Supporting Information

Iron-Catalyzed 1,2-Selective Hydroboration of N -Heteroarenes

Fanjun Zhang, ${ }^{\ddagger}$ Heng Song, ${ }^{\dagger}$ Xuewen Zhuang, Chen-Ho Tung and Wenguang Wang*School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan,250100, China. Email: wwg@sdu.edu.cn
Table of contents

1. General information S2
2. Experimental procedures S3
2.1 Synthesis of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$ S3
2.2 Screening of reaction conditions S5
2.3 General procedures for the hydroboration of N-heteroarenes S6
3. Characterization data of N -boryl-dihydropyridines S10
4. Reactions of N-heteroarenes with HBpin without $\mathbf{1}$ S17
5. Reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$ with isoquinoline and pyridines. S18
6. X-ray crystal structure determinations S20
7. Iron-catalyzed hydroboration of 2-methylpyridine with HBpin 21
8. Stoichiometric reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ (6) with HBpin S22
8.1 Reaction of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with HBpin S22
8.2 Reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with HBpin and CO S 23
8.3 Reaction of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with $9-\mathrm{BBN}$ S24
9. Kinetic experiments S26
9.1 Pre-catalyst 1 rate order assessment based on initial-rate kinetics S27
9.2 Isoquinoline rate order assessment S28
9.3 HBpin rate order assessment S29
9.4 Determination of the kinetic isotope effect S30
10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra S31
11. X-ray crystal structure analysis S62
12. Reference S69

1. General information

All reactions were performed in flame-dried glassware using standard Schlenk techniques or in a glovebox under nitrogen atmosphere. Toluene, hexane and acetonitrile were dried and degassed by Solvent Purification Systems (Innovative Technology). $\mathrm{C}_{6} \mathrm{D}_{6}$ was dried with $4 \AA$ molecular sieves and degassed by freeze-pump-thaw methods. Tetraethylsilane, borane regents as well as pyridines, quinolines, isoquinolines, phenanthridine and methyl-1H-benzo[d]imidazole were purchased from commercial suppliers. Borane regents stored at $-30{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere in glovebox and used as received. All solid heteroarenes were dried under vacuum and liquid heteroarenes were distilled prior to use. The 2-(diphenylphosphino)benzenethiol $\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{SH}\right){ }^{1}$ and $\left[\mathrm{Cp} * \mathrm{Fe}\left(\mathrm{NCMe}_{3}\right] \mathrm{PF}_{6}{ }^{2}\right.$ were prepared according to reported procedures. NMR spectra were recorded in J. Young tube on Bruker $500\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 126 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 160 \mathrm{MHz}$ for ${ }^{11} \mathrm{~B}$) spectrometers. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were referenced to residual solvent resonances and are reported relative to tetramethylsilane. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was used as external standard for ${ }^{11} \mathrm{~B}$ NMR.

2. Experimental procedures

2.1 Synthesis of $\left[\mathbf{C p} *\left(\mathbf{P h}_{2} \mathbf{P C}_{6} \mathbf{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$

$\mathbf{P h}_{\mathbf{2}} \mathbf{P C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{S N a}$. $\mathrm{NaH}(0.09 \mathrm{~g}, 3.74 \mathrm{mmol})$ was added to a THF solution of $\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{SH}(1.0$ $\mathrm{g}, 3.40 \mathrm{mmol}$) under nitrogen. The mixture was stirred at room temperature for 1 h and filtered through a short pad of celite. The filtrate was concentrated in vacuo and the product was recrystallized in THF/hexane to give $\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{SNa}$ as white solid ($1.02 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-d_{6}$): $\delta 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{~m}, 10 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{~m}, 1 \mathrm{H})$, $6.32(\mathrm{~m}, 1 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR: $\delta-15.4$.

$\left[\mathbf{C p} *\left(\mathbf{P h}_{2} \mathbf{P C}_{6} \mathbf{H}_{4} \mathbf{S}\right) \mathbf{F e}\right]_{2}\left(\mu-\mathbf{N}_{2}\right), 1 . \mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{SNa}(252 \mathrm{mg}, 0.83 \mathrm{mmol})$ in 5 mL THF was added to the solution of $\left[\mathrm{Cp} * \mathrm{Fe}(\mathrm{NCMe})_{3}\right] \mathrm{PF}_{6}(380 \mathrm{mg}, 0.83 \mathrm{mmol})$ in 30 mL THF, the color turned to red brown immediately. After stirring for 1 h at room temperature, the volatile was removed under vacuum, and the residue was extracted with toluene (10 mL). The resulting toluene solution was concentrated, layed with pentane and cooled at $-30{ }^{\circ} \mathrm{C}$ to give $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)(310 \mathrm{mg}$, yield $75 \%)$ as brown solid. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{58} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{2}$: C, 67.48; H, 5.87; N, 2.81. Found: C, 67.65; H, 5.62; N, 2.91. Raman ($v_{\mathrm{N}=\mathrm{N}}$, $\left.\mathrm{cm}^{-1}\right)$: 2016. ESI-MS calcd. for [Cp* $\left.\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]$, 484.1077; found, 484.1063. Magnetic susceptibility ($\mu_{\text {eff }}, \mathrm{C}_{6} \mathrm{D}_{6}, 23^{\circ} \mathrm{C}$): $2.79 \mu_{\mathrm{B}}$.

Figure S1. Raman spectrum of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$ taken with 785 nm laser excitation.

Figure S2. IR spectrum of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}(\mathrm{NCMe})\right]$ and $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$.

2.2 Screening of reaction conditions

Table S1. Screening of reaction conditions in the hydroboration of pyridine ${ }^{a}$

entry	borane $B-\mathrm{H}$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	time (h)	yield $(\%)^{b}$
1	$\mathrm{BH}_{3} \cdot \mathrm{THF}$	50	24	0
2	$9-\mathrm{BBN}$	50	24	0
3	HBcat	50	24	0
4	HBpin	50	24	61
5^{c}	HBpin	50	24	46
6^{d}	HBpin	25	24	39
7^{e}	HBpin	50	36	0

${ }^{a}$ Reaction conditions: pyridine (0.24 mmol), borane ($0.48 \mathrm{mmol}, 2$ equiv), $\mathbf{1}(1 \mathrm{~mol} \%, 0.0024 \mathrm{mmol})$, tetraethylsilane (internal standard, 0.053 mmol) in $0.6 \mathrm{~mL} \mathrm{C}{ }_{6} \mathrm{D}_{6}$ unless otherwise noted. ${ }^{b 1} \mathrm{H}$ NMR yield based on pyridine. ${ }^{c}$ In the presence of 1 equiv of HBpin. ${ }^{d}$ Room temperature. ${ }^{e}$ Without 1.

