Supporting Information for

Silver(I) and Base-Mediated [3+3] Cycloaddition of *C,N*-Cyclic Azomethine Imines with Aza-oxyallyl Cations

Xiao Cheng,[†] Xia Cao,[†] Jun Xuan,[†]* and Wen-Jing Xiao[‡]

[†]Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, People's Republic of China

Table of contents

1.	General	S2
2.	Preparation and Spectral Data of Starting Materials	S3
3.	General Procedure and Spectral Data of Products	S5
4.	Follow-Up Chemistry	S13
5.	Copies of ¹ H NMR and ¹³ C NMR Spectra	S14
6	References	S34

[†]Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China

1. General

All reactions involving air- or moisture-sensitive reagents or intermediates were carried out in pre-heated glassware under an argon atmosphere using standard Schlenk techniques. THF was freshly distilled from K under argon. All other solvents and reagents were purified according to standard procedures or were used as received from Alfa Aesar, TCI, Aldrich, Fluka, Acros or ABCR. The starting materials were synthesized according to literature procedures.

TLC was performed using Merck silica gel 60 F-254 plates, detection of compounds with UV light or dipping into a solution of KMnO₄ (1.5 g in 400mL H₂O, 5 g NaHCO₃), followed by heating.

Flash column chromatography (FC) was performed using Merck or Fluka silica gel 60 (40-63 μm) applying a pressure of about 0.2 bar.

¹H NMR and ¹³C NMR spectra were recorded on a *DPX 300*, *AV 400* or *DD2 600* at 300 K. Spectra were calibrated relative to solvent's residual proton and carbon chemical shift: CHCl₃ (δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR).

Mass spectra were recorded on a Finnigan MAT 4200S, a *Bruker Daltonics Micro Tof*, a *Waters-Micromass Quatro LCZ* (ESI); peaks are given in m/z (% of basis peak).

IR spectra were recorded on a *Digilab FTS 4000* with a Specac MKII Golden Gate Single Refelxtion ART System. IR signals are described as w (weak), m (middle), s (strong).

Melting points (MP) were determined by Stuart SMP10 and are uncorrected.

2. Preparation and Spectral Data of starting materials

The hydrazide 1^1 were prepared according to the following 2 steps (*GPI*) and the spectral data of unknown structures were list as bellow. All of the α -halohydroxamate 2 are known compounds and synthesized according to the literature methods. 2^{-4}

Step I: Under the protection of argon, Pd(PPh₃)₂Cl₂ (0.02 equiv) was added to a solution of 2-bromobenzaldehyde (1.0 equiv), alkyne (1.2 equiv) in Et₃N (0.25 M). The mixture was stirred for 5 min and then CuI (0.01 equiv) was added. The resulting system was then stirred at room temperature until full consumption of the 2-bromobenzaldehyde as monitored by TLC. The formed ammonium salt was removed by filtration and washed with Et₂O several times. The filtrate was then washed with brine and the aqueous layer was extracted with Et₂O for 3 times. The combined organic layer was dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel to afford the corresponding coupling product.

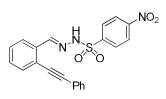
Step II: A solution of 2-ethynylbenzaldehyde (1.0 equiv), hydrazine (1.2 equiv) and MeOH (0.5 M) was stirred in a dried round flask at room temperature until full consumption of the 2-ethynylbenzaldehyde as monitored by TLC. The reaction mixture was diluted with dichloromethane. The resulting mixture was chromatographed on silica gel to give the final adduct.

(E)-4-fluoro-N'-(2-(phenylethynyl)benzylidene)benzenesulfonohydrazide (1c)

The NMR (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.42 (s, 1H), 8.36 (s, 1H), 8.12 – 8.00 (m, 2H), 7.99 – 7.90 (m, 1H), 7.61 – 7.49 (m, 3H), 7.37 (dd,
$$J = 6.1$$
, 2.9 Hz, 5H), 7.20 (t, $J = 8.6$ Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 165.5 (d, $J = 254.3$), 146.3, 134.3 (d, $J = 3.2$), 133.8, 132.5, 131.6, 130.8 (d, $J = 9.5$), 130.1, 128.8, 128.6,

128.5, 125.4, 123.4, 122.5, 116.4 (d, J = 22.6), 95.3, 85.9; **HRMS** (ESI) exact mass calculated for $C_{21}H_{15}FN_2O_2S$: 401.0736, found: 401.0730 ([M+Na]+); **IR** (neat, cm⁻¹): 1592m, 1493s, 1443w, 1364w, 1293w, 1171s, 1155s, 1091m, 1053w, 836m, 756s, 690m, 600w; **Mp**: 179 – 180 °C.

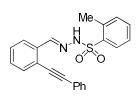
(E)-4-chloro-N'-(2-(phenylethynyl)benzylidene)benzenesulfonohydrazide (1d)


 $C_{21}H_{15}CIN_2O_2S$: 417.0440, found: 417.0435 ([M+Na]⁺); **IR** (neat, cm⁻¹): 1493m, 1442w, 1362m, 1323m, 1168s, 1093s, 1015m, 944m, 821m, 754s, 732w, 636w 596w; **Mp**: 180 – 181 °C.

(E)-4-cyano-N'-(2-(phenylethynyl)benzylidene)benzenesulfonohydrazide (1e)

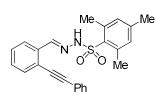
¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.88 (s, 1H), 8.43 (s, 1H), 8.11 (d, J = 8.3 Hz, 2H), 7.92 (d, J = 7.0 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H), 7.57 – 7.48 (m, 3H), 7.41 – 7.30 (m, 5H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 146.9, 142.5, 133.5, 132.8, 132.5, 131.5, 130.3, 128.9, 128.6, 128.5, 125.3, 123.4, 122.4, 117.2, 116.8,

95.3, 85.8; **HRMS** (ESI) exact mass calculated for $C_{22}H_{15}N_3O_2S$: 408.0783, found: 408.0777 ([M+Na]⁺); **IR** (neat, cm⁻¹): 1493m, 1443w, 1368m, 1328m, 1184s, 1169s, 1091m, 946m, 910w, 757s, 731w, 644s, 598m; **Mp**: 135 – 136 °C.


(E)-4-nitro-N'-(2-(phenylethynyl)benzylidene)benzenesulfonohydrazide (1f)

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.31 (s, 1H), 8.26 (d, J = 8.8 Hz, 2H), 8.18 (s, 1H), 8.11 (d, J = 8.8 Hz, 2H), 7.90 – 7.78 (m, 1H), 7.51 – 7.37 (m, 3H), 7.35 – 7.20 (m, 5H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 150.5, 147.1, 143.9, 133.3, 132.6, 131.5, 130.5, 129.3, 129.0, 128.7, 128.5, 125.4, 124.3, 123.6, 122.4,

95.4, 85.8; **HRMS** (ESI) exact mass calculated for $C_{21}H_{15}N_3O_4S$: 428.0681, found: 428.0675 ([M+Na]⁺); **IR** (neat, cm⁻¹): 1607w, 1530s, 1493m, 1348s, 1311m, 1171s, 1091w, 1053s, 853s, 758s, 737s, 683m, 592m; **Mp**: 162 – 163 °C.


(E)-2-methyl-N'-(2-(phenylethynyl)benzylidene)benzenesulfonohydrazide (1g)

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.31 (s, 1H), 8.04 (d, J = 9.1 Hz, 2H), 7.81 – 7.73 (m, 1H), 7.50 – 7.37 (m, 4H), 7.32 – 7.21 (m, 7H), 2.68 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 145.2, 138.0, 136.6, 134.0, 133.4, 132.6, 132.4, 131.6, 130.5, 129.9, 128.8, 128.6, 128.5, 126.4, 125.4, 123.3, 122.6, 95.2, 85.9, 20.8; **HRMS** (ESI) exact

mass calculated for $C_{22}H_{18}N_2O_2S$: 397.0987, found: 397.0981 ([M+Na]⁺); **IR** (neat, cm⁻¹): 1350w, 1326m, 1163s, 1098w, 956w, 868w, 822w, 762m, 749s, 686s, 606s, 585s; **Mp**: 191 – 192 °C.

