Supporting Information

Ru-Complex Framework Toward Aerobic Oxidative Transformations of β -Diketiminate and α -Ketodiimine

Sanjib Panda, Abhishek Mandal, Prabir Ghosh and Goutam Kumar Lahiri*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Figure S1a. Experimental and simulated ESI(+) mass spectra of $\{1a\}^+$, $\{1b\}^+$, $\{1c\}^+$, $\{2a\}^+$, $\{2b\}^+$, $\{2c\}^+$ in CH₃CN (blue line, experimental and red line, simulated).

Figure S1b. Experimental and simulated ESI(+) mass spectra of $\{3a+H\}^+$, $\{3b+H\}^+$, $\{3c+H\}^+$, $\{4a\}^+$, $\{4b+H\}^+$, $\{4c+H\}^+$ in CH₃CN (blue line, experimental and red line, simulated).

Figure S2. Perspective view of the asymmetric unit of **1c**, showing two independent molecules. Ellipsoids are drawn at 50% probability level. Hydrogen atoms are removed for clarity.

Molecule C

Figure S3. Perspective view of the asymmetric unit of 2b, showing three independent molecules. Ellipsoids are drawn at 50% probability level. Hydrogen atoms are removed for clarity.

Figure S4. Perspective view of the asymmetric unit of **3a**, showing two independent molecules. Ellipsoids are drawn at 30% probability level. Hydrogen atoms are removed for clarity.

Molecule A

Figure S5. Perspective view of the asymmetric unit of 4b, showing two independent molecules. Ellipsoids are drawn at 30% probability level. Hydrogen atoms are removed for clarity.

Figure S6. ESI-MS spectrum of the reaction mixture of **2a** and 18-O labeled **2a** during reaction of [**1a** (0.1 mM) + ${}^{18}O_2$)] in EtOH. Spectrum was recorded after 3 h of ${}^{18}O_2$ purging. Peak at m/z = 566 is assigned to {**2a** (${}^{18}O$)}⁺ (blue line, experimental and red line, simulated).

Figure S7. DFT optimized structures of 1-4 derivatives.

Figure S8a. ¹H NMR of [Ru(acac)₂(nacnac ^{Cl,Cl})], **1c** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

S10

Figure S8b. ¹H NMR of [Ru(acac)₂(L^{1 H,H})], **2a** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8c. ¹³C NMR of $[Ru(acac)_2(L^{1 H,H})]$, **2a** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8d. ¹H NMR of [Ru(acac)₂(L^{1 OMe,OMe})], **2b** in CDCl₃ with TMS ($\delta = 0$ ppm) as

internal standard.

Figure S8e. ¹³C NMR of [Ru(acac)₂($L^{1 \text{ OMe,OMe}}$)], **2b** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8f. ¹H NMR of [Ru(acac)₂(L^{1 Cl,Cl})], **2c** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8g. ¹³C NMR of $[Ru(acac)_2(L^{1 Cl,Cl})]$, **2c** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8h. ¹H NMR of [Ru(acac)₂(L^{5 H,H})], **3a** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8i. ¹H NMR of $[Ru(acac)_2(L^5 OMe, OMe)]$, **3b** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8j. ¹H NMR of [Ru(acac)₂(L^{5 Cl,Cl})], **3c** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8k. ¹H NMR of [Ru(acac)₂($L^{6 H,H}$)], **4a** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S81. ¹³C NMR of $[Ru(acac)_2(L^{6 H,H})]$, **4a** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8m. ¹H NMR of $[Ru(acac)_2(L^{6 OMe,OMe})]$, **4b** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8n. ¹³C NMR of $[Ru(acac)_2(L^{6 \text{ OMe,OMe}})]$, **4b** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S80. ¹H NMR of [Ru(acac)₂(L^{6 Cl,Cl})], **4c** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S8p. ¹³C NMR of $[Ru(acac)_2(L^6 Cl,Cl)]$, **4c** in CDCl₃ with TMS ($\delta = 0$ ppm) as internal standard.

Figure S9a. Mulliken spin density plots showing atomic spin density values (spin density values of acac moieties are omitted for clarity).

Figure S9b. Mulliken spin density plots showing atomic spin density values (spin density values of acac moieties are omitted for clarity).

Figure S10. Experimental (CH₃CN) and TD-DFT ((U)B3LYP/CPCM/CH₃CN) calculated electronic spectra of representative complexes. Oscillator strengths are shown by the black vertical lines; the spectra (red) are convoluted with a Gaussian function having full width at half-maximum of 3000 cm^{-1} .

Figure S11. Spin density representations of 3^n (n = +1).

Figure S12a. (a) UV-vis change at 541 nm and 648 nm in presence of oxygen for **1a** at 303 K. (b) Rate constant is calculated based on the growing feature of absorbance of 541 nm band as a function of time (*t*).