2.3 General procedures for the hydroboration of N-heteroarenes

NMR scale:

$\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)(2.4 \mathrm{mg}, 0.0024 \mathrm{mmol})$, pyridine $(19 \mathrm{mg}, 0.24 \mathrm{mmol})$ and HBpin ($62 \mathrm{mg}, 0.48 \mathrm{mmol}$) were mixed in $0.6 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$ in a screw capped vial. Tetraethylsilane ($10 \mu \mathrm{~L}, 0.053 \mathrm{mmol}$) was added as internal standard and the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h . Then the solution was transfered to a J. Young NMR tube and analyzed by ${ }^{1} \mathrm{H}$ NMR to determine the yield of the hydroborated product.

Preparative scale:

$\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)(18 \mathrm{mg}, 0.018 \mathrm{mmol})$ and phenanthridine $(322 \mathrm{mg}, 1.8 \mathrm{mmol})$ and HBpin ($461 \mathrm{mg}, 3.6 \mathrm{mmol}$) were dissolved in 10 mL toluene in a flame-dried glassware in a glove box. The glassware was sealed with a septum, and stirred at room temperature for 24 h outside the glove box. Then the volatiles were removed in vacuo and the solid redissolved in hexane (5 mL). The solution was filtered through a short pad of celite, and the filtration was cooled at -30 a ${ }^{\circ} \mathrm{C}$ to afford 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydrophenanthridine (5h) as white solid $(0.486 \mathrm{~g}, 88 \%$ yield $)$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5} \boldsymbol{h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5} \boldsymbol{h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

\qquad

Figure S5. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathbf{5 h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

3. Characterization data of N-boryl-dihydropyridines

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridine (3a). ${ }^{3}{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.71(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=$ $4.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 12 \mathrm{H})$.

3b

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trifluoromethyl)-1,2-dihydropyridine (3b). ${ }^{3 \mathrm{~b} ~}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.30-5.23 (m, 1H), $5.12(\mathrm{dd}, J$ $=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 12 \mathrm{H})$.

3c
1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-methyl-1,2-dihydropyridine (3c). ${ }^{3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~m}$, $1 \mathrm{H}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{q}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 12 \mathrm{H})$.

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-ethyl-1,2-dihydropyridine (3d). ${ }^{3 b} \quad{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~m}$, $1 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{qd}, J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 12 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-4-phenyl-1,2-dihydropyridine (3e). ${ }^{3 \mathrm{a}, 3 \mathrm{3b}}$ ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.85$ (dd, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.30(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=4.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 12 \mathrm{H})$.

3f
3-Methoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridine (3f). ${ }^{\text {3b }}$ ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 12 \mathrm{H})$.

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-3-methyl-1,2-dihydropyridine (3g). ${ }^{3}{ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.61(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=7.3$, 5.6 Hz, 1H), 4.09 (s, 2H), 1.42 (s, 3H), 1.03 (s, 12H).

3h
1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-fluoro-1,2-dihydropyridine (3h). ${ }^{3 b} \quad{ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.37$ (dd, $\left.J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.30(\mathrm{dd}, J=12.0,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.71 (dt, $J=7.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 12 \mathrm{H})$.

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-chloro-1,2-dihydropyridine (3i) and 1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-chloro-1,2-dihydropyridine (3i'). ${ }^{4} \mathbf{3 i}$: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.49$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.79 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.76 (dd, $J=$ $7.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 12 \mathrm{H})$.

3i': ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.78$ (s, 1H), 5.75 (ddd, $J=9.8,3.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.93-4.87 (m, 1H), $3.88(\mathrm{dd}, J=4.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 12 \mathrm{H})$.

3j

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-bromo-1,2-dihydropyridine (3j) and 1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-bromo-1,2-dihydropyridine (3j’). ${ }^{4} \mathbf{3 j}$: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.54$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (dd, $J=$ $7.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 12 \mathrm{H})$.
$\mathbf{3 j}{ }^{\prime}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.89(\mathrm{~s}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=9.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.82(\mathrm{~m}$, $1 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 12 \mathrm{H})$.

3k

3k' H

Methyl 1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridine-3-carboxylate (3k) and Methyl 1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridine-5-carboxylate (3k'). ${ }^{3 \mathrm{a}, 3 \mathrm{~b}} \mathbf{3 k}$: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.06$ (d, $J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}$, 12 H).

3k': ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=10.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dt}, J=$
$9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=3.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 12 \mathrm{H})$.

31

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-phenyl-1,2-dihydropyridine (31) and 1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-phenyl-1,2-dihydropyridine (31'). ${ }^{4}$ 31: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.28-6.98(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 12 \mathrm{H})$.
31': ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.28-6.98(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=9.7,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.25-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.03$ (s, 12H).

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-6-methyl-1,2-dihydropyridine (3n) and 1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2-methyl-1,4-dihydropyridine ($3 n$ '). ${ }^{3} \mathbf{3 n}$: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 5.89(\mathrm{dd}, J=9.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dt}, J=9.0,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{dd}, J=4.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=4.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 12 \mathrm{H})$.

3n': ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.76$ (dt, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.73-4.67 (m, 1H), 4.47 (m, $1 \mathrm{H}), 2.83(\mathrm{dq}, J=5.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 12 \mathrm{H})$.

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2,4-dimethyl-1,2-dihydropyridine (30). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=4.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.19$ $(\mathrm{s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 M, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 141.6,132.8,109.9,109.7,82.1,44.2,24.3,21.4,19.9$.
${ }^{11}$ B NMR ($160 \mathrm{M}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 23.6$.

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-3,5-dimethyl-1,2-dihydropyridine (3p). ${ }^{3}$ ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.43(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}$, $3 \mathrm{H}), 1.05(\mathrm{~s}, 12 \mathrm{H})$.

5a

5a'

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydroquinoline (5a) and 1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydroquinoline (5a'). ${ }^{\text {3a, 3c }}{ }^{\text {5a: }}{ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.77(\mathrm{~m}, 2 \mathrm{H})$, $6.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=4.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 12 \mathrm{H})$.