(E)-2,4,6-trimethyl-N-(2-(phenylethynyl)benzylidene)benzenesulfonohydrazide (1h)

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.59 (s, 1H), 8.41 (s, 1H), 7.93 – 7.79 (m, 1H), 7.65 – 7.46 (m, 3H), 7.33 (d, J = 7.2 Hz, 5H), 7.00 (s, 2H), 2.79 (s, 6H), 2.32 (s, 3H); ¹³C **NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 144.7, 143.1, 140.3, 134.2, 132.4, 132.3, 132.0, 131.6, 129.7, 128.7, 128.5, 128.4, 125.2, 123.2, 122.6, 95.2,

86.0, 23.3, 21.0; **HRMS** (ESI) exact mass calculated for $C_{24}H_{22}N_2O_2S$: 425.1300, found: 425.1294 ([M+Na]⁺); **IR** (neat, cm⁻¹): 1601*w*, 1491*w*, 1442*w*, 1320*s*, 1203*w*, 1157*s*, 1098*w*, 1052*m*, 1035*w*, 937*m*, 852*m*, 820*m*, 747*s*, 683*m*, 657*s*, 604*m*, 574*m*; **Mp**: 192 – 193 °C.

(E)-N'-(2-(phenylethynyl)benzylidene)naphthalene-2-sulfonohydrazide (1i)

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.63 (s, 1H), 8.47 (d, J = 10.2 Hz, 2H), 8.10 – 7.83 (m, 5H), 7.71 – 7.45 (m, 5H), 7.43 – 7.25 (m, 5H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 146.1, 135.2, 135.1, 133.9, 132.3, 132.1, 131.5, 129.9, 129.6, 129.4, 129.3, 129.0, 128.7, 128.5, 128.4, 127.9, 127.5, 125.4, 123.3, 122.8, 122.5, 95.3, 85.9; **HRMS** (ESI) exact mass calculated for C₂₅H₁₈N₂O₂S: 433.0987, found:

433.0981 ([M+Na]⁺); **IR** (neat, cm⁻¹): 1591*w*, 1493*m*, 1443*w*, 1354*m*, 1322*m*, 1165*s*, 1132*m*, 1057*m*, 908*w*, 860*m*, 814*m*, 755*s*, 659*s*, 617*w*; **Mp**: 171 – 172 °C.

(E)-N'-(2-(phenylethynyl)benzylidene)thiophene-2-sulfonohydrazide (1j)

¹H NMR (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.47 (s, 1H), 8.23 (s, 1H), 8.10 – 8.00 (m, 1H), 7.80 (dd,
$$J$$
 = 3.8, 1.4 Hz, 1H), 7.65 (dd, J = 5.0, 1.4 Hz, 1H), 7.62 – 7.52 (m, 3H), 7.45 – 7.34 (m, 5H), 7.12 (dd, J = 5.0, 3.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 146.6, 138.4, 133.8, 133.6, 133.3, 132.4, 131.6, 130.2, 128.8, 128.6, 128.5, 127.4, 125.6, 123.5, 122.5, 95.4, 85.9; HRMS (ESI) exact mass calculated for $C_{19}H_{14}N_2O_2S_2$: 389.0394, found: 389.0389 ([M+Na]⁺); IR (neat, cm⁻¹): 1493 m , 1442 w , 1403 w , 1325 m , 1227 w , 1165 s , 1057 w , 1017 s , 912 w , 855 w , 757 s , 691 m , 675 m , 596 m ; Mp: 157 – 158 °C.

3. General Procedure and Spectral Data of Products

General procedure (*GP2*): A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with **1a** (1.0 equiv, 0.1 mmol), AgOTf (0.1 equiv, 0.01 mmol), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times). Then, CH₃CN (1.5 mL) was added under a flow of argon. The reaction mixture was then stirred at 80 °C for 3 h. After cooling to room temperature, **2a** (2.0 equiv, 0.2 mmol) and K₂CO₃ (4.0 equiv, 0.4 mmol) were added and the mixture was stirred at room temperature for 12 h. The solvent was then removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford pure product **3aa** as a white solid in 88% yield.

1-(benzyloxy)-3,3-dimethyl-6-phenyl-4-(phenylsulfonyl)-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoquinolin-2(11b\$H\$)-one (3aa)

According to GP2 with 1a (36.0 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3aa as a white solid in 88% yield (48.3 mg).

¹H NMR (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.76 (d, J = 7.4 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H),

77.42 – 7.34 (m, 3H), 7.31 – 7.21 (m, 5H), 7.19 – 7.08 (m, 5H), 6.84 – 6.71 (m, 3H), 5.86 (s, 1H), 5.65 (s, 1H), 4.69 (d, J = 9.2 Hz, 1H), 4.11 (d, J = 9.2 Hz, 1H), 1.73 (s, 3H), 1.12 (s, 3H); ¹³C **NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.7, 147.0, 139.4, 135.3, 134.1, 133.4, 132.2, 130.4, 130.2, 129.7, 129.1, 128.9, 128.7, 128.6, 128.6, 128.2, 127.8, 126.2, 124.6, 123.2, 108.6, 77.6, 75.9, 70.9, 26.4, 25.4; **HRMS** (ESI) exact mass calculated for C₃₂H₂₉N₃O₄S: 552.1957, found: 552.1952 ([M+H]⁺); **IR** (neat, cm⁻¹):1686s, 1492m, 1447m, 1356s, 1286w, 1089m, 972w, 753s, 725s, 699m, 642w, 578s; **Mp**: 162 – 163 °C.

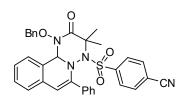
1-(benzyloxy)-3,3-dimethyl-6-phenyl-4-tosyl-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoquinolin -2(11bH)-one (3ba)

According to *GP2* with **1b** (37.4 mg, 0.100 mmol, 1.0 equiv), **2a** (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.60 mg, 0.100 mmol, 0.1 equiv) and K₂CO₃ (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired **3ba** as a white solid in 92% yield (52.2 mg).

¹H NMR (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.62 (d, J = 8.3 Hz, 2H), 7.43 – 7.24 (m, 7H), 7.20 – 7.09 (m, 7H), 6.84 – 6.71 (m, 3H), 5.85 (s, 1H), 5.70 (s, 1H), 4.69 (d, J = 9.2 Hz, 1H), 4.10 (d, J = 9.2 Hz, 1H), 2.39 (s, 3H), 1.71 (s, 3H), 1.11 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.8, 147.0, 144.5, 136.6, 135.4, 134.2, 132.3, 130.3, 130.2, 129.7, 129.5, 129.3, 129.1, 128.6, 128.6, 128.2, 127.7, 126.1, 124.6, 123.2, 120.2, 108.4, 77.6, 75.8, 70.8, 26.3, 25.4, 21.6; HRMS (ESI) exact mass calculated for C₃₃H₃₁N₃O₄S: 566.2114, found: 566.2108 ([M+H]⁺); IR (neat, cm⁻¹):167s 1682s, 1492m, 1355s, 1286w, 1164s, 1089m, 971m, 909s, 815w, 729s, 699s, 668s, 655m, 610w, 567s; Mp: 163 – 164 °C.

1-(benzyloxy)-4-((4-fluorophenyl)sulfonyl)-3,3-dimethyl-6-phenyl-3,4-dihydro-1H-[1,2,4]tria zino[3,2-a]isoquinolin-2(11bH)-one (3ca)

According to *GP2* with 1c (37.8 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.60 mg, 0.100 mmol, 0.1 equiv) and K₂CO₃ (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3ba as a white solid in 93% yield (53.1 mg).


¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.84 – 7.63 (m, 2H), 7.48 – 6.95 (m, 14H), 6.83 (d, J = 7.4 Hz, 1H), 6.77 (dd, J = 8.0, 1.3 Hz, 2H), 5.84 (s, 1H), 5.73 (s, 1H), 4.68 (d, J = 9.3 Hz, 1H), 4.14 (d, J = 9.3 Hz, 1H), 1.75 (s, 3H), 1.18 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.5, 165.6 (d, J = 255.4), 146.6, 135.3, 135.2 (d, J = 3.1), 134.1, 132.1, 132.0, 131.9, 130.4, 130.1, 129.7, 128.7, 128.7, 128.6, 128.6, 128.2, 127.7, 126.3, 124.7, 123.1, 116.2 (d, J = 22.4), 108.7, 77.7, 75.8, 70.8, 26.4, 25.2; **HRMS** (ESI) exact mass calculated for C₃₂H₂₈FN₃O₄S: 570.1863, found: 570.1857 ([M+H]⁺); **IR** (neat, cm⁻¹): 1684s, 1591*m*, 1492*s*, 1291*m*, 1238*m*, 1168*s*, 1155*s*, 1068*m*, 972*m*, 910*m*, 754*s*, 700*s*, 626*w*, 563*s*; **Mp**: 161 – 162 °C.