Figure S12b. (a) UV-vis change at 541 nm and 648 nm in presence of oxygen for **1a** at 313 K. (b) Rate constant is calculated based on the growing feature of absorbance of 541 nm band as a function of time (*t*).

Figure S12c. (a) UV-vis change at 541 nm and 648 nm in presence of oxygen for **1a** at 323 K. (b) Rate constant is calculated based on the growing feature of absorbance of 541 nm band as a function of time (*t*).

Figure S12d. (a) UV-vis change at 541 nm and 648 nm in presence of oxygen for **1a** at 333 K. (b) Rate constant is calculated based on the growing feature of absorbance of 541 nm band as a function of time (*t*).

Figure S12e. (a) UV-vis change at 540 nm and 650 nm in presence of oxygen for **1b** at 333 K. (b) Rate constant is calculated based on the growing feature of absorbance of 540 nm band as a function of time (*t*).

Figure S12f. (a) UV-vis change at 544 nm and 652 nm in presence of oxygen for **1c** at 333 K. (b) Rate constant is calculated based on the growing feature of absorbance of 544 nm band as a function of time (*t*).

Activation enthalpy (ΔH^{\ddagger}) and activation entropy (ΔS^{\ddagger}) values for the conversion of $\mathbf{1a} \rightarrow \mathbf{2a}$ were obtained from the slope and intercept of plots of $\ln(k/T)$ versus 1/T using the following equation:

$\ln(k/T) = \ln(R/Nh) + \Delta S^{\ddagger}/R - \Delta H^{\ddagger}/RT$

where N = Avogadro's number, R = universal gas constant, and h = Planck's constant.

Figure S12g. Plot of $\{\ln (k/T)\}$ versus 1/T for the reaction of **1a** with molecular oxygen.
To determine the errors in activation parameters we have also used the simplified form of the above equation-

$$\mathbf{R}[\ln(\mathbf{K}_{\mathbf{B}}/\mathbf{h}) - \ln(k/\mathbf{T})] = \Delta H^{\ddagger}/\mathbf{T} - \Delta S^{\ddagger} \qquad (\text{where, } \mathbf{R}/\mathbf{N} = \mathbf{K}_{\mathbf{B}})$$

Plot of R[ln(K_B/h) – ln(*k*/T)] vs 1/T directly gives the values as well as errors in the activation parameters, ΔH^{\ddagger} (=Slope) and ΔS^{\ddagger} (= –Intercept). Now from the inset of figure S7h –

$$\Delta H^{\ddagger} = \text{Slope} = 8.91 \text{ kJ mol}^{-1} = 2.13 \text{ kcal mol}^{-1}$$

Error in
$$\Delta H^{\ddagger} = \pm 0.46 \text{ kJ mol}^{-1} = \pm 0.11 \text{ kcal mol}^{-1}$$

 $\Delta S^{\ddagger} = -$ (Intercept) = $-315 \text{ J mol}^{-1}\text{K}^{-1} = -75.28 \text{ cal mol}^{-1}\text{K}^{-1}$

Error in $\Delta S^{\ddagger} = \pm 1.44 \text{ mol}^{-1}\text{K}^{-1} = \pm 0.34 \text{ cal mol}^{-1}\text{K}^{-1}$

Figure S12h. Plot of $\{R[\ln(K_B/h) - \ln(k/T)]\}$ vs 1/T for the reaction of **1a** with molecular oxygen.

Figure S13. (a) ESI(+) mass spectra of {Intermediate+Na}⁺ in CH₃CN (blue, experimental and red, simulated). (b) Electronic spectra in CH₃CN of **1c**, intermediate and **2c**. Inset shows the difference in color. (c) UV-vis change for Intermediate \rightarrow 2c conversion at 298 K. (d) Raman spectrum of intermediate for **1c** \rightarrow 2c conversion.

Table S1. Selected	l Crystallographic	Parameters
--------------------	--------------------	------------