5a': ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 8.14$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13-7.04 (m, 1H), 6.94-6.76 (m, $3 \mathrm{H}), 4.88-4.75(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 12 \mathrm{H})$.

5c
1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-methyl-1,2-dihydroquinoline (5c). ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=7.6,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=4.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80$ ($\mathrm{s}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.05 ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (126 M, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 142.0,131.2,128.5,127.6,123.4,121.4,121.3,121.0,82.4,43.1$, 24.4, 18.4 .
${ }^{11}$ B NMR ($160 \mathrm{M}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 23.9$.

5d
1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydroisoquinoline (5d). ${ }^{3 \mathrm{a},}{ }^{3 \mathrm{c}} \quad{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 12 \mathrm{H})$.

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-methyl-1,2-dihydroisoquinoline (5e). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.71$ (s, 1H), 4.61 (s, 2H), 2.24 (s, 3H), 1.00 (s, 12H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 142.7,134.4,129.5,127.1,125.2,124.4,122.5,108.4,82.4$, 48.1, 24.3, 21.6.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 23.4$.

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborola n-2-yl)-1,2-dihydroisoquinoline (5f). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 8.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.88(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (s, 2H), 1.09 ($\mathrm{s}, 12 \mathrm{H}$), 0.97 ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}_{\text {NMR (}}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 146.3,134.6,128.1,127.4,125.53,125.46,125.0,83.3,82.4$, 46.1, 24.6, 24.3.
${ }^{11} \mathrm{~B}$ NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 31.4,24.2$.

$5 g$
1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-methyl-2,3-dihydro-1H-benzo[d]imida zole (5g). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.47$ (dd, $J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.78 (dtd, $J=21.4$, 7.6, 1.2 Hz, 2H), $6.30(\mathrm{dd}, J=7.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 144.2,138.0,121.0,118.8,111.4,106.1,82.5,72.5,33.5,24.4$. ${ }^{11} \mathrm{~B}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 23.3$.

5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydrophenanthridine (5h). ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H})$, 1.02 (s, 12H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 142.6,134.7,132.6,128.2,127.1,127.0,125.2,123.6,122.9$, 122.3, 82.6, 47.2, 24.4.
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 24.0$.

4. Reactions of \boldsymbol{N}-heteroarenes with HBpin without compound 1

Table S2. Reaction of N-heteroarenes with HBpin without $\mathbf{1}^{a}$
entry
${ }^{a}$ The mixture of N-heteroarene (0.24 mmol) and HBpin (0.48 mmol) in $\mathrm{C}_{6} \mathrm{D}_{6}$ was stirred at $50{ }^{\circ} \mathrm{C}$ for 24 h .
${ }^{b}$ Conversion was determined via ${ }^{1} \mathrm{H}$ NMR analysis.

5. Reaction of $\left[\mathbf{C p} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$ with isoquinoline and pyridines.

$\left[\mathbf{C p} *\left(\mathbf{P h}_{2} \mathbf{P C}_{6} \mathbf{H}_{4} \mathbf{S}\right) \mathbf{F e}\left(\mathbf{C}_{9} \mathbf{H}_{9} \mathbf{N}\right)\right]$, 6. $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)(50 \mathrm{mg}, 0.05 \mathrm{mmol})$ was dissolved in 3 mL of toluene in a vial under nitrogen in glovebox. To this solution isoquinoline ($14 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) was added, and the resulted mixture was stirred at room temperature for 10 min , the color turned to black immediately. Hexane was layered on top of the solution and the mixture was stored at $-30{ }^{\circ} \mathrm{C}$ to provide [Cp* $\left.\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}\right)\right]$ (6) as black crystals (47 mg, yield 76\%). Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{36}$ FeNPS: 72.43; H, 5.92; N, 2.28. Found: C, 72.62 ; H, 5.75; N, 2.19. ESI-MS calcd. for $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right], 484.1077$; found, 484.1063. Magnetic susceptibility $\left(\mu_{\text {eff }}, \mathrm{C}_{6} \mathrm{D}_{6}, 23^{\circ} \mathrm{C}\right)$: $2.92 \mu_{\mathrm{B}}$.
$\left[\mathbf{C p}{ }^{*}\left(\mathbf{P h}_{2} \mathbf{P C}_{6} \mathbf{H}_{4} \mathbf{S}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathbf{H}_{5} \mathrm{~N}\right)\right]$, 7. Complex 7 was synthesized using the same procedure as described for 6 using $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$ and pyridine. The product was isolated as deep-red crystals (41 mg , yield 73%). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{FeNPS}: \mathrm{C}, 70.35 ; \mathrm{H}, 6.09$; N, 2.48. Found: C, $70.46 ; \mathrm{H}, 6.31 ; \mathrm{N}, 2.73$. Magnetic susceptibility ($\mu_{\mathrm{eff}}, \mathrm{C}_{6} \mathrm{D}_{6}, 23{ }^{\circ} \mathrm{C}$): $2.83 \mu_{\mathrm{B}}$.

Figure S6. Crystal structure of 7 (50\% probability thermal ellipsoids).
$\left[\mathrm{Cp} *\left(\mathbf{P h}_{2} \mathbf{P C}_{6} \mathbf{H}_{4} \mathbf{S}\right) \mathbf{F e}\left(\mathbf{C}_{6} \mathbf{H}_{7} \mathbf{N}\right)\right]$, 8. Complex $\mathbf{8}$ was synthesized using the same procedure as described for 6 using $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$ and 2-methylpyridine. The product was isolated as red crystals (39 mg , yield 68%). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{FeNPS}$: C, 70.72; H, 6.29; $\mathrm{N}, 2.42$. Found: C, $70.81 ; \mathrm{H}, 6.43$; N, 2.57. Magnetic susceptibility $\left(\mu_{\text {eff }}, \mathrm{C}_{6} \mathrm{D}_{6}, 23^{\circ} \mathrm{C}\right): 2.97$ μ_{B}.

Figure S7. Crystal structure of $\mathbf{8}$ (50\% probability thermal ellipsoids).