1-(benzyloxy)-4-((4-chlorophenyl)sulfonyl)-3,3-dimethyl-6-phenyl-3,4-dihydro-1H-[1,2,4]tria zino[3,2-a]isoquinolin-2(11bH)-one (3da)

According to *GP2* with **1d** (39.4 mg, 0.100 mmol, 1.0 equiv), **2a** (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.60 mg, 0.100 mmol, 0.1 equiv) and K₂CO₃ (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired **3da** as a white solid in 97% yield (56.7 mg).

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.64 (d, J = 8.6 Hz, 2H), 7.41 – 7.06 (m, 14H), 6.83 – 6.74 (m, 3H), 5.84 (s, 1H), 5.74 (s, 1H), 4.68 (d, J = 9.3 Hz, 1H), 4.15 (d, J = 9.3 Hz, 1H), 1.75 (s, 3H), 1.19 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.5, 146.5, 140.2, 137.7, 135.1, 134.1, 132.1, 130.5, 130.4, 130.1, 129.7, 129.2, 128.7, 128.7, 128.6, 128.2, 127.7, 126.3, 124.7, 123.1, 108.8, 77.7, 75.8, 70.9, 26.5, 25.2; **HRMS** (ESI) exact mass calculated for C₃₂H₂₈ClN₃O₄S: 586.1567, found: 586.1561 ([M+H]⁺); **IR** (neat, cm⁻¹): 1684*s*,1492*w*, 1476*w*, 1396*w*, 1359*s*, 1282*w*, 1165*s*, 1091*m*, 972*m*, 910*m*, 755*s*, 700*s*, 644*m*, 630*w*; **Mp**: 140 – 141 °C.

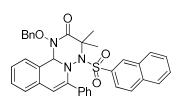
4-((1-(benzyloxy)-3,3-dimethyl-2-oxo-6-phenyl-2,3-dihydro-1H-[1,2,4]triazino[3,2-a]isoquino lin-4(11bH)-yl)sulfonyl)benzonitrile (3ea)

According to GP2 with 1e (38.5 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.60 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3ea as a white solid in 82% yield (47.3 mg).

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.81 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.45 – 7.39 (m, 1H), 7.32 – 7.19 (m, 6H), 7.13 (t, J = 7.3 Hz, 5H), 6.82 (d, J = 7.6 Hz, 1H), 6.80 – 6.74 (m, 2H), 5.85 (s, 1H), 5.70 (s, 1H), 4.68 (d, J = 9.3 Hz, 1H), 4.16 (d, J = 9.3 Hz, 1H), 1.76 (s, 3H), 1.24 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.2, 146.1, 143.1, 134.9, 134.0, 132.6, 132.0, 130.6, 130.0, 129.7, 129.7, 128.8, 128.5, 128.2, 127.8, 126.6, 124.9, 123.0, 117.1, 117.0, 109.2, 77.8, 75.9, 71.1, 26.6, 25.2; **HRMS** (ESI) exact mass calculated for C₃₃H₂₈N₄O₄S: 599.1729, found: 599.1723 ([M+Na⁺); **IR** (neat, cm⁻¹):1685*s*, 1571*w*, 1492*m*, 1362*s*, 1285*m*, 1086*s*, 972*m*, 908*s*, 791*w*, 720*s*, 699*s*, 666*s*, 645*s*, 606*w*, 569*s*; **Mp**: 112 – 113 °C.

1-(benzyloxy)-3,3-dimethyl-4-((4-nitrophenyl)sulfonyl)-6-phenyl-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoquinolin-2(11bH)-one (3fa)

According to GP2 with 1f (40.5 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.60 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3fa as a white solid in 86% yield (50.7 mg)


¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.17 (d, J = 8.9 Hz, 2H), 7.87 (d, J = 8.8 Hz, 2H), 7.43 (td, J = 7.6, 1.1 Hz, 1H), 7.34 – 7.19 (m, 5H), 7.17 – 7.08 (m, 5H), 6.85 (d, J = 7.5 Hz, 1H), 6.80 – 6.70 (m, 2H), 4.68 (d, J = 9.3 Hz, 1H), 4.16 (d, J = 9.3 Hz, 1H), 1.78 (s, 3H), 1.27 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.2, 150.5, 146.0, 144.6, 134.8, 134.0, 132.0, 130.6, 130.4, 130.0, 129.7, 128.9, 128.8, 128.5, 128.2, 127.9, 126.6, 124.9, 124.0, 123.0, 109.3, 77.8, 76.0, 71.1, 26.6, 25.2; **HRMS** (ESI) exact mass calculated for C₃₂H₂₈N₄O₆S: 597.1808, found: 597.1803 ([M+H]⁺); **IR** (neat, cm⁻¹):1687s, 1606w, 1562s, 1492w, 1364s, 1349s, 1312w,

1-(benzyloxy)-3,3-dimethyl-6-phenyl-4-(o-tolylsulfonyl)-3,4-dihydro-1H-[1,2,4]triazino[3,2-a] isoquinolin-2(11bH)-one (3ga)

According to GP2 with 1d (37.4 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.60 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3ga as a white solid in 96% yield (54.6 mg)

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.68 (d, J = 8.0 Hz, 1H), 7.43 – 7.32 (m, 2H), 7.22 – 7.09 (m, 6H), 7.04 (t, J = 7.6 Hz, 5H), 6.78 (dd, J = 7.8, 1.4 Hz, 2H), 6.52 (s, 1H), 6.42 (d, J = 7.1 Hz, 2H), 5.52 (s, 1H), 4.71 (d, J = 9.4 Hz, 1H), 4.25 (d, J = 9.4 Hz, 1H), 2.08 (s, 3H), 1.89 (s, 3H), 1.60 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.9, 145.5, 140.9, 135.7, 134.8, 134.2, 133.5, 132.9, 132.2, 132.1, 130.1, 129.7, 129.6, 128.9, 128.7, 128.4, 128.2, 127.4, 126.1, 126.1, 124.4, 123.1, 108.0, 77.7, 75.3, 70.9, 27.3, 24.6, 20.1; **HRMS** (ESI) exact mass calculated for C₃₃H₃₁N₃O₄S: 566.2114, found: 566.2108 ([M+H]⁺); **IR** (neat, cm⁻¹):1685s, 1574w, 1492m, 1368w, 1330s, 1031w, 910s, 807w, 754s, 731s, 721s, 701s, 647m, 619m, 593s; **Mp**: 137 – 138 °C.

1-(benzyloxy)-3,3-dimethyl-4-(naphthalen-2-ylsulfonyl)-6-phenyl-3,4-dihydro-1H-[1,2,4]triaz ino[3,2-a]isoquinolin-2(11bH)-one (3ia)

According to GP2 with 1i (41.1 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.60 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3ia as a white solid in 80% yield (48.3 mg).

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.28 (s, 1H), 7.90 – 7.68 (m, 4H), 7.66 – 7.49 (m, 2H), 7.42 – 7.34 (m, 1H), 7.29 – 6.99 (m, 10H), 6.78 – 6.67 (m, 2H), 6.61 (d, J = 7.6 Hz, 1H), 5.85 (s, 1H), 5.69 (s, 1H), 4.64 (d, J = 9.3 Hz, 1H), 4.10 (d, J = 9.3 Hz, 1H), 1.74 (s, 3H), 1.17 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.7, 146.9, 136.3, 135.3, 135.1, 134.1, 132.2, 132.1, 130.5, 130.4, 130.1, 129.6, 129.4, 129.4, 128.9, 128.7, 128.6, 128.1, 127.8, 127.7, 127.6, 126.1, 124.6, 124.0, 123.0, 108.6, 77.6, 75.9, 70.9, 26.4, 25.4; **HRMS** (ESI) exact mass calculated for C₃₆H₃₁N₃O₄S: 602.2114, found: 602.2108 ([M+H]⁺); **IR** (neat, cm⁻¹):1685*s*, 1626*w*, 1492*m*, 1352*s*, 1285*w*, 1163*s*, 1073*m*, 972*m*, 910*m*, 752*s*, 732*s*, 669*s*, 615*w*; **Mp**: 160 – 161 °C.

