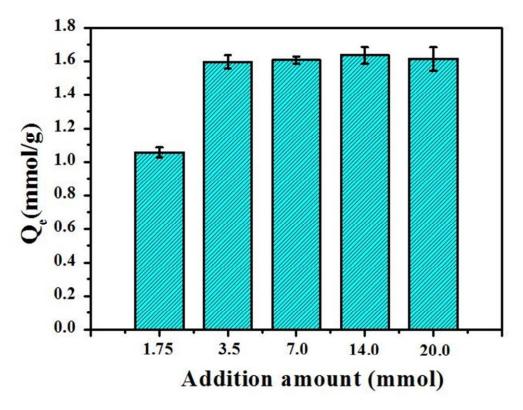


Figure S3. The effect of the added amount of APS on MoS₂@PANI/PAN polymerization and the Cr(VI) removal capacity.

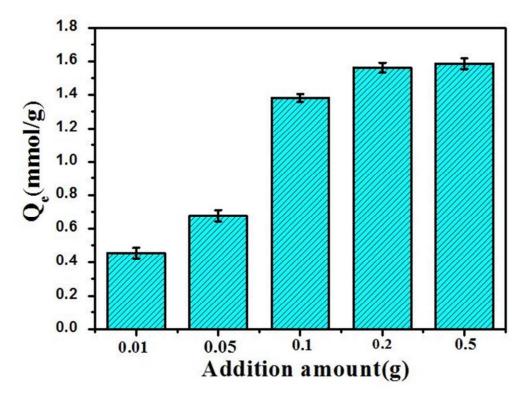


Figure S4. The effect of the added amount of MoS₂ on MoS₂@PANI/PAN polymerization and the Cr(VI) removal capacity.

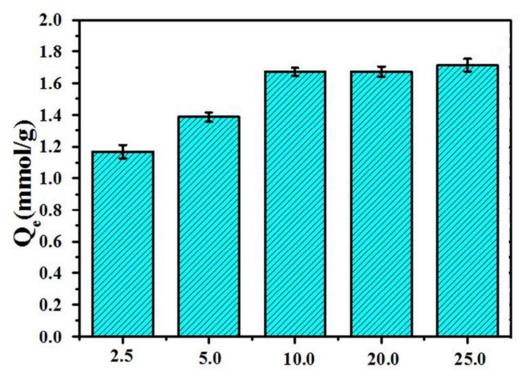


Figure S5. The effect of the added amount of aniline on MoS₂@PANI/PAN polymerization and the Cr(VI) removal capacity.

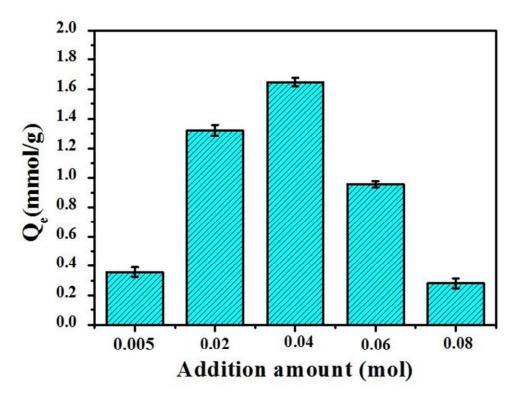
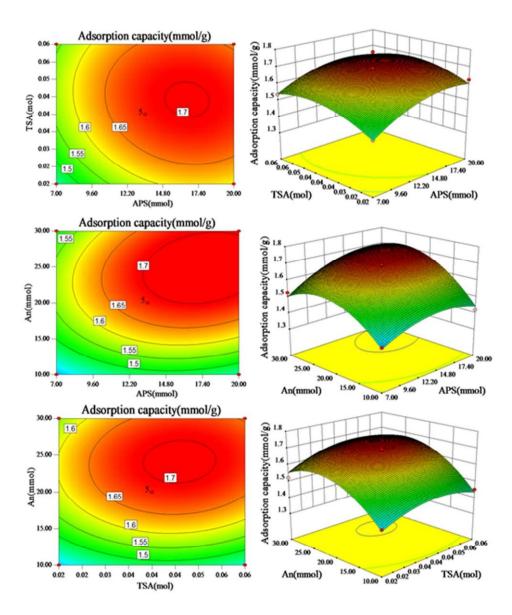



Figure S6. The effect of the added amount of TSA on MoS₂@PANI/PAN polymerization and the Cr(VI) removal capacity.