6. X-ray crystal structure determinations

Crystals of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\right]_{2}\left(\mu-\mathrm{N}_{2}\right)$ (1) and $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$ (7) were obtained by recrystallization from toluene/hexane at $-30{ }^{\circ} \mathrm{C}$. Crystals of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ (6) and $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ (8) were obtained by slow evaporation of a diethyl ether solution. Crystals of $\mathbf{5} \mathbf{h}$ was obtained from saturated hexane solution at $-30^{\circ} \mathrm{C}$. Single crystals were coated with inert oil, placed under streaming nitrogen in a Bruker Apex II CCD diffractometer (Mo K α radiation, $\lambda=0.71073 \AA$) for $\mathbf{1}$ and 7. Rigaku Oxford Diffraction XtaLAB Synergy diffractometer equipped with a HyPix-6000HE area detector ($\mathrm{Cu} \mathrm{K} \alpha$ radiation, $\lambda=1.54184 \AA$) for $\mathbf{5 h}, \mathbf{6}$ and 8. The structure was solved using the charge-flipping algorithm, as implemented in the program SUPERFLIP ${ }^{5}$ and refined by full-matrix least-squares techniques against $F_{0}{ }^{2}$ using the SHELXL program ${ }^{6}$ through the OLEX2 interface. ${ }^{7}$ Hydrogen atoms bonded to carbon were placed at calculated positions and refined isotropically by using a riding model. Both structures were examined using the Addsym subroutine of PLATON ${ }^{8}$ to ensure that no additional symmetry could be applied to the models. Crystallographic and experimental details of the structure determination are summarized in Table S3. CCDC 1581384-1581387 contain the supplementary crystallographic data for $\mathbf{1 , 5 h}, \mathbf{6}, \mathbf{7}$ and 1587262 for $\mathbf{8}$. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

7. Iron-catalyzed hydroboration of 2-methylpyridine with HBpin

Table S3. Product ratios for the Iron-catalyzed hydroboration of 2-methylpyridine ${ }^{a}$

entry	Time (h)	yield (\%)	product ratio (3n:3n')
1	4	10	$65: 35$
2	8	17	$64: 36$
3	20	34	$64: 36$
4	32	45	$65: 35$
5	48	60	$65: 35$

${ }^{a}$ Reaction conditions: 2-methylpyridine (0.24 mmol), HBpin (0.48 mmol , 2 equiv), 1 ($2.5 \mathrm{~mol} \%$, 0.006 mmol), tetraethylsilane (internal standard, 0.053 mmol) in $0.6 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6} .{ }^{b 1} \mathrm{H}$ NMR yield.

Table S4. Product ratios for the Iron-catalyzed hydroboration of 2-methylpyridine with diferent concentration of $\mathbf{1}^{a}$

entry	$[1](\mathrm{mol} \%)$	yield $(\%)^{b}$	product ratio (3n:3n')
1	0.5	11	$64: 36$
2	1	23	$64: 36$
3	4	67	$67: 33$
4	8	88	$65: 35$

${ }^{a}$ Reaction conditions: 2-methylpyridine (0.24 mmol), HBpin (0.48 mmol , 2 equiv), tetraethylsilane (internal standard, 0.053 mmol) in $0.6 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$ in $24 \mathrm{~h} .{ }^{b 1} \mathrm{H}$ NMR yield.

8. Stoichiometric reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ (6) with HBpin

8.1 Reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with HBpin

$\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right](20 \mathrm{mg}, 0.032 \mathrm{mmol})$ and tetraethylsilane (internal standard) (0.009 mmol) were dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ in a vial. HBpin ($4.2 \mathrm{mg}, 0.032 \mathrm{mmol}$) was added and the resulting mixture was stirred at room temperature for 10 min . It was transfered to a J. Young NMR tube and analyzed by ${ }^{1}$ H NMR. 5d was formed in 93% yield according to ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 6.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH})$, $6.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 6.73(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 5.63(\mathrm{~d}$, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 4.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right), 1.03\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR for the reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with HBpin in $\mathrm{C}_{6} \mathrm{D}_{6}$. I.S. $=$ internal standard.

8.2 Reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with HBpin and CO

$\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right](20 \mathrm{mg}, 0.032 \mathrm{mmol})$ and tetraethylsilane (internal standard) $(0.015 \mathrm{mmol})$ were dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ in a Schlenk tube. HBpin ($4.2 \mathrm{mg}, 0.032$ mmol) was added and the resulting mixture was stirred at room temperature for 10 min . Then CO was bubbled through the solution for 1 min , during which time the color turned to red. The solution was transfered to a J. Young NMR tube and analyzed by ${ }^{1} \mathrm{H}$ NMR. ${ }^{9}$ The yield of 5d was 91% according to NMR analysis.

Figure S9. ${ }^{1} \mathrm{H}$ NMR for the reaction of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with HBpin and CO in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S10. ${ }^{31} \mathrm{P}$ NMR for the reaction of $\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with HBpin and CO in $\mathrm{C}_{6} \mathrm{D}_{6}$.

8.3 Reaction of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with $9-\mathrm{BBN}$

$\left[\mathrm{Cp}^{*}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right](20 \mathrm{mg}, 0.032 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ in a vial. $9-\mathrm{BBN}(0.033 \mathrm{mmol}, 0.5 \mathrm{~mol} / \mathrm{L}$ in THF, THF was removed under vacuum before use) was added, and the color turned to red-brown. The resulting mixture was stirred at room temperature for 10 min , then it was transferred to a J. Young NMR tube and analyzed by ${ }^{1} \mathrm{H}$ NMR. ${ }^{9}$

す。

Figure S11. ${ }^{1} \mathrm{H}$ NMR for the reaction of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with $9-\mathrm{BBN}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S12. ${ }^{31} \mathrm{P}$ NMR for the reaction of $\left[\mathrm{Cp} *\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right]$ with 9-BBN in $\mathrm{C}_{6} \mathrm{D}_{6}$.

9. Kinetic experiments

Kinetic analysis of the NMR scale reaction was carried out by collecting multiple (10~20) data points early in the reaction before the substrate concentrations were depleted. Under these conditions, the reaction can be approximated as pseudo-zero-order with respect to the substrate concentrations. The reaction was minitored by ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) analysis at 60 s intervals over 2 h at 298.1 K . The kinetic data were obtained from intensity increase in the C3-H integral of dearomatized 1,2-dihydroisoquinoline over time (up to 20% conversion) relative to tetraethylsilane (internal standard) to determine the initial reaction rate. Data were fit by least-squares analysis $\left(\mathrm{R}^{2}>0.98\right)$.

