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Di�usion evaporation �ux for

an in�nite stripe domain

Formulation of the problem; Im-

posed concentration at y = a

We want to solve the Laplace equation for con-
centration �eld in 2D geometry, see Figure S1.
Consider a thin liquid �lm sitting on a solid sub-
strate (in fact we will treat �lm of zero thick-
ness). All lengths have been scaled by the evap-
oration length Lev. The liquid �lm now extends
from x = −1 to x = 1, and the boundary layer
thickness is a = Λ/Lev.
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Figure S1: Geometry of the problem in the z-
plane.

The stationary concentration �eld is a solu-
tion of Laplace equation:

∂2c

∂x2
+
∂2c

∂y2
= 0, (S1)

where −∞ < x < ∞ and 0 < y < a. The
boundary conditions corresponding to our prob-
lem are

1. c(x, a) = cinf for −∞ < x <∞,

2. c(x, 0) = csat for |x| ≤ 1,

3.
∂c(x, 0)

∂y
= 0 for |x| > 1.

Oy is axis of symmetry. This problem is thus
equivalent to the con�guration addressed in the
main paper (cf. Figure 2 and eqs (5-8) in the
main paper).

Solution of the problem

It is advantageous to reformulate problem as:

∂2C

∂x2
+
∂2C

∂y2
= 0, (S2)
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where C = c−cinf and the boundary conditions
reduce to

1. C(x, a) = 0 for −∞ < x <∞,

2. C(x, 0) = δC ≡ csat − cinf for |x| ≤ 1,

3.
∂C(x, 0)

∂y
= 0 for |x| > 1.

To solve eq (S2), the following conformal
transformS1 is introduced:

exp
π(z + 1)

2a
= sn(w, k), (S3)

where sn(·, k) is the Jacobi elliptic sine of mod-
ulus k, w = u+ iv, z = x+ iy, and k is de�ned
by

k = exp (−π
a

). (S4)

Note that 0 < k < 1 so it can be indeed the
Jacobi modulus. The transformation (S3) can
be seen as two sequential transformations:

t = r + is = exp
π(z + 1)

2a
(S5)

and
t = sn(w, k). (S6)

The transform (S5) can be seen as a mapping
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Figure S2: Conformal mapping: t-plane. The
points corresponding to those of Figure S1 are
denoted by the double prime.

of the region −∞ < x < ∞, 0 ≤ y ≤ a to the
�rst quarter r > 0, s > 0 where ρ = exp[π(1 +
x)/(2a)] is the polar radius and φ = πy/(2a) is
the polar angle in the plane t (Figure S2). The
second transform (S6) maps this region into the
rectangle 0 ≤ u ≤ K, 0 ≤ v ≤ K ′ (Figure

S3), where K ≡ K(k) is the complete elliptic
integral of the �rst kind, K ′ = K(k′), and k′ =√

1− k2. The dimensions of the rectangle are
K ×K ′.
One can verify that the following (Cauchy)

relations

∂u

∂y
= −∂v

∂x
,

∂v

∂y
=
∂u

∂x
(S7)

hold for the z(w) function given by eq (S3),
which means that it is analytical. Such a
transform is thus indeed conformal. By using
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Figure S3: Geometry and coordinate system in
the w-plane. The points corresponding to those
of Figure S1 are denoted by the prime.

eqs (S7), the boundary-value problem (S2) can
be reformulated for the function C = C(u, v) in
the w-plane as

∂2C

∂u2
+
∂2C

∂v2
= 0, (S8)

1. C(0, v) = 0 for 0 ≤ v ≤ K ′,

2. C(K, v) = δC for 0 ≤ v ≤ K ′,

3.
∂C(u,K ′)

∂v
=
∂C(u, 0)

∂v
= 0 for 0 ≤ u ≤

K.