1-(benzyloxy)-3,3-dimethyl-6-phenyl-4-(thiophen-2-ylsulfonyl)-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoquinolin-2(11bH)-one (3ja)

According to GP2 with 1j (36.6 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3ja as a white solid in 83% yield (46.2 mg).

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.60 (dd, J = 5.0, 1.3 Hz, 1H), 7.54 (dd, J = 3.8,

1.3 Hz, 1H), 7.41 - 7.25 (m, 7H), 7.17 - 7.09 (m, 4H), 7.03 (dd, J = 5.0, 3.9 Hz, 1H), 6.83 (d, J =7.4 Hz, 1H), 6.77 (dd, J = 7.9, 1.3 Hz, 2H), 5.92 (s, 1H), 5.70 (s, 1H), 4.71 (d, J = 9.2 Hz, 1H), 4.11 (d, J = 9.2 Hz, 1H), 1.79 (s, 3H), 1.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.5, 146.9, 139.8, 135.3, 134.6, 134.1, 133.8, 132.1, 130.4, 130.2, 129.7, 129.3, 128.7, 128.6, 128.6, 128.2, 127.8, 127.2, 126.2, 124.7, 123.4, 120.2, 109.0, 77.7, 75.9, 71.2, 25.9, 25.4; **HRMS** (ESI) exact mass calculated for C₃₀H₂₇N₃O₄S₂: 558.1521, found: 558.1516 ([M+H]⁺); IR (neat, cm⁻¹):1681s, 1492w, 1359s, 1285w, 1161s, 1010m, 910m, 790w, 727s, 699s, 670s, 610w, 581s; **Mp**: 123 – 124 °C.

1-(benzyloxy)-3,3-dimethyl-4-(methylsulfonyl)-6-phenyl-3,4-dihydro-1H-[1,2,4]triazino[3,2-a lisoquinolin-2(11bH)-one (3ka)

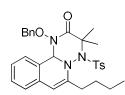
According to *GP2* with 1k (29.8 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, BnO N S Me

0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K₂CO₃ (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired **3ka** as a white solid in

¹H NMR (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.40 – 7.29 (m, 6H), 7.22 – 7.14 (m, 5H), 7.10 (d, J = 7.5 Hz, 1H), 6.92 (dd, J = 7.5, 1.8 Hz, 2H), 6.44 (s, 1H), 5.80 (s, 1H), 4.73 (d, J = 9.2 Hz, 1H), 4.21 (d, J = 9.3 Hz, 1H), 2.87 (s, 3H), 1.84 (s, 3H), 1.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 169.3, 146.0, 135.5, 134.2, 132.0, 130.3, 129.9, 129.8, 129.1, 128.8, 128.7, 128.3, 127.9, 126.3, 124.6, 123.5, 107.7, 77.7, 76.4, 69.6, 41.6, 25.8, 25.6; **HRMS** (ESI) exact mass calculated for $C_{27}H_{27}N_3O_4S$: 490.1801, found: 490.1795 ([M+H]⁺); **IR** (neat, cm⁻¹):1684s, 1492m, 1400w, 1348s, 1332s, 1156s, 957m, 909s, 754s, 727s, 699s, 646w, 577w; **Mp**: 163 – 164 °C.

4-benzoyl-1-(benzyloxy)-3,3-dimethyl-6-phenyl-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoquin olin-2(11bH)-one (3la)

According to *GP2* with 11 (32.4 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K₂CO₃ (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 21c. yield (35.8 mg).


¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.71 – 7.60 (m, 2H), 7.43 – 7.19 (m, 12H), 7.07 (dd, J = 7.5, 2.0 Hz, 3H), 6.91 (dd, J = 7.5, 1.8 Hz, 2H), 6.30 (s, 1H), 5.81 (s, 1H), 4.83 (d, J = 9.2)Hz, 1H), 4.03 (d, J = 9.2 Hz, 1H), 1.80 (s, 3H), 1.08 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 169.4, 169.3, 146.2, 135.8, 135.1, 134.2, 131.9, 130.8, 130.6, 129.9, 129.1, 129.0, 129.0, 129.0, 128.8, 128.3, 128.2, 128.1, 126.3, 124.5, 122.6, 108.1, 78.0, 77.8, 69.4, 26.4, 20.9; **HRMS** (ESI) exact mass calculated for $C_{33}H_{29}N_{3}O_{3}$: 516.2287, found: 516.2282 ([M+H]⁺); **IR** (neat, cm⁻¹):1676s, 1654s, 1492w, 1364m, 1285w, 1242w, 1126w, 980m, 909m, 833w, 753m, 731s, 699s, 676s, 597w; **Mp**: 204 – 205 °C.

1-(benzyloxy)-3,3-dimethyl-2-oxo-6-phenyl-2,3-dihydro-1H-[1,2,4]triazino[3,2-a] isoquinoline-4(11bH)-carboxylate (3ma)

According to GP2 with 1m (29.8 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3ma as a white solid in 64% yield (32.6 mg).

¹H NMR (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.35 (td, J = 7.7, 1.7 Hz, 3H), 7.30 – 7.22 (m, 3H), 7.21 – 7.06 (m, 6H), 6.89 (dd, J = 7.4, 1.9 Hz, 2H), 6.12 (s, 1H), 5.85 (s, 1H), 4.79 (d, J = 9.1 Hz, 1H), 3.97 (d, J = 9.1 Hz, 1H), 1.66 (s, 3H), 1.45 (s, 9H), 0.88 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 169.1, 153.8, 146.7, 136.1, 134.3, 132.4, 130.2, 129.8, 129.3, 128.7, 128.6, 128.3, 128.2, 128.0, 125.6, 124.2, 122.9, 106.5, 82.2, 77.6, 76.9, 67.8, 28.4, 28.0, 21.8; HRMS (ESI) exact mass calculated for C₃₁H₃₃N₃O₄: 512.2549, found: 512.2544 ([M+H]⁺); IR (neat, cm⁻¹):1710*s*, 1678*s*, 1492*w*, 1455*w*, 1367*m*, 1324*m*, 1281*w*, 1157*s*, 982*m*, 910*m*, 806*w*, 730*s*, 700*s*, 647*w*; **Mp**: 108 – 109 °C.

1-(benzyloxy)-6-butyl-3,3-dimethyl-4-tosyl-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoquinolin-2(11bH)-one (3na)

According to GP2 with 1n (35.4 mg, 0.100 mmol, 1.0 equiv), 2a (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3na as a white solid in 87% yield (47.3 mg).

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.64 (d, J = 8.4 Hz, 2H), 7.35 (td, J = 7.6, 1.3 Hz, 1H), 7.23 – 6.99 (m, 7H), 6.84 (d, J = 7.4 Hz, 1H), 6.71 (dd, J = 7.9, 1.4 Hz, 2H), 5.63 (d, J = 5.2 Hz, 2H), 4.58 (d, J = 9.0 Hz, 1H), 3.85 (d, J = 9.0 Hz, 1H), 2.34 (s, 3H), 2.17 (t, J = 7.4 Hz, 2H), 1.87 (s, 3H), 1.85 (s, 3H), 1.45 – 1.17 (m, 4H), 0.84 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.4, 146.4, 144.5, 135.9, 134.0, 132.6, 130.2, 129.6, 129.4, 128.8, 128.8, 128.6, 128.1, 125.1, 123.8, 121.9, 102.2, 77.8, 74.9, 70.4, 29.5, 29.1, 26.6, 26.2, 22.5, 21.5, 14.0; **HRMS** (ESI) exact mass calculated for C₃₁H₃₅N₃O₄S: 546.2427, found: 546.2421 ([M+H]⁺); **IR** (neat, cm⁻¹):1686s, 1634w, 1493w, 1407w, 1353s, 1292w, 1164s, 1089m, 980w, 910w, 817w, 752m, 672s, 628w; **Mp**: 115 – 116 °C.