General procedure for initial rate

$200 \mu \mathrm{~L}$ of a solution of compound $1\left(\mathrm{C}_{6} \mathrm{D}_{6}, 0.01 \mathrm{M}, 2 \mu \mathrm{~mol}\right)$ and tetraethylsilane $(5 \mu \mathrm{~L}, 26$ $\mu \mathrm{mol}$) were added to a J. Young NMR tube in a glovebox. Then isoquinoline ($24 \mu \mathrm{~L}, 0.2$ $\mathrm{mmol})$ and $340 \mu \mathrm{~L} \mathrm{C}_{6} \mathrm{D}_{6}$ were added and the NMR tube of the resulting solution was put in a pre-cooled bath at $-30^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 10 min , HBpin ($35 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.2$ equiv) was added to the solution while maintaining at $-30^{\circ} \mathrm{C}$, leading to a total reaction volume of $600 \mu \mathrm{~L}$. The tube was sealed immediately, quickly removed from the glovebox, and place into an ethyl acetate/liquid nitrogen bath. It was well shaken to mix up all the components and immediately placed in the NMR probe that was pre-adjusted to 298.1 K . The product concentration was monitored at 60 s intervals for 2 h to determine the initial reaction rate.

9.1 Pre-catalyst 1 rate order assessment based on initial-rate kinetics

Varying concentrations of $\mathbf{1}$ while keeping constant concentrations of HBpin and isoquinoline.

$c_{\text {cat }}(\mathrm{M})$	$c_{\text {HBpin }}(\mathrm{M})$	$c_{\text {isoquinoline }}(\mathrm{M})$	$v_{\mathrm{i}}(\mathrm{M} / \mathrm{s})$	R^{2}
0.0060	0.34	0.34	$8.60 \times 10^{-5} \pm 1.49 \times 10^{-6}$	0.99492
0.0050	0.34	0.34	$6.88 \times 10^{-5} \pm 1.60 \times 10^{-6}$	0.99828
0.0040	0.34	0.34	$5.57 \times 10^{-5} \pm 1.29 \times 10^{-7}$	0.98935
0.0030	0.34	0.34	$4.08 \times 10^{-5} \pm 1.05 \times 10^{-7}$	0.98701
0.0020	0.34	0.34	$2.87 \times 10^{-5} \pm 5.61 \times 10^{-7}$	0.99243
0.0015	0.34	0.34	$2.08 \times 10^{-5} \pm 4.90 \times 10^{-7}$	0.98905

Figure S13. Plot of [1] vs. reaction rate, the reaction follows first order dependence on $\mathbf{1}$ over the probed concentration range.

9.2 Isoquinoline rate order assessment

Varying concentrations of isoquinoline while keeping constant concentrations of HBpin and 1.

$c_{\text {isoquinoline }}(\mathrm{M})$	$c_{\text {HBpin }}(\mathrm{M})$	$c_{1}(\mathrm{M})$	$v_{\mathrm{i}}(\mathrm{M} / \mathrm{s})$	R^{2}
0.20	0.20	0.0020	$2.47 \times 10^{-5} \pm 4.68 \times 10^{-7}$	0.99322
0.30	0.20	0.0020	$2.47 \times 10^{-5} \pm 3.96 \times 10^{-7}$	0.99488
0.50	0.20	0.0020	$2.54 \times 10^{-5} \pm 4.27 \times 10^{-7}$	0.99493
0.60	0.20	0.0020	$2.38 \times 10^{-5} \pm 4.95 \times 10^{-7}$	0.99185

Figure S14. Plot of [isoquinoline] vs. reaction rate, the reaction follows zero order dependence on isoquinoline over the probed concentration range.

9.3 HBpin rate order assessment

Varying concentrations of HBpin while keeping constant concentrations of isoquinoline and
1.

$c_{\text {HBpin }}(\mathrm{M})$	$c_{\text {isoquinoline }}(\mathrm{M})$	$c_{\mathbf{1}}(\mathrm{M})$	$v_{\mathrm{i}}(\mathrm{M} / \mathrm{s})$	R^{2}
0.20	0.33	0.0033	$3.27 \times 10^{-5} \pm 6.29 \times 10^{-7}$	0.99266
0.33	0.33	0.0033	$5.67 \times 10^{-5} \pm 7.59 \times 10^{-7}$	0.99643
0.40	0.33	0.0033	$6.84 \times 10^{-5} \pm 1.29 \times 10^{-6}$	0.99613
0.67	0.33	0.0033	$1.09 \times 10^{-4} \pm 1.66 \times 10^{-6}$	0.99769
0.93	0.33	0.0033	$1.55 \times 10^{-4} \pm 2.09 \times 10^{-6}$	0.99820

Figure S15. Plot of [HBpin] vs. reaction rate, the reaction follows first order dependence on HBpin over the probed concentration range.

9.4 Determination of the kinetic isotope effect

Preparation of DBpin

d_{1}-pinacolborane was prepared according to the reported procedures. ${ }^{10}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.99(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{2} \mathrm{H}$ NMR (77 MHz , benzene): $\delta 4.23$ (br, d).
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 28.49$ (s).

Determination of the kinetic isotope effect

KIE was determined using standard condition, data points were collected at 60 s intervals over 2 h at 298.1 K , data points before 23% conversion were subjected to the liner regression analysis.

$\mathbf{1}$	isoquinoline	HBpin (1.2 eq)	tetraethylsilane
0.0020 mmol	0.20 mmol	0.24 mmol	0.025 mmol
0.0033 M	0.33 M	0.40 M	0.042 M

Figure S16. KIE for hydroboration of isoquinoline.

10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

Assignment: pyridine, $\delta 8.87,6.97,6.76$; diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), δ $0.94,0.49$; silicone grease, $\delta 0.26$.

Assignment: diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.50$; silicone grease, δ 0.25 .

Assignment: 4-methylpyridine, $\delta 1.73$; diethyl ether, $\delta 3.25$, 1.11; tetraethylsilane (I.S.), δ $0.93,0.49$; silicone grease, $\delta 0.25$.

Assignment: diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.50$; silicone grease, δ 0.25 .

Assignment: diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.93,0.49$; silicone grease, δ 0.25 .

Assignment: THF, $\delta 3.57$, 1.40; diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.49$; silicone grease, $\delta 0.26$.