It is evident that the solution of the problem
(S8) is

C(u, v) = u
δC

K
. (S9)

Let us �nd the evaporation �ux de�ned by the
y derivative of C along AB in Figure S1,

∂C

∂y
=
∂C

∂u

∂u

∂y
= −∂C

∂u

∂v

∂x
= −δC

K

∂v

∂x
, (S10)

where the solution (S9) and the �rst of eqs (S7)
is used. To �nd the ∂v/∂x one can use the
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transformation (S3) and write the relation be-
tween x and v along AB,

exp

(
π(1 + x)

2a

)
= sn(K + iv, k) =

1

dn(v, k′)
,

(S11)
where dn is a Jacobi elliptic function.S2 Eq
(S11) can be rewritten as

x = −2a

π
ln dn(v, k′)− 1. (S12)

∂v/∂x in (S10) can be obtained from (S12)

dx

dv
=

2a

π

k′2

dn(v, k′)
sn(v, k′)cn(v, k′). (S13)

From eq (S11), dn(v, k′) = b, where we denote
b ≡ exp[−π(1 + x)/(2a)], with k ≤ b ≤ 1. Let
us now express sn(v, k′) and cn(v, k′) with b.
The elliptic functions are related to each other
through the equationsS2

sn(v, k′) = sinφ,

cn(v, k′) = cosφ,

dn(v, k′) =

√
1− k′ 2 sin2 φ.

Note that both sn(v, k′) and cn(v, k′) are non-
negative when 0 ≤ v ≤ K ′. Therefore,

sn(v, k′) =

√
1− b2
k′

,

cn(v, k′) =

√
b2 − k2
k′

.

Finally,

∂C

∂y
= − δC

K(k)

π

2a

b√
(1− b2)(b2 − k2)

= − δC

K(k)

π

2a

{[
exp

(
π(1 + x)

a

)
− 1

]
[
exp

(
−π(1 + x)

a

)
− exp

(
−2π

a

)]}−1/2
,

(S14)

where k is de�ned by eq (S4). Note that this
function is even, in agreement with the x-mirror
symmetry of the problem.

Evaporation velocity

By returning to the main text notation,
eq (S14) yields the expression for the evapo-
ration velocity:

vev(x) = −Dv

ρ

∂c

∂z

=
πβ

2ΛK(k)

{[
exp

(
π(Lev + x)

Λ

)
− 1

]
[
exp

(
−π(Lev + x)

Λ

)
− exp

(
−2πLev

Λ

)]}−1/2
,

(S15)

where β = Dv(csat − c∞)/ρ. As for the droplet
case, there is an integrable divergence at the
end of the evaporation region:

vev(x→ Lev) '
J0√

1− x/Lev

, (S16)

where J0 =
β
√
π

2K(k)
√
LevΛ(1− k2)

. (S17)

SEM top view of a coating

5 µm

Figure S4: SEM top view of a coating, the par-
ticle diameter is 2a = 310 nm.

Driving mechanism of the

evaporation �ux in the exper-

imental device

A few direct measurements of the overall evap-
oration rate Qev have been made under the
same conditions as for coating experiments (see
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section "Experimental results" in main text).
These experimental data are compared in Fig-
ure S5 with the prediction of main text eq (13),
for which evaporation is supposed to be driven
by vapor di�usion in a 3D semi-in�nite domain
of quiescent air. The di�usive model underes-
timates the experimental data for the largest
values of Lev/W . This can be understood by
considering the Rayleigh number

Ra =
g∆ρL3

µDv

(S18)

which is indicative of the importance of free
convection in the gas phase. For external free
convection, the length scale L is de�ned as
the ratio of �lm area over �lm perimeterS3 :
L = LevW/[2(Lev + W )] ' Lev/2. ∆ρ is
the variation in air density between the liq-
uid/air interface and the ambient air. ∆ρ de-
pends on both vapor concentration and tem-
perature variations. With the rough approxi-
mation of an isothermal problem, we get ∆ρ '
5.7× 10−3 kg.m−3. Other parameters are grav-
ity acceleration g = 9.81 m.s−2, air dynamic
viscosity µ = 1.8 × 10−5 Pa.s and vapor di�u-
sivity Dv = 2.5× 10−5 m2.s−1.
In our experiments, the evaporation length

ranges from Lev ∼ 0.1 to 10 mm. The cor-
responding Rayleigh number thus ranges from
Ra ∼ 10−4 to 102. This indicates a di�u-
sive regime for the lowest values of Lev and
a laminar free convection regime for the high-
est values, with a transition at Lev ' 4 mm
(Lev/W ' 0.08).
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Figure S5: Normalized experimental evapora-
tion rate Qev/β as a function of the aspect ra-
tio Lev/W : comparison between experimental
values and theory based on 3D vapor di�usion
in quiescent air [main text eq (13)].
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