1-(benzyloxy)-6-cyclopropyl-3,3-dimethyl-4-tosyl-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoqui nolin-2(11bH)-one (3oa)

According to *GP2* with **10** (33.8 mg, 0.100 mmol, 1.0 equiv), **2a** (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K₂CO₃ (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired **30a** as a white solid in 88% yield (46.8 mg).

¹H NMR (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.66 (d, J = 8.3 Hz, 2H), 7.35 – 7.26 (m, 2H), 7.20 – 6.96 (m, 7H), 6.81 (d, J = 7.5 Hz, 1H), 6.69 (dd, J = 7.9, 1.3 Hz, 2H), 5.58 (s, 1H), 5.37 (s, 1H), 4.55 (d, J = 9.0 Hz, 1H), 3.81 (d, J = 9.0 Hz, 1H), 2.34 (s, 3H), 1.92 (s, 3H), 1.87 (s, 3H), 1.77 (td, J = 8.3, 5.4 Hz, 1H), 0.93 – 0.78 (m, 1H), 0.76 – 0.55 (m, 2H), 0.46 – 0.33 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.4, 148.4, 144.4, 135.9, 133.9, 132.5,

130.2, 129.6, 129.4, 129.2, 128.8, 128.7, 128.6, 128.1, 125.0, 123.8, 121.6, 120.1, 98.8, 77.7, 77.4, 70.6, 26.9, 26.1, 21.5, 11.3, 10.7, 7.7; **HRMS** (ESI) exact mass calculated for $C_{30}H_{31}N_{3}O_{4}S$: 530.2114, found: 530.2108 ([M+H]⁺); **IR** (neat, cm⁻¹):1683s, 1631w, 1493w, 1407w, 1351s, 1293w, 1163s, 1089m, 981w, 816w, 753m, 713s, 661s, 631w; **Mp**: 138 – 139 °C.

1-(benzyloxy)-3,3-dimethyl-4-tosyl-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoquinolin-2(11bH)-one (3pa)

According to *GP2* with **1p** (29.8 mg, 0.100 mmol, 1.0 equiv), **2a** (54.3 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K₂CO₃ (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired **3pa** as a white solid in 72% yield (35.1 mg)

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.67 (d, J = 8.3 Hz, 2H), 7.34 (qd, J = 6.9, 6.2, 1.9 Hz, 2H), 7.19 – 6.97 (m, 8H), 6.86 (dd, J = 7.6, 1.7 Hz, 2H), 6.28 (dd, J = 7.8, 1.5 Hz, 1H), 5.73 (d, J = 7.8 Hz, 1H), 5.56 (d, J = 1.5 Hz, 1H), 4.63 (d, J = 8.8 Hz, 1H), 3.52 (d, J = 8.8 Hz, 1H), 2.34 (s, 3H), 1.93 (s, 3H), 1.85 (s, 3H); ¹³C **NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.8, 144.2, 136.9, 136.3, 133.9, 131.0, 130.4, 130.0, 129.7, 129.6, 128.7, 128.2, 127.7, 126.0, 124.4, 123.1, 105.2, 77.9, 74.2, 70.9, 27.2, 26.1, 21.6; **HRMS** (ESI) exact mass calculated for C₂₇H₂₇N₃O₄S: 490.1801, found: 490.1795 ([M+H]⁺); **IR** (neat, cm⁻¹):1678s, 1629m, 1493w, 1455w, 1353m, 1275m, 1165s, 1091m, 999m, 933w, 773m, 684s, 653w; **Mp**: 139 – 140 °C.

1-methoxy-3,3-dimethyl-6-phenyl-4-(phenylsulfonyl)-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]iso quinolin-2(11bH)-one (3ab)

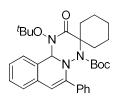
According to *GP2* with **1a** (36.0 mg, 0.100 mmol, 1.0 equiv), **2b** (39.2 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K₂CO₃ (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired **3ab** as a white solid in 79% yield (37.3 mg)

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.80 – 7.67 (m, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.42 – 7.15 (m, 9H), 7.10 (d, J = 7.5 Hz, 1H), 7.02 (d, J = 7.5 Hz, 1H), 5.82 (s, 1H), 5.75 (s, 1H), 3.23 (s, 3H), 1.70 (s, 3H), 1.12 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = δ 168.6, 146.8, 139.4, 135.3, 133.5, 132.0, 130.4, 130.2, 129.0, 129.0, 128.6, 128.1, 127.7, 126.2, 124.6, 123.1, 108.4, 75.7, 70.6, 63.2, 26.2, 25.4; **HRMS** (ESI) exact mass calculated for C₂₆H₂₅N₃O₄S: 476.1644, found: 476.1639 ([M+H]⁺); **IR** (neat, cm⁻¹):1685*s*, 1492*w*, 1447*w*, 1355*s*, 1286*w*, 1165*s*, 1089*m*, 1021*m*, 908*s*, 754*m*, 724*s*, 690*m*, 637*s*, 610*w*; **Mp**: 157 – 158 °C.

1-ethoxy-3,3-dimethyl-6-phenyl-4-(phenylsulfonyl)-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoq uinolin-2(11bH)-one (3ac)

According to GP2 with 1a (36.0 mg, 0.100 mmol, 1.0 equiv), 2c (42.0 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3ac as a white solid in 86% yield (42.1 mg).

¹H NMR (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.81 – 7.71 (m, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.43 – 7.16 (m, 9H), 7.09 (d, J = 7.6 Hz, 1H), 7.02 (d, J = 7.4 Hz, 1H), 5.81 (s, 1H), 5.73 (s, 1H), 3.71 – 3.58 (m, 1H), 3.31 – 3.15 (m, 1H), 1.71 (s, 3H), 1.12 (s, 3H), 0.69 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃, 300 K): δ (ppm) = 168.8, 146.8, 139.4, 135.4, 133.4, 132.1, 130.3, 130.2, 129.1, 128.9, 128.6, 128.3, 127.7, 126.0, 124.6, 123.3, 108.4, 75.7, 71.6, 70.7, 26.3, 25.4, 13.0; HRMS (ESI) exact mass calculated for C₂₇H₂₇N₃O₄S: 490.1801, found: 490.1795 ([M+H]⁺); IR (neat, cm⁻¹):1684s, 1492w, 1447w, 1355s, 1286w, 1165s, 1088m, 1031m, 911m, 753m, 724s, 690s, 638m, 610w; Mp: 163 – 164 °C.


1-(tert-butoxy)-3,3-dimethyl-6-phenyl-4-(phenylsulfonyl)-3,4-dihydro-1H-[1,2,4]triazino[3,2-a]isoquinolin-2(11bH)-one (3ad)

According to GP2 with 1a (36.0 mg, 0.100 mmol, 1.0 equiv), 2d (47.6 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K_2CO_3 (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired 3ad as a white solid in 89% yield (46.2 mg).

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.78 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.36 – 7.19 (m, 3H), 7.19 – 7.03 (m, 5H), 6.94 (d, J = 7.5 Hz, 1H), 5.81 (s, 1H), 5.78 (s, 1H), 1.79 (s, 3H), 1.07 (s, 3H), 0.83 (s, 9H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 173.0, 145.9, 139.3, 135.2, 133.4, 132.9, 130.2, 130.0, 129.2, 128.9, 128.3, 127.5, 125.4, 124.4, 123.7, 109.8, 84.4, 78.2, 77.4, 77.0, 76.6, 71.4, 27.4, 26.5, 25.3; **HRMS** (ESI) exact mass calculated for C₂₉H₃₁N₃O₄S: 518.2114, found: 518.2108 ([M+H]⁺); **IR** (neat, cm⁻¹): 1700*s*, 1492*w*, 1447*w*, 1356*s*, 1165*s*, 1089*m*, 970*w*, 911*m*, 753*s*, 725*s*, 637*s*, 610*w*; **Mp**: 166 – 167 °C.