Assignment: diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.50$; silicone grease, δ 0.25 .

Assignment: THF, $\delta 3.57,1.40$; diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.50$.

Assignment: tetraethylsilane (I.S.), $\delta 0.94,0.49$; silicone grease, $\delta 0.26$.

Assignment: diethyl ether, $\delta 3.25$, 1.11; tetraethylsilane (I.S.), $\delta 0.93,0.49$; silicone grease, δ 0.25 .

Assignment: THF, $\delta 3.57,1.40$; diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.92,0.49$; silicone grease, $\delta 0.25$.

Assignment: THF, $\delta 3.57$, 1.40; diethyl ether, $\delta 3.26,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.49$; silicone grease, $\delta 0.26$.

Assignment: 2-methylpyridine, δ 7.12, 6.91, 2.38; THF, δ 3.57, 1.40; diethyl ether, $\delta 3.26$,
1.11; tetraethylsilane (I.S.), $\delta 0.94,0.50$; silicone grease, $\delta 0.26$.

Assignment: THF, $\delta 3.57$, 1.40; diethyl ether, $\delta 3.26,1.11$; tetraethylsilane (I.S.), $\delta 0.93,0.49$; silicone grease, $\delta 0.26$.

Assignment: 3,5-dimethylpyridine, δ 6.96, 6.69, 1.83; THF, $\delta 3.57,1.40$; diethyl ether, δ 3.26,
1.11; tetraethylsilane (I.S.), $\delta 0.93,0.49$; silicone grease, $\delta 0.26$.

Assignment: 2,4-dimethylpyridine, δ 6.66, 2.41, 1.78; THF, $\delta 3.57,1.40$; diethyl ether, δ 3.26,
1.11; tetraethylsilane (I.S.), $\delta 0.93,0.49$; silicone grease, $\delta 0.25$.

Assignment: HBpin, δ 82.74, 24.59; tetraethylsilane (I.S.), $\delta 7.34,2.94$.

Assignment: THF, $\delta 3.57$, 1.40; diethyl ether, $\delta 3.26,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.49$.

Assignment: THF, $\delta 3.57,1.40$; diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.50$; silicone grease, δ 0.27.

Assignment: THF, $\delta 3.57,1.40$; tetraethylsilane (I.S.), $\delta 0.93,0.49$; silicone grease, $\delta 0.25$.

Assignment: diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.50$; silicone grease, δ 0.26 .

Assignment: HBpin, δ 82.76, 24.59; tetraethylsilane (I.S.), $\delta 7.37,2.96$.

Assignment: diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.50$.

Assignment: 3-methylisoquinoline, $\delta 7.46,7.33,7.26,2.62$; diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.50$; silicone grease, $\delta 0.26$.

Assignment: HBpin, $\delta 82.76,24.59$; tetraethylsilane (I.S.), $\delta 7.36,2.96$.

Assignment: THF, $\delta 3.57,1.40$; diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.93,0.49$.

Assignment: HBpin, $\delta 82.76,24.60$; tetraethylsilane (I.S.), $\delta 7.37,2.94$.

Assignment: THF, $\delta 3.57,1.40$; tetraethylsilane (I.S.), $\delta 0.94,0.50$; silicone grease, $\delta 0.27$.

Assignment: HBpin, $\delta 82.77,24.60$; tetraethylsilane (I.S.), $\delta 7.36,2.96$.

Assignment: THF, $\delta 3.57,1.40$; diethyl ether, $\delta 3.25,1.11$; tetraethylsilane (I.S.), $\delta 0.94,0.50$.

Assignment: HBpin, δ 82.77, 24.60; tetraethylsilane (I.S.), $\delta 7.38,2.97$.

11. X-ray crystal structure analysis

Table S5. Crystal data and structure refinement of complexes $\mathbf{1 , 5} \mathbf{5}, \mathbf{6}$ and 7.

	1	5h	6	7
Empirical formula	$\mathrm{C}_{56} \mathrm{H}_{58} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{FeNPS}$	$\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{FeNPS}$
Formula weight	996.80	614.37	613.55	563.49
Temperature / K	173	100.01(10)	192.99(10)	173(2)
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$	P2/c	$\mathrm{P} 21 / \mathrm{c}$	Cc
a / \AA	11.3448(9)	14.8368(3)	20.803(4)	19.063(6)
b / \AA	18.9750(14)	12.6939(2)	9.7913(11)	9.464(3)
c / \AA	12.4207(9)	17.8201(3)	15.7087(17)	16.113(5)
$\alpha{ }^{\circ}$	90	90	90	90
$\beta /^{\circ}$	117.621(5)	94.8640(18)	106.209(16)	103.953(3)
$\gamma /{ }^{\circ}$	90	90	90	90
Volume / \AA^{3}	2369.1(3)	3344.10(11)	3072.5(8)	2821.1(15)
Z	2	4	4	4
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.397	1.220	1.326	1.327
μ / mm^{-1}	0.809	0.609	5.256	0.688
$\mathrm{F}(000)$	1044.0	1312	1288.0	1184.0
2Θ range for data collection ${ }^{\circ}$	5.664 to 55.004	5.978 to 142.12	8.854 to 134.102	4.398 to 49.994
Index ranges	$\begin{gathered} -7 \leq h \leq 14, \\ -24 \leq k \leq 15 \\ -16 \leq 1 \leq 9 \end{gathered}$	$\begin{aligned} & -11 \leq h \leq 17, \\ & -15 \leq k \leq 11, \\ & -21 \leq 1 \leq 21 \end{aligned}$	$\begin{gathered} -24 \leq h \leq 24, \\ -4 \leq k \leq 11, \\ -18 \leq 1 \leq 17 \end{gathered}$	$\begin{gathered} -22 \leq h \leq 22, \\ -9 \leq \mathrm{k} \leq 11, \\ -18 \leq 1 \leq 19 \end{gathered}$
Reflections collected	13399	12847	17209	8041
Independent reflections	$\begin{gathered} 5129\left[\mathrm{R}_{\text {int }}=0.0598,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0943\right] \\ \hline \end{gathered}$	$\begin{gathered} 6345\left[\mathrm{R}_{\text {int }}=0.0214\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0273\right] \\ \hline \end{gathered}$	$\begin{gathered} 5330\left[\mathrm{R}_{\text {int }}=0.0971,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.1050\right] \end{gathered}$	$\begin{gathered} 4179\left[\mathrm{R}_{\text {int }}=0.0256,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.0391\right] \end{gathered}$
Data/restraints/para meters	5129/0/294	6345/0/423	5330/0/375	4179/2/339
Goodness-of-fit on F^{2}	1.041	1.045	1.047	1.047
Final R indexes $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\begin{gathered} \mathrm{R}_{1}=0.0582 \\ \mathrm{wR}_{2}=0.1121 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0446 \\ \mathrm{wR}_{2}=0.1145 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0571 \\ \mathrm{wR}_{2}=0.1176 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0238 \\ \mathrm{wR}_{2}=0.0585 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.1198 \\ \mathrm{wR}_{2}=0.1383 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0500 \\ \mathrm{wR}_{2}=0.1192 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.1142 \\ \mathrm{wR}_{2}=0.1480 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.0248 \\ \mathrm{wR}_{2}=0.0592 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	1.04/-0.84	0.30/-0.24	0.43/-0.52	0.24/-0.21