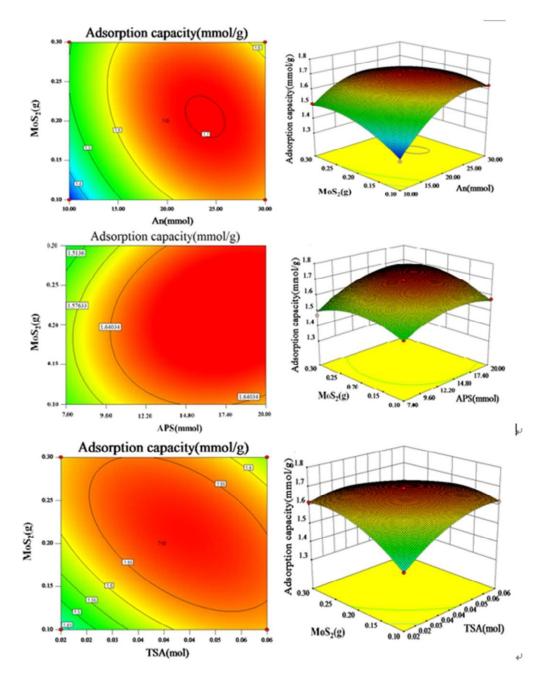


Figure S7. Contour maps and response surfaces for Cr(VI) removal.

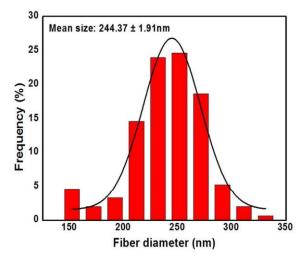


Figure S8. The diameter distribution of pure PAN nanofibers.

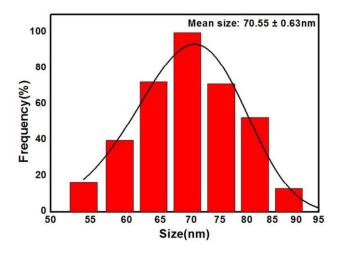


Figure S9. The diameter distribution of pure MoS₂ nanoparticles.

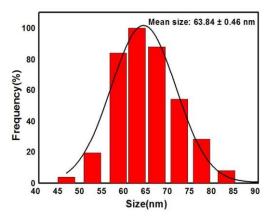


Figure S10. The diameter distribution of pure PANI nanoparticles.

		texture			
	Bare PAN	Bare porous			
Properties	nanofibers without	PAN	MoS ₂ @PANI/PAN	Pure MoS ₂ nanoparticles	
	pores	nanofibers	nanocomposite		
BET surface area	21.52	13.99	27.06	10.89	
(m^{2}/g)	21.32	13.99	27.00	10.87	
Average pore Diameter (nm)	4.36	7.39	10.14	13.08	
Pore volume(cm ³ /g)	0.023	0.026	0.069	0.036	

Table S1. The specific surface area of the obtained materials and information on their porous

Table S2. The mechanical properties of PAN fibers before and after modification

Breaking strength(N/mm ²)	Elongation at break (%)	Elasticity modulus (Mpa)
39.8	26	150.5
25.6	16	164.2
	Breaking strength(N/mm ²) 39.8	39.8 26

The kinetic equations are expressed as follows:

$$\ln\left(q_e - q_t\right) = \ln q_e - k_1 t \qquad (Eq.1)$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \qquad (Eq.2)$$

where q_t and q_e (mmol/g) are the amounts of adsorbates adsorbed at time t (min) and at equilibrium, respectively. k_1 (min⁻¹) and k_2 (g mmol⁻¹ min⁻¹) are the rate constants of the two models, respectively.

Table S3. The kinetics parameters of Cr(VI) removal by the MoS2@PANI/PAN nanocomposite

Pseudo-Fi			rst-Order Pseudo-Second-Order					
Co	Qexp	$Q_{ m eq}$	k_1	R ²	Qeq	k_2	h	R ²
(mmol/L)	(mmol/g)	(mmol/g)	(min^{-1})		(mmol/g)	(g/mmol min)	(mmol/g min)	
2.0	1.73	1.77	0.08	0.99	1.96	0.06	0.23	0.97

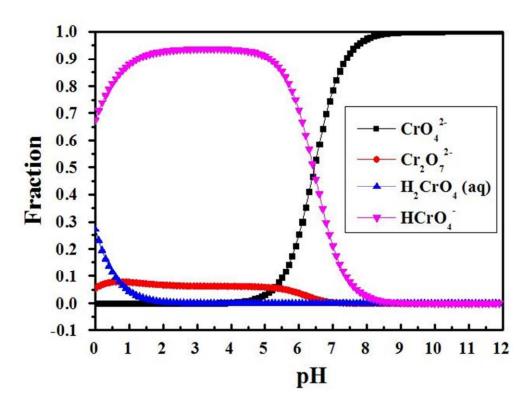


Figure S11. Cr species distribution at different pH values.

Adsorption isotherm models were applied to describe the adsorption behaviors between the liquid and solid phases. The primary theory of Langmuir isotherm model was based on the hypothesis of molecular layer adsorption, and there was no interaction among the adsorbed molecules, indicating the active sites on the adsorbents were equal for the adsorbed molecules. Whereas, the Freundlich isotherm model demonstrated the heterogeneous binding sites on the surface of adsorbents.