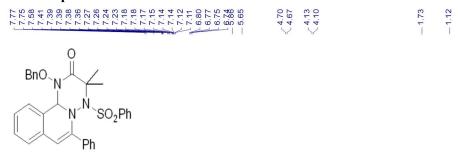
tert-butyl

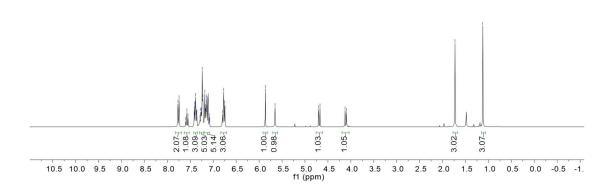
1-(tert-butoxy)-2-oxo-6-phenyl-1,11b-dihydrospiro[[1,2,4]triazino[3,2-a]isoquinoline-3,1'-cyc lohexane]-4(2H)-carboxylate (3mf)

According to *GP2* with **1m** (32.1 mg, 0.100 mmol, 1.0 equiv), **2f** (54.0 mg, 0.200 mmol, 2.0 equiv), AgOTf (2.40 mg, 0.100 mmol, 0.1 equiv) and K₂CO₃ (55.2 mg, 0.400 mmol, 4.0 equiv) in 1.0 mL CH₃CN. Purification by silica gel chromatography afforded the desired **3mf** as a white solid in 76% yield (41.7 mg).

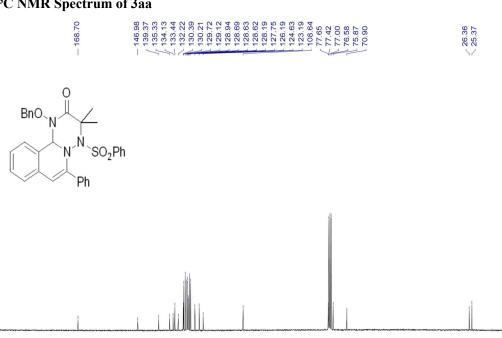
¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 7.40 – 7.29 (m, 3H), 7.29 – 7.15 (m, 7H), 7.08 (q, J = 7.5 Hz, 2H), 7.02 – 6.89 (m, 3H), 6.12 (s, 1H), 5.75 (s, 1H), 4.65 (d, J = 9.9 Hz, 1H), 4.18 (d, J = 9.8 Hz, 1H), 2.62 (td, J = 12.8, 3.8 Hz, 1H), 2.01 – 1.84 (m, 1H), 1.80 – 1.53 (m, 4H), 1.45 (s, 9H), 1.42 – 1.29 (m, 2H), 1.17 – 0.96 (m, 3H); ¹³C **NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 154.0, 146.3, 136.0, 134.9, 132.7, 129.8, 129.8, 128.9, 128.5, 128.4, 128.3, 128.3, 128.2, 127.9, 125.3, 124.3, 123.1, 105.7, 82.3, 77.7, 77.5, 71.3, 32.6, 30.5, 28.4, 24.4, 23.5, 22.9; **HRMS** (ESI) exact mass calculated for C₃₄H₃₇N₃O₄: 552.2862, found: 552.2857 ([M+H]⁺); **IR** (neat, cm⁻¹): 1704s, 1492w, 1454w, 1369m, 1283w, 1159s, 1115w, 1027w, 911m, 815w, 763m, 731s, 700s, 576w; **Mp**: 173 – 171 °C.

4. Follow-Up Chemistry

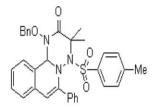

General procedure: A flame-dried Schlenk-tube equipped with a magnetic stir bar was charged with 1a (1.0 equiv, 3.0 mmol, 1.08 g), AgOTf (0.1 equiv, 0.3 mmol, 77.1 mg), sealed with a septum, and degassed by alternating vacuum evacuation and argon backfilling (three times). Then, CH₃CN (45 mL) was added under a flow of argon. The reaction mixture was then stirred at 80 °C for 3 h. After cooling to room temperature, 2a (2.0 equiv, 6.0 mmol, 1.63 g) and K₂CO₃ (4.0 equiv, 12 mmol, 1.66 g) were added and the mixture was stirred at room temperature for 12 h. The solvent was then removed under reduced pressure with the aid of a rotary evaporator. The crude residue was purified by silica gel column chromatography to afford pure product 3aa as a white solid in 71% yield (1.18 g).

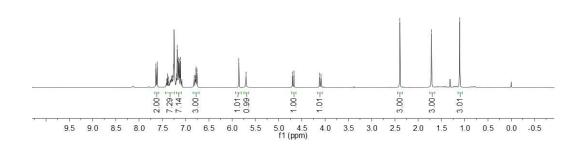

General procedure: To a solution of 3aa (1.0 equiv, 0.2 mmol, 110 mg) in acetonitrile/water (9:1, 2.0 mL), Mo(CO)₆ (1.2 equiv, 0.24 mmol, 63.4 mg) was added. The reaction was stirred at 120 °C under argon for 12 h. After cooling to room temperature, the mixture was the filtered through celite and washed with ethyl acetate. Then, filtrate was concentrated under rotary evaporation, and the resulting residue was purified by silica gel chromatography to afford 5 as a light yellow oil in 63% yield (27.8 mg).

¹**H NMR** (300 MHz, CDCl₃, 300 K): δ (ppm) = 8.04 – 7.91 (m, 2H), 7.76 – 7.63 (m, 2H), 7.60 – 7.47 (m, 1H), 7.43 – 7.34 (m, 4H), 7.29 (dd, J = 7.6, 5.4 Hz, 1H), 5.19 (s, 2H); ¹³**C NMR** (75 MHz, CDCl₃, 300 K): δ (ppm) = 155.9, 149.6, 139.9, 138.2, 130.2, 128.5, 128.2, 127.5, 126.8, 125.9, 122.6, 117.0, 108.9; **HRMS** (ESI) exact mass calculated for C₁₅H₁₂N₂: 221.1079, found: 221.1074 ([M+Na]⁺); **IR** (neat, cm⁻¹): 1662s, 1564s, 1500s, 1426s, 1342w, 1154w, 1032w, 923w, 833w, 770m, 695m. 586w.


5. Copies of ¹H NMR and ¹³C NMR Spectra

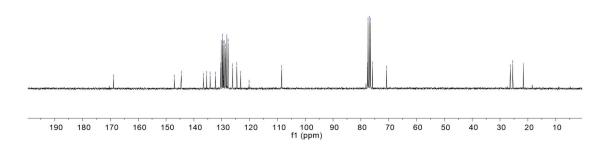
¹H NMR Spectrum of 3aa

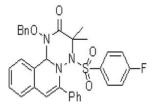

¹³C NMR Spectrum of 3aa

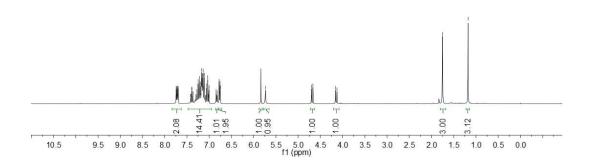


110 100 f1 (ppm)

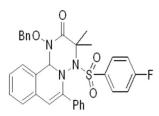
¹H NMR Spectrum of 3ba

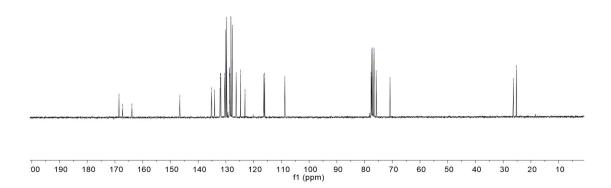



¹³C NMR Spectrum of 3ba

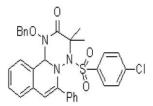

18.82 144.05 135.46 135.46 135.25 130.34 129.50 129.50 129.11 128.56 129.11 128.56 129.11 128.56 128.16 128