Table S6. Crystal data and structure refinement of complex 8.

	8
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{FeNPS}$
Formula weight	577.52
Temperature / K	172.99(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a / \AA	18.5491(4)
b / \AA	9.8654(3)
c / \AA	15.8227(3)
$\alpha{ }^{\circ}$	90
$\beta 1^{\circ}$	91.771(2)
$\gamma /{ }^{\circ}$	90
Volume / \AA^{3}	2894.08(12)
Z	4
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.325
μ / mm^{-1}	0.672
$\mathrm{F}(000)$	1216
2Θ range for data collection / ${ }^{\circ}$	4.39 to 53.408
Index ranges	$\begin{aligned} & -22 \leq h \leq 23, \\ & -11 \leq k \leq 11, \\ & -19 \leq 1 \leq 16 \end{aligned}$
Reflections collected	16605
Independent reflections	$5660\left[\mathrm{R}_{\text {int }}=0.0571, \mathrm{R}_{\text {sigma }}=0.0592\right]$
Data/restraints/parameters	5660/0/349
Goodness-of-fit on F^{2}	1.152
Final R indexes [$\mathrm{I}>2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0830, \mathrm{wR}_{2}=0.1802$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1075, \mathrm{wR}_{2}=0.1963$
Largest diff. peak/hole / e \AA^{-3}	1.49/-0.81

Table S7. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$.

Fe1-S1	$2.2820(12)$	P1-C23	$1.835(4)$
Fe1-P1	$2.2166(12)$	P1-C17	$1.833(4)$
Fe1-N1	$1.865(3)$	S1-C11	$1.751(4)$
P1-C16	$1.834(4)$	N1-N1'	$1.130(6)$
P1-Fe1-S1	$86.22(4)$	C11-C16-P1	$114.7(3)$
N1-Fe1-S1	$90.57(11)$	C15-C16-P1	$125.4(3)$
N1-Fe1-P1	$92.19(11)$	C16-P1-Fe1	$106.78(14)$
N1-Fe1-C1	$158.36(16)$	C16-P1-C23	$107.31(18)$
N1-Fe1-C5	$129.31(16)$	C23-P1-Fe1	$118.32(13)$
N1-Fe1-C4	$95.00(16)$	C17-P1-Fe1	$120.15(14)$
N1-Fe1-C3	$92.17(15)$	C17-P1-C16	$100.20(18)$
N1-Fe1-C2	$123.88(16)$	C17-P1-C23	$102.11(18)$
C1-Fe1-S1	$105.40(12)$	N1'-N1-Fe1	$177.3(4)$
C1-Fe1-P1	$103.17(12)$	C3-Fe1-S1	$148.13(12)$
C5-Fe1-S1	$88.05(12)$	C3-Fe1-P1	$125.36(12)$
C5-Fe1-P1	$138.16(13)$	C2-Fe1-S1	$144.97(13)$
C4-Fe1-S1	$107.95(12)$	C20-Fe1-P1	$97.47(12)$
C4-Fe1-P1	$163.99(12)$	C11-S1-Fe1	$105.48(14)$

Table S8. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{5 h}$.

B1-N1	$1.4208(19)$	C6-C7	$1.509(2)$
B1-O1	$1.3731(19)$	C6-N1	$1.4672(18)$
B1-O2	$1.3752(18)$	C7-C8	$1.389(2)$
C1-C2	$1.384(2)$	C7-C12	$1.400(2)$
C1-C13	$1.396(2)$	C8-C9	$1.389(2)$
C2-C3	$1.384(2)$	C9-C10	$1.380(3)$
C3-C4	$1.387(2)$	C10-C11	$1.384(2)$
C4-C5	$1.392(2)$	C11-C12	$1.404(2)$
C5-C13	$1.410(2)$	C12-C13	$1.473(2)$
C5-N1	$1.4197(17)$		
O1-B1-N1	$123.84(13)$	C5-C13-C12	$118.49(13)$
O2-B1-N1	$122.15(13)$	C8-C7-C12	$120.59(14)$
C3-C2-C1	$119.79(14)$	C7-C8-C9	$117.51(13)$
C2-C3-C4	$120.39(14)$	C10-C9-C8	$119.88(15)$
C3-C4-C5	$120.18(14)$	C9-C10-C11	$120.08(15)$
C4-C5-C13	$119.86(13)$	C10-C11-C12	$120.31(15)$
C4-C5-N1	$121.43(13)$	C7-C12-C11	$118.57(14)$
C13-C5-N1	$118.68(13)$	$118.61(13)$	
N1-C6-C7	$110.70(12)$		
C1-C13-C5	$118.66(14)$		

Table S9. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 6.

