Optical Behaviors and Electronic Properties of Mo_2 – Mo_2 Mixed-Valence Complexes within or beyond the Class III Regime: Testing the Limits of the Two-State Model

Ying Ning Tan,^{1,†} Tao Cheng,^{1,†} Miao Meng,¹ Yu Yu Zhang,¹ Chun Y. Liu^{1,2,*}, Mei Fang Sun,² Yu Zhang,² Paul J. Low^{3,*}

Supporting Information for Review

Figure S1. ¹H NMR spectra for the complex $[O_2-O_2]$.

Figure S2. ¹H NMR spectra for the complex [**OS–OS**].

Figure S3. ¹H NMR spectra for the complexes $[S_2-S_2]$.

Figure S4. Spectra of electron paramagnetic resonance (EPR) for the cations $[\mathbf{O_2} - \mathbf{O_2}]^+$, $[\mathbf{OS} - \mathbf{OS}]^+$ and $[\mathbf{S_2} - \mathbf{S_2}]^+$ in CH_2Cl_2 solutions.

Table S1. Crystallographic data of the complexes [OS-OS] and $[S_2-S_2]$.

Table S2. Selected bond distances (Å) and angles of the complex [OS-OS].

Table S3. Selected bond distances (Å) and angles of the complex [SS–SS].

Figure S5. Vis-Near-IR spectra of neutral $[O_2-O_2]$ and cation $[O_2-O_2]^+$ in CH_2Cl_2 solutions.

Figure S6. Vis-Near-IR spectra of neutral [OS–OS] and cation [OS–OS]⁺ in CH₂Cl₂ solutions.

Figure S7. Vis-Near-IR spectra of neutral $[S_2-S_2]$ and cation $[S_2-S_2]^+$ in CH_2Cl_2 solutions.

Figure S8. Vis-Near-IR spectra of the cation $[O_2-O_2]^+$ in various solvents including THF, MeCN and DMF.

Figure S9. Vis-Near-IR spectra of the cation [OS-OS]⁺ in various solvents including THF, MeCN and DMF.

Figure S10. Vis-Near-IR spectra of the cation $[S_2-S_2]^+$ in various solvents including THF, MeCN and DMF.

Figure S11. The key frontier molecular orbitals for the computational models of $[\mathbf{OO}\mathbf{-OO}]^+$, $[\mathbf{OS}\mathbf{-OS}]^+$ and $[\mathbf{SS}\mathbf{-SS}]^+$.

Note for Figure 11.

Figure S1. ¹H NMR spectra for the complex [O₂–O₂] in Chloroform-d.

Figure S2. ¹H NMR spectra for the complex [**OS–OS**] in Chloroform-*d*.

Figure S3. ¹H NMR spectra for the complex [S₂–S₂] in Chloroform-d.

Figure S4. Spectra of electron paramagnetic resonance (EPR) for the cations $[\mathbf{O_2} - \mathbf{O_2}]^+(A)$, $[\mathbf{OS} - \mathbf{OS}]^+(B)$ and $[\mathbf{S_2} - \mathbf{S_2}]^+(C)$ in CH_2Cl_2 solutions at 110 K.

Table S1. Crystallographic data for the complexes [OS-OS] and $[S_2-S_2]$

	[OS-OS]·4CH ₂ Cl ₂	[S ₂ -S ₂]·3CH ₂ Cl ₂			
formula	$C_{96}H_{92}Mo_4N_{12}O_{14}S_2Cl_8$	C ₉₅ H ₈₆ Mo ₄ N ₁₂ O ₁₂ S ₄ Cl ₆			
fw	2369.30	2312.45			
space group	Pī	Pī			
$a(ext{\AA})$	11.2150(3)	15.0656(5)			
$b(ext{Å})$	15.2523(6)	15.3202(4)			
$c(ext{Å})$	16.1339(5)	22.8869(7)			
$\alpha(\deg)$	97.592(3)	103.864(3)			
$\beta(\deg)$	108.623(3)	101.841(3)			
y(deg)	98.590(3)	90.522(2)			
$V(\mathring{\mathbf{A}}^3)$	2537.88(16)	5010.0(3)			
Z	1	2			
T(K)	173	173			
$d_{\rm calcd}({ m g/cm}^3)$	1.550	1.533			
$\mu(\text{mm}^{-1})$	6.828	6.788			
$R_1{}^a$	0.0646	0.0480			
$wR_2^{\ b}$	0.1825	0.1398			
${}^{a}R_{1} = \Sigma F_{o} - F_{c} /\Sigma F_{o} . \ {}^{b}wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]]^{1/2}$					

Table S2. Selected bond distances (Å) and angles (deg) for the complex [OS-OS].