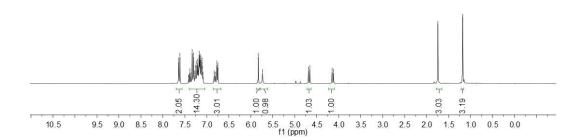
¹H NMR Spectrum of 3ca



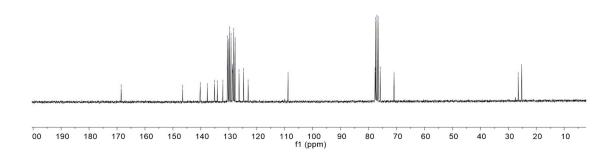


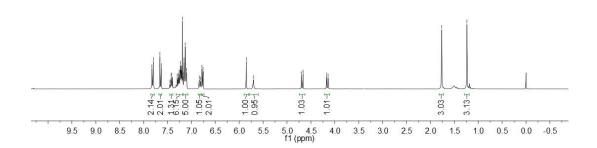
¹³C NMR Spectrum of 3ca

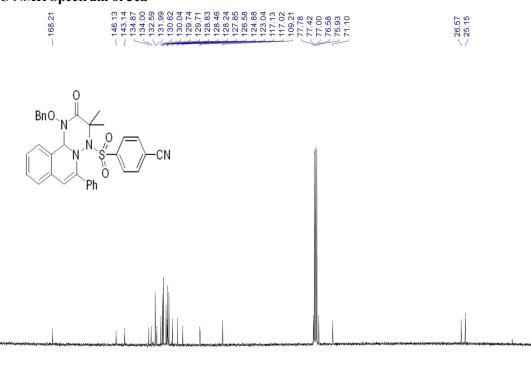




¹H NMR Spectrum of 3da




¹³C NMR Spectrum of 3da

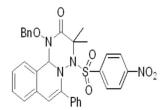

¹H NMR Spectrum of 3ea

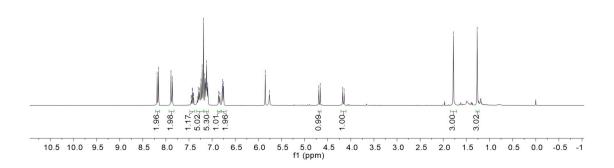
¹³C NMR Spectrum of 3ea

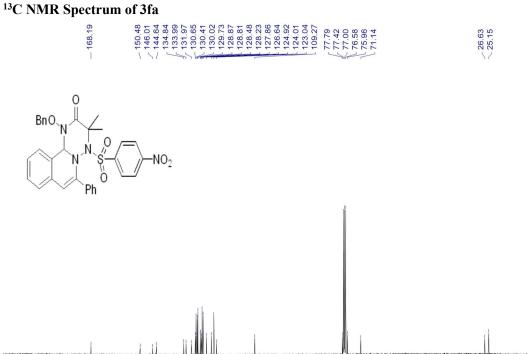
180

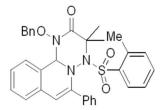
100 90 f1 (ppm)

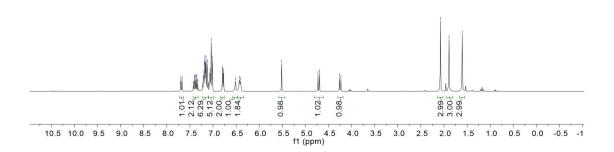
130


120


70

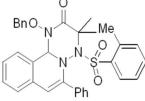

0

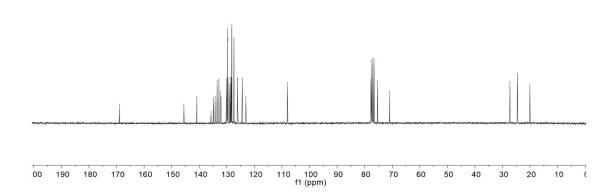


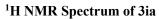

110 100 90 f1 (ppm)