The form of the Langmuir isotherm is as *Eq.*3:

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{q_m K_L}$$
(Eq.3)

where q_e (mmol/g) is the amount of adsorbates adsorbed at the equilibria, q_m (mmol/g) is the maximum adsorption capacity, C_e (mmol/L) is the equilibrium concentration of adsorbates in the solution and K_L (L/mmol) is the Langmuir adsorption constant.

The Freundlich adsorption equation is given as Eq.4:

$$q_e = K_f C_e^{1/n} \tag{Eq.4}$$

where K_f is the Freundlich adsorption coefficient, which is an index of the adsorption capacity and l/n refers to a constant depicting the adsorption intensity.

 		1		, 20	1	
		Langmuir model		Freund	lich model	
 Т (К)	Q_{max} (mmol/g)	K _L (L/mmol)	R ²	k_f	п	R ²
 298	5.90	94.7	0.999	28.5	1.92	0.976
308	6.45	102.2	0.999	30.9	1.95	0.972
318	6.57	113.3	0.999	30.6	2.01	0.966

Table S4. The isothermal parameters of Cr(VI) removal by MoS₂@PANI/PAN nanocomposite

The thermodynamic equations are expressed as follows:

$$\ln K_d = \frac{\Delta S^{\circ}}{R} - \frac{\Delta H^{\circ}}{RT} \qquad (Eq.5)$$

$$\Delta G^{\circ} = -RT \ln K_d \tag{Eq.6}$$

where K_d (L/mmol) is the adsorption equilibrium constant obtained from Langmuir model, T (K) is the temperature, and R is the universal gas constant (kJ mol⁻¹ k⁻¹), respectively.

where K_d (L/mmol) is the adsorption equilibrium constant obtained from Langmuir model, T (K) is the temperature, and R is the universal gas constant (kJ mol⁻¹ k⁻¹), respectively.

				nanocomposite			
K _d		$\Delta H^{ m o}$	ΔS^{o}			1)	
	(L/mmol)		(kJ/mol)	$(J/ mol \cdot K)$		$\Delta G^{ m o}$ (kJ/1	nol)
298K	308K	318K			298K	308K	318K
94.7	102.2	113.3	7.1	61.5	-18.3	-18.9	-19.6

 Table S5. The thermodynamic parameters of Cr(VI) removal by MoS₂@PANI/PAN nanocomposite

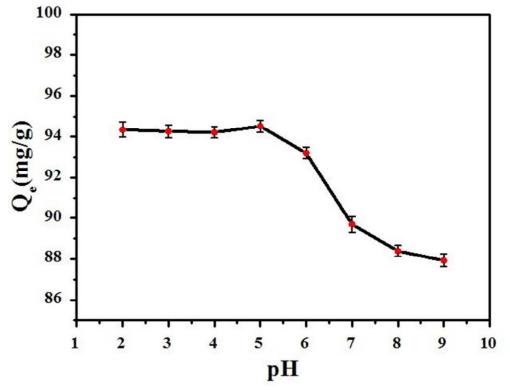


Figure S12. The effect of pH on the removal of humic acid (HA).

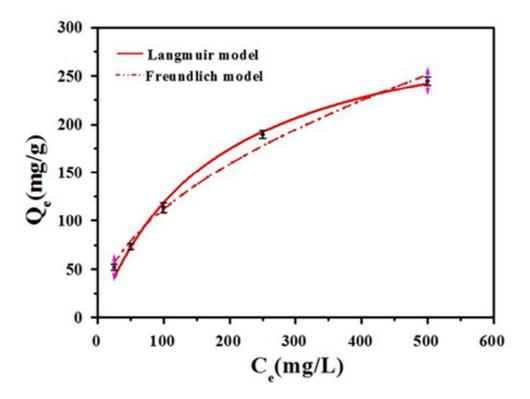


Figure S13. The isotherm of HA removal by MoS2@PANI/PAN nanocomposite.

Program	E (a.u.)	ΔE (kJ/mol)	Bond length (Å)	Bond angle (°)
Single Cr atom	-84.13			
PANI ⁰ PANI ⁰ -Cr	-1375.12			
	-1460.41	-794.43	1.94	39.01

Figure S14. The zeta potential of MoS₂ nanoparticles at different pH values.

Materials		Removal capacity (mmol/g)	Reference
Equilibrium time (h)			
PANI/H-TNBs	5.0	3.0	28
PANI@ Mg/Al LDH	5.0	7.6	38
HA@PAN Hybrid Nanotubes	0.17	1.2	39
AC modified PEI	3.3	7.7	40
Pyridine copolymer resin	2.0	1.4	41
Fe ₃ O ₄ /PANI microspheres	1.2	3.8	42
Rare earth doped titanium dioxide coated carbon sphere	6.0	1.6	43
Nitrogen-doped chitosan- Fe(III) composites	3.3	1.1	44
Al-substituted ferrihydrites	0.66	0.77	45
MoS ₂ @PANI/PAN nanocomposite	0.50	6.6	This work

Table S7. Comparison of the Cr(VI) removal efficiency of the MoS2@PANI/PAN nanocomposite and other, previously reported materials