Mo(1)-Mo(2)	2.099(6)
Mo(1)-N(1)	2.136(4)
Mo(1)-N(3)	2.148(6)
Mo(1)-N(5)	2.140(5)
Mo(2)-N(2)	2.165(6)
Mo(2)-N(4)	2.136 (6)
Mo(2)-N(6)	2.164(5)
Mo(2)-O(7)	2.082(4)
Mo(1)-S(1)	2.458(2)
C1-C2	1.476(8)
Mo_2 \cdots Mo_2	7.354(7)
torsion angle	0.22

Table S3. Selected bond distances (Å) and angles (deg) for the complex [SS–SS].

Mo(1)-Mo(2)	2.101(6)	Mo(3)-Mo(4)	2.109(5)
Mo(1)-N(1)	2.137(5)	Mo(3)-N(11)	2.145(5)
Mo(1)-N(3)	2.161(5)	Mo(3)-N(7)	2.152(5)
Mo(1)-N(5)	2.156(5)	Mo(3)-N(9)	2.158(5)
Mo(2)-N(2)	2.169(5)	Mo(4)-N(8)	2.155(5)
Mo(2)-N(4)	2.143(5)	Mo(4)-N(10)	2.131(5)
Mo(2)-N(6)	2.156(5)	Mo(4)-N(12)	2.142(5)
Mo(1)-S(1)	2.421(4)	Mo(3)-S(3)	2.415(3)
Mo(2)-S(2)	2.435(2)	Mo(4)-S(4)	2.421(1)
C1-C2	1.454(7)	Mo ₂ ······Mo ₂	7.881(6)
torsion angle	21.53		

Figure S5. Vis-Near-IR spectra of neutral $[O_2-O_2]$ (black) and cation $[O_2-O_2]^+$ (red) in CH₂Cl₂ solutions.

Figure S6. Vis-Near-IR spectra of neutral [OS-OS](black) and cation $[OS-OS]^+$ in CH_2Cl_2 solution.

Figure S7. Vis-Near-IR spectra of the cation $[S_2-S_2]^+$ in CH_2Cl_2 solution.

Figure S8. Vis-Near-IR spectra of the cation $[\mathbf{O_2} - \mathbf{O_2}]^+$ in various solvents including THF (A), MeCN (B) and DMF (C).

Figure S9. Vis-Near-IR spectra of the cation [**OS–OS**]⁺ in various solvents including THF (A), MeCN (B) and DMF (C).

Figure S10. Vis-Near-IR spectra of the cation $[S_2-S_2]^+$ in various solvents including THF (A), MeCN (B) and DMF (C).

Figure S11. The key frontier molecular orbitals for the computational models of $[\mathbf{OO}\mathbf{-OO}]^+$, $[\mathbf{OS}\mathbf{-OS}]^+$ and $[\mathbf{SS}\mathbf{-SS}]^+$.

Note for Figure 11: The adiabatic potential surfaces are generated by calculation of the energy (E) of the system as a function of nuclear coordinate (X). Provided with the coupling parameter (H_{ab}) and reorganization energy (λ) for a given MV system $(\Delta G^{\circ} = 0 \text{ for symmetrical systems})$, the energies for the ground state (lower surface) and excited state (upper state) are calculated by equations $E_1 = 0.5[\lambda(2X^2 - 2X + 1)] - 0.5[\{\lambda(2X - 1)\}^2 + 4(H_{ab})^2]^{1/2}$ and $E_2 = 0.5[\lambda(2X^2 - 2X + 1)] + 0.5[\{\lambda(2X - 1)\}^2 + 4(H_{ab})^2]^{1/2}$, respectively.