130

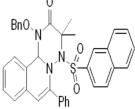
¹H NMR Spectrum of 3ga

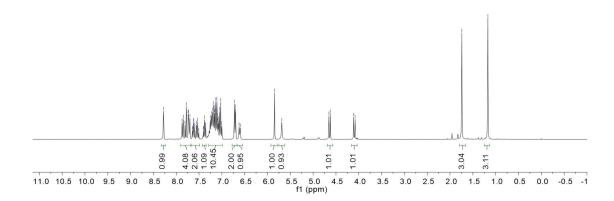


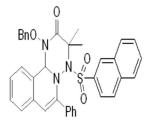


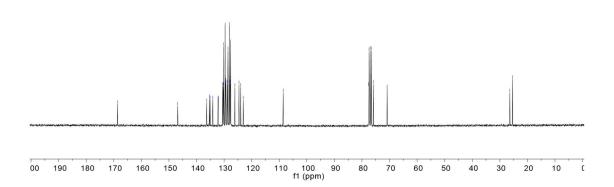



¹³C NMR Spectrum of 3ga

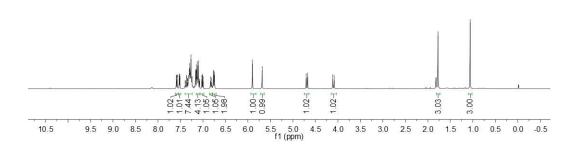


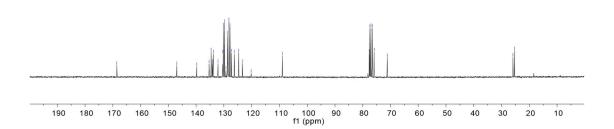


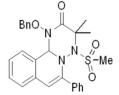


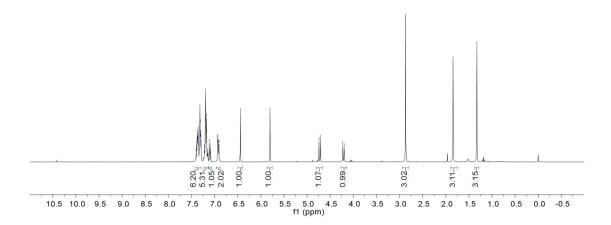


¹³C NMR Spectrum of 3ia

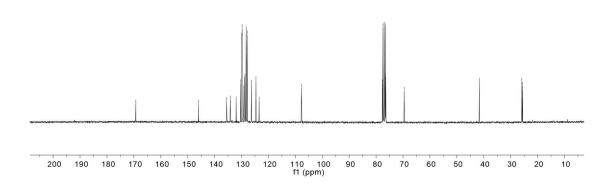


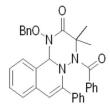

¹H NMR Spectrum of 3ja

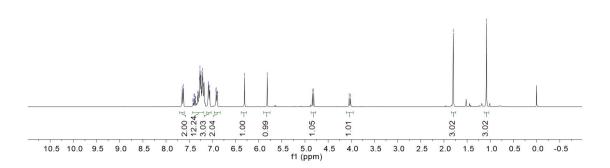

¹³C NMR Spectrum of 3ja



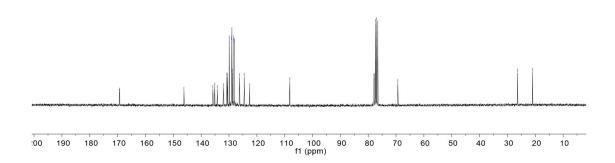
¹H NMR Spectrum of 3ka

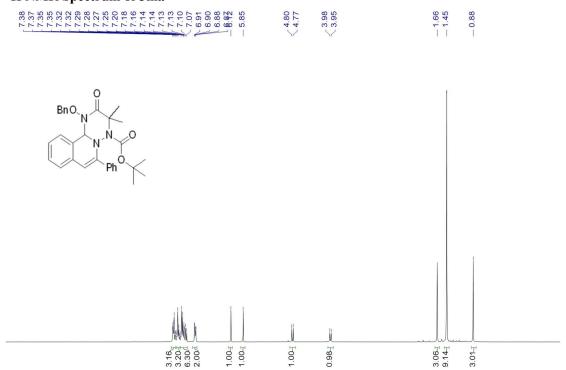


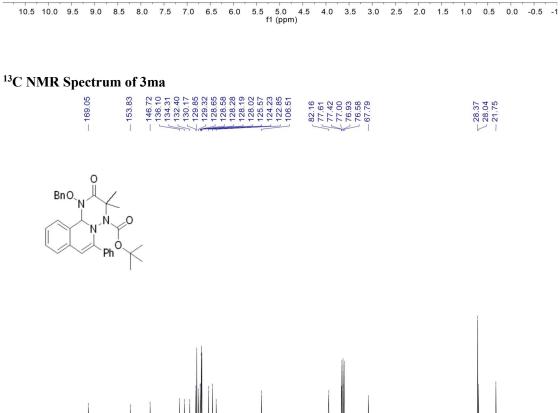

¹³C NMR Spectrum of 3ka



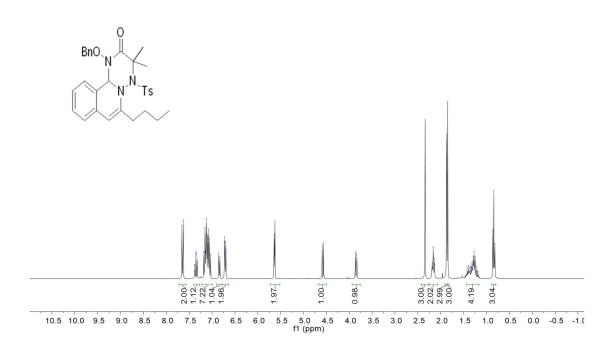
¹H NMR Spectrum of 3la





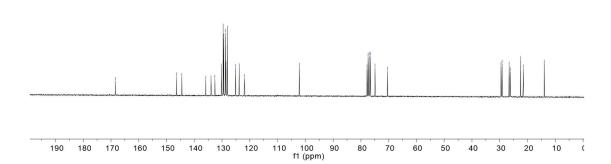

¹³C NMR Spectrum of 3la

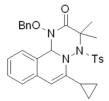
¹H NMR Spectrum of 3ma

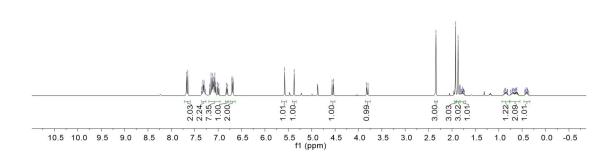


110 100 90 f1 (ppm)

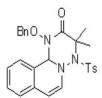
 140 130 120

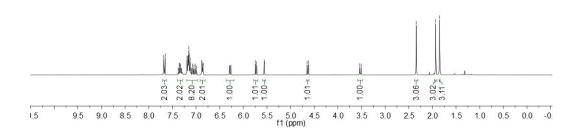

¹H NMR Spectrum of 3na

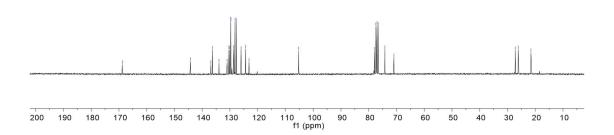

¹³C NMR Spectrum of 3na

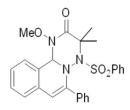


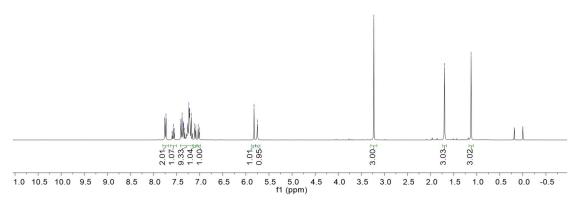
¹H NMR Spectrum of 30a



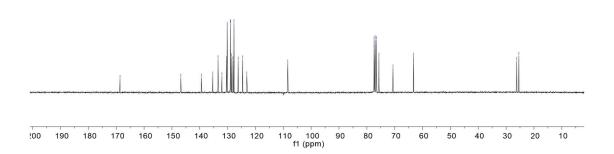

¹³C NMR Spectrum of 30a

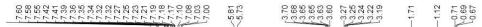

¹H NMR Spectrum of 3pa

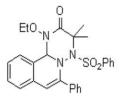

¹³C NMR Spectrum of 3pa

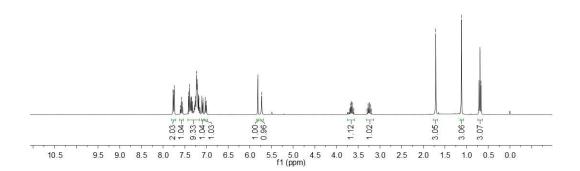

168.80 144.22 136.89 130.04 131.03 130.04 128.65 128.65 128.65 128.65 128.65 128.65 128.73 128.65 128.73 127.73 128.65 128.73 127.73


¹H NMR Spectrum of 3ab

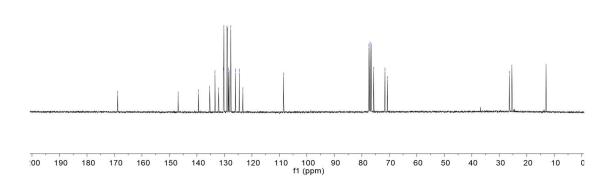


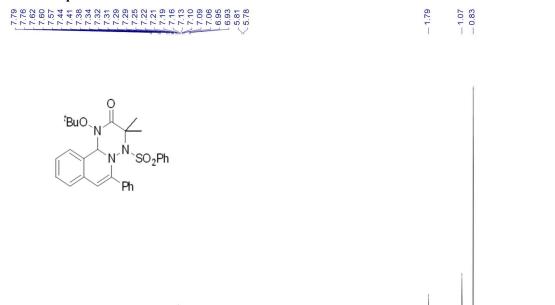



¹³C NMR Spectrum of 3ab

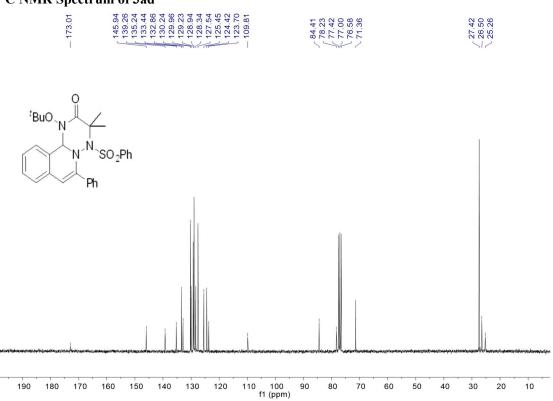


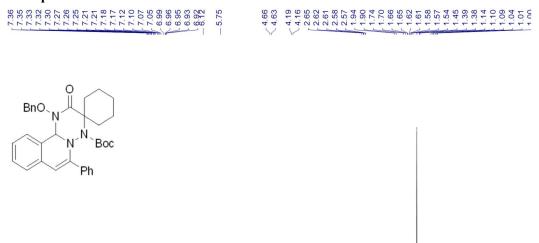
¹H NMR Spectrum of 3ac

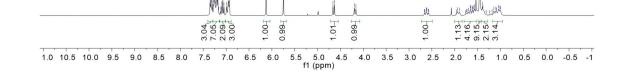




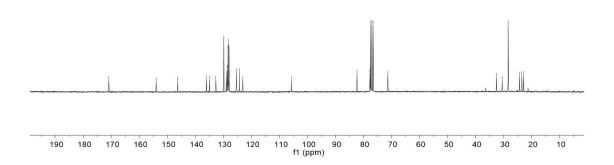
¹³C NMR Spectrum of 3ac

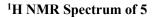



10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

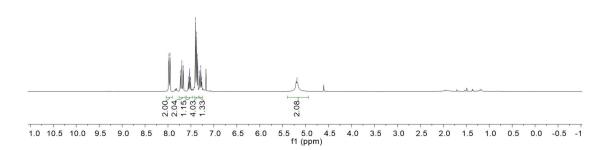

3.02± 9.05±

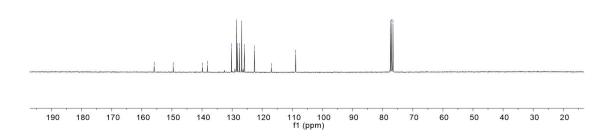
¹³C NMR Spectrum of 3ad


¹H NMR Spectrum of 3mf



¹³C NMR Spectrum of 3mf





¹³C NMR Spectrum of 5

6. References:

- 1. Z. Chen, X. Yang, J. Wu, Chem. Commun. 2009, 3469-3471. And the references therein.
- 2. K. Zhang, C. Yang, H. Yao, A. Lin, Org. Lett. 2016, 18, 4618-4621.
- 3. A. Acharya, D. Anumandla, C. S. Jeffrey, J. Am. Chem. Soc. 2015, 137, 14858-14860.
- 3. W. Ji, L. Yao, X. Liao, Org. Lett. 2016, 18, 628-630.