C1-Fe1	$2.097(5)$	$\mathrm{C} 32-\mathrm{C} 33$	$1.417(8)$
$\mathrm{C} 2-\mathrm{Fe} 1$	$2.109(4)$	$\mathrm{C} 33-\mathrm{C} 34$	$1.369(8)$
$\mathrm{C} 3-\mathrm{Fe} 1$	$2.121(5)$	$\mathrm{C} 34-\mathrm{C} 35$	$1.419(8)$
$\mathrm{C} 4-\mathrm{Fe} 1$	$2.120(5)$	$\mathrm{C} 35-\mathrm{C} 36$	$1.405(8)$
C5-Fe1	$2.098(5)$	$\mathrm{C} 36-\mathrm{C} 37$	$1.362(7)$
C29-C30	$1.432(7)$	$\mathrm{C} 37-\mathrm{N} 1$	$1.385(6)$
C29-N1	$1.318(7)$	Fe1-N1	$2.024(4)$
C30-C31	$1.397(8)$	Fe1-P1	$2.2105(15)$
C30-C35	$1.418(7)$	Fe1-S1	$2.2850(16)$
C31-C32	$1.378(8)$		
		$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{P} 1$	
C16-C11-S1	$119.6(4)$	P1-Fe1-S1	$95.54(12)$
C11-C16-P1	$114.8(4)$	C29-N1-C37	$91.48(13)$
N1-C29-C30	$123.9(5)$	C16-P1-C17	$85.25(6)$
C31-C30-C35	$120.4(5)$	C16-P1-C23	$99.2(2)$
C35-C30-C29	$117.5(5)$	C16-P1-Fe1	$106.7(2)$
C32-C31-C30	$119.9(5)$	C17-P1-C23	$109.27(17)$
C31-C32-C33	$120.4(6)$	C17-P1-Fe1	$104.4(2)$
C34-C33-C32	$120.3(5)$	C23-P1-Fe1	$116.94(16)$
C33-C34-C35	$120.4(5)$	C11-S1-Fe1	$107.74(18)$
C30-C35-C34	$118.6(5)$		
C36-C35-C30	$117.8(5)$		
C37-C36-C35	$120.1(5)$		

Table S10. Selected bond lengths $\left(\AA\right.$) and angles $\left({ }^{\circ}\right)$ for 7

Fe1-N1	$2.040(3)$	Fe1-S1	$2.2878(10)$
Fe1-C1	$2.096(3)$	N1-C29	$1.349(4)$
Fe1-C5	$2.104(3)$	N1-C33	$1.352(4)$
Fe1-C2	$2.114(3)$	C29-C30	$1.379(5)$
Fe1-C4	$2.116(3)$	C30-C31	$1.375(5)$
Fe1-C3	$2.122(3)$	C31-C32	$1.382(5)$
Fe1-P1	$2.2135(10)$	C32-C33	$1.377(5)$
N1-Fe1-P1	$92.58(7)$	C16-C11-S1	$120.7(2)$
N1-Fe1-S1	$92.42(8)$	C11-C16-P1	$115.1(2)$
P1-Fe1-S1	$86.08(3)$	N1-C29-C30	$123.6(4)$
C11-S1-Fe1	$106.48(11)$	C31-C30-29	$119.8(4)$
C29-N1-C33	$115.8(3)$	C30-C31-C32	$117.6(3)$
C29-N1-Fe1	$121.9(2)$	C33-C32-C31	$119.6(4)$
C33-N1-Fe1	$121.5(2)$	N1-C33-C32	$123.6(3)$

Table S11. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{8}$

Fe1-P1	2.2108(16)	Fe1-C25	2.099(6)
Fe1-S1	2.2896(18)	P1-C19	1.849(5)
Fe1-N1	2.004(5)	P1-C12	1.815(5)
P1-C13	1.833(6)	N1-C1	1.317(9)
S1-C7	1.750(6)	N1-C5	1.365(8)
P1-Fe1-S1	85.62(6)	N1-C5-C4	123.3(7)
N1-Fe1-P1	95.10(15)	C12-P1-C13	106.1(2)
N1-Fe1-S1	90.78(17)	C13-P1-Fe1	117.38(18)
N1-Fe1-C29	137.8(2)	C13-P1-C19	104.3(2)
N1-Fe1-C28	98.9(2)	C7-S1-Fe1	107.1(2)
N1-Fe1-C26	110.4(2)	C1-N1-Fe1	120.0(4)
N1-Fe1-C27	86.2(2)	C1-N1-C5	117.5(6)
N1-Fe1-C25	150.4(2)	C5-N1-Fe1	121.3(5)
C29-Fe1-P1	97.52(16)	N1-C1-C2	122.9(7)
C29-Fe1-S1	130.21(19)	C25-Fe1-C26	40.5(2)
C29-Fe1-C28	39.6(2)	C25-Fe1-C27	66.2(2)
C29-Fe1-C27	65.8(2)	C12-P1-C19	99.5(2)
C28-Fe1-P1	114.70(18)	C25-Fe1-C28	67.1(2)
C28-Fe1-S1	156.30(19)	C27-Fe1-P1	153.9(2)
C26-Fe1-P1	154.11(19)	C27-Fe1-S1	120.4(2)
C26-Fe1-S1	89.60(19)	C27-Fe1-C28	39.8(2)
C26-Fe1-C29	66.7(2)	C25-Fe1-P1	114.41(17)
C26-Fe1-C28	66.8(3)	C25-Fe1-S1	94.11(19)
C26-Fe1-C27	38.6(3)	C25-Fe1-C29	39.6(2)

12. Reference

(1) Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327.
(2) (a) Walter, M. D.; White, P. S. New J. Chem. 2011, 35, 1842; (b) Zhang, F.; Jia, J.; Dong, S.; Wang, W.; Tung, C.-H. Organometallics 2016, 35, 1151.
(3) (a) Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Köhn, G.; Weetman, C. Orgametallics 2011, 30, 5556; (b) Oshima, K.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134, 3699; (c) Intemann, J.; Lutz, M.; Harder, S. Organometallics 2014, 33, 5722.
(4) Dudnik, A. S.; VictoriaL.Weidner; Motta, A.; Delferro, M.; Marks, T. J. Nat. Chem. 2014, 6, 1100.
(5) Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786.
(6) Sheldrick, G. M. Acta Crystallogr. Sect. C 2015, 71, 3.
(7) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.
(8) Spek, A. L. Acta Crystallogr. Sect. D 2009, 65, 148.
(9) Complexs 9 and 10 have been reported in Song, H.; Ye, K.; Geng, P.; Han, X.; Liao, R.-Z.; Tung, C.-H.; Wang, W. ACS Catal. 2017, 7, 7709.
(10) (a) MacNair, A. J.; Millet, C. R. P.; Nichol, G. S.; Ironmonger, A.; Thomas, S. P. ACS Catal. 2016, 6, 7217; (b) Labre, F.; Gimbert, Y.; Bannwarth, P.; Olivero, S.; Dunach, E.; Chavant, P. Y. Org. Lett. 2014, 16, 2366.

