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Diffusion evaporation flux for The stationary concentration field is a solu-
an infinite Stripe domain tion of Laplace equation:
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Formulation of the problem; Im- a2 T Y (S1)

posed concentration at y = a
where —o0o < z < oo and 0 < y < a. The

We want to solve the Laplace equation for con- boundary conditions corresponding to our prob-
centration field in 2D geometry, see Figure S1. lem are

Consider a thin liquid film sitting on a solid sub-

strate (in fact we will treat film of zero thick- L c(z,a) = ciny for —oo <z < o0,

)=
ness). All lengths have been scaled by the evap- 2. ¢(x,0) = cgq for |z| <1,

oration length L.,. The liquid film now extends

from x = —1 to x = 1, and the boundary layer dc(x,0)
thickness is a = A/ Ly, 3. oy 0 for |z| > 1.
Cinf y Oy is axis of symmetry. This problem is thus
~ equivalent to the configuration addressed in the
E 3 main paper (cf. Figure 2 and eqs (5-8) in the
gas a main paper).
Csat
- . Solution of the problem
-1 1 X
\ / It is advantageous to reformulate problem as:
ocloy=0
0*C  9°C

Figure S1: Geometry of the problem in the z-
plane.
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where C' = c¢—c;,¢ and the boundary conditions
reduce to

1. C(xz,a) =0 for —oo < x < o0,
2. C(2,0) = 6C = 4ot — Ciny for |z| <1,

3. 0C (z,0)

oy 0 for |z| > 1.

To solve eq (S2), the following conformal
transform®! is introduced:

w(z+1)

o = sn(w, k),

exp (S3)
where sn(-, k) is the Jacobi elliptic sine of mod-
ulus k£, w = u+1iv, z = x + 1y, and k is defined
by

k::exp(—g). (S4)

Note that 0 < £ < 1 so it can be indeed the
Jacobi modulus. The transformation (S3) can
be seen as two sequential transformations:

m(z+1)

t=174+1s =exp 5
a

(55)

and

t =sn(w, k). (S6)

The transform (S5) can be seen as a mapping
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Figure S2: Conformal mapping: t-plane. The
points corresponding to those of Figure S1 are
denoted by the double prime.

of the region —oo <z < 00, 0 <y < a to the
first quarter r > 0,s > 0 where p = exp[r(1 +
x)/(2a)] is the polar radius and ¢ = 7y/(2a) is
the polar angle in the plane ¢ (Figure S2). The
second transform (S6) maps this region into the
rectangle 0 < u < K, 0 < v < K’ (Figure

S2

S3), where K = K(k) is the complete elliptic
integral of the first kind, K’ = K(k'), and k' =
V1 — k2. The dimensions of the rectangle are
K x K'.

One can verify that the following (Cauchy)
relations
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hold for the z(w) function given by eq (S3),
which means that it is analytical. Such a
transform is thus indeed conformal. By using
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Figure S3: Geometry and coordinate system in
the w-plane. The points corresponding to those
of Figure S1 are denoted by the prime.

eqs (S7), the boundary-value problem (S2) can

be reformulated for the function C' = C(u,v) in
the w-plane as

o*C  9*C

_ _|_ _
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1. C(0,v) =0for 0 <wv < K,

—0, (S8)

2. C(K,v)=6Cfor 0 <v< K,

9C(u, K')  9C(u,0)
' ov v

3 =0for 0 <u<

K.

It is evident that the solution of the problem
(S8) is
oC

= U—.

K

Let us find the evaporation flux defined by the
y derivative of C along AB in Figure S1,

0C _oCou_ oCov _ iCou
dy Oudy  Oudz

C(u,v) (S9)

_ (g
K ox’ (510)

where the solution (S9) and the first of eqs (S7)
is used. To find the Jv/0Jx one can use the



transformation (S3) and write the relation be-
tween x and v along AB,

m(l+x . 1
exp (%) = SD(K+ZU,]€) = W’

(S11)
where dn is a Jacobi elliptic function.5? Eq
(S11) can be rewritten as

2a

r=——Indn(v, k') — 1. (S12)
7r

Ov/0z in (S10) can be obtained from (S12)

2_(1 k,/2
7w dn(v, k')

dx

o= sn(v, K )en(v, k). (S13)
From eq (S11), dn(v, k') = b, where we denote
b = exp[—m(l +x)/(2a)], with £ < b < 1. Let
us now express sn(v, k') and cn(v, k") with b.
The elliptic functions are related to each other

through the equations®?

sn(v, k') = sing,
en(v, k') = cosg,
dn(v, k) = /1 — K 2sin?¢.

Note that both sn(v, k") and cn(v, k') are non-
negative when 0 < v < K’. Therefore,

Finally,
oc  6C
oy K(k)2a /(T B)(5 - k)
oo () e (2]}
(S14)

where k is defined by eq (S4). Note that this
function is even, in agreement with the x-mirror
symmetry of the problem.
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Evaporation velocity

By returning to the main text notation,
eq (S14) yields the expression for the evapo-
ration velocity:

veol) = — 20 2
p 0z
~ 35k { oo (55 -
oo (2522 en ()]}
(S15)

where 8 = D,(Csat — C0)/p- As for the droplet
case, there is an integrable divergence at the
end of the evaporation region:

Vool =+ L) > ——2 . (S16)
V1 —ax/Le
where Jy = vm (S17)
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SEM top view of a coating

Figure S4: SEM top view of a coating, the par-
ticle diameter is 2a = 310 nm.

Driving mechanism of the
evaporation flux in the exper-
imental device

A few direct measurements of the overall evap-

oration rate ()., have been made under the
same conditions as for coating experiments (see



section "Experimental results" in main text).
These experimental data are compared in Fig-
ure S5 with the prediction of main text eq (13),
for which evaporation is supposed to be driven
by vapor diffusion in a 3D semi-infinite domain
of quiescent air. The diffusive model underes-
timates the experimental data for the largest
values of L,/W. This can be understood by
considering the Rayleigh number

B gApL3
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(S18)

which is indicative of the importance of free
convection in the gas phase. For external free
convection, the length scale L is defined as
the ratio of film area over film perimeter®? :
L = Lo,W/[2(Ley + W)| =~ Le/2. Ap is
the variation in air density between the lig-
uid/air interface and the ambient air. Ap de-
pends on both vapor concentration and tem-
perature variations. With the rough approxi-
mation of an isothermal problem, we get Ap ~
5.7 x 1073 kg.m~3. Other parameters are grav-
ity acceleration ¢ = 9.81 m.s™2, air dynamic
viscosity p = 1.8 x 107 Pa.s and vapor diffu-
sivity D, = 2.5 x 107° m2.s7 L,

In our experiments, the evaporation length
ranges from L., ~ 0.1 to 10 mm. The cor-
responding Rayleigh number thus ranges from
Ra ~ 107* to 102, This indicates a diffu-
sive regime for the lowest values of L., and
a laminar free convection regime for the high-
est values, with a transition at L., ~ 4 mm

(Lew/W =2 0.08).
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Figure S5: Normalized experimental evapora-
tion rate (Q.,/f as a function of the aspect ra-
tio Le,/W: comparison between experimental
values and theory based on 3D vapor diffusion
in quiescent air [main text eq (13)].