	1b	1c	2a	1.5x 2b	3 a	4b
empirical formula	C ₂₉ H ₃₅ N ₂ O ₆ Ru	$C_{27}H_{29}N_2O_4Cl_2Ru$	C ₂₇ H ₃₀ N ₂ O ₅ Ru	$C_{43.50}H_{51}N_3O_{10.50}Ru_{1.50}$	$C_{50}H_{54}N_4O_{10}Ru_2$	$C_{29}H_{26}N_2O_8Ru$
formula weight	608.66	617.49	563.60	935.47	1073.11	637.63
crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	triclinic	monoclinic
space group	<i>P</i> ī	$P2_{l}/c$	<i>P</i> ī	<i>P</i> ī	Pī	<i>P2</i> ₁
a (Å)	8.7263(19)	29.7932(10)	8.640(2)	12.8937(7)	8.3547(3)	12.8560(6)
<i>b</i> (Å)	10.199(2)	8.549(3)	12.194(4)	15.2287(10)	12.3211(3)	15.4998(7)
<i>c</i> (Å)	15.806(4)	23.075(7)	12.282(4)	24.1360(12)	23.6301(6)	15.3235(8)
α (deg)	84.398(6)	90.00	104.803(5)	73.227(5)	76.431(2)	90
β (deg)	85.611(7)	110.315(5)	91.430(5)	75.505(5)	88.605(2)	114.065(6)
γ (deg)	78.741(6)	90.00	93.581(5)	65.542(6)	86.731(3)	90
$V(\text{\AA}^3)$	1370.7(5)	5512(3)	1247.5(6)	4083.6(4)	2360.56(12)	2788.1(3)
Ζ	2	8	2	4	2	4
$\mu (\text{mm}^{-1})$	0.617	0.797	0.669	0.626	0.703	0.616
$\rho_{\rm calcd} ({\rm g}{\rm cm}^{-3})$	1.475	1.488	1.500	1.522	1.510	1.519
<i>T</i> (K)	100(2)	100(2)	100(2)	100(2)	150(2)	150(2)
F (000)	630	2520	580	1932	1100	1312
θ range (deg)	3.1 to 25.0	3.0 to 25.00	3.0 to 25.00	1.8 to 25.0	3.0 to 25.00	2.1 to 25.0
data/restraints /parameters	4760/0/351	9610/0/661	4395/0/322	13674/0/078	8219 / 0 / 575	9750/13/723
$R_1, wR_2[I > 2\sigma(I)]$	0.0362,	0.0409, 0.0827	0.0288,	0.0719, 0.1503	0.0515, 0.1284	0.0614, 0.1481
	0.0805		0.0765			
R_1 , wR_2 (all data)	0.0424,	0.0507, 0.0886	0.0322,	0.1026, 0.1688	0.0625, 0.1365	0.0687, 0.1556
	0.0846		0.0784			
GOF on F^2	1.056	1.061	1.086	1.081	1.031	1.035
largest difference in peak and hole (e $Å^{-3}$)	0.435, -0.504	0.534, -0.556	0.525, -0.338	1.496, -1.070	1.532, -1.691	3.522, -0.595

bond	DFT	X-ray	DFT	X-ray	DFT
lengths	1a (S=1/2)	1b	1b (<i>S</i> =1/2)	1c (Molecule A)	1c (<i>S</i> =1/2)
Ru(1)-N(1)	2.040	2.009(2)	2.046	2.012(3)	2.050
Ru(1)-N(2)	2.054	2.003(2)	2.046	2.007(3)	2.045
Ru(1)-O(1)	2.101	2.071(2)	2.109	2.064(2)	2.101
Ru(1)-O(2)	2.080	2.020(2)	2.061	2.029(2)	2.054
Ru(1)-O(3)	2.088	2.061 (2)	2.108	2.067(2)	2.106
Ru(1)-O(4)	2.054	2.024(2)	2.061	2.021(2)	2.066
C(2)-N(1)	1.339	1.338(4)	1.335	1.336(4)	1.334
C(4)-N(2)	1.330	1.326(4)	1.336	1.333(4)	1.337
C(2)-C(3)	1.402	1.400(4)	1.405	1.398(5)	1.405
C(3)-C(4)	1.410	1.397(4)	1.404	1.397(5)	1.403
C(6)-N(1)	1.435	1.443(4)	1.436	1.444(5)	1.432
C(12)-N(2)	1.433	1.441(4)	1.436	1.448(4)	1.433

Table S2. Selected Experimental and DFT Calculated Bond Lengths (Å) for 1a, 1b and 1c

Table S3. Selected Experimental and DFT Calculated Bond Angles [deg] for 1a, 1b and

bond angle [deg]	DFT	X-ray	DFT	X-ray	DFT
	1a (S=1/2)	1b	1b (<i>S</i> =1/2)	1c (Molecule A)	1c (<i>S</i> =1/2)
N(1)-Ru(1)-N(2)	90.38	91.67(10)	91.84	91.07(11)	91.47
N(1)-Ru(1)-O(1)	176.72	176.88(8)	175.58	175.75(10)	175.67
N(1)-Ru(1)-O(2)	91.96	87.40(9)	88.48	88.97(10)	88.04
N(1)-Ru(1)-O(3)	92.67	92.26(9)	92.31	92.52(10)	92.33
N(1)-Ru(1)-O(4)	91.05	93.31(9)	94.33	92.83(10)	94.42
N(2)-Ru(1)-O(1)	92.24	91.40(9)	92.26	93.05(10)	92.49
N(2)-Ru(1)-O(2)	94.55	93.07(9)	94.30	92.04(10)	93.56
N(2)-Ru(1)-O(3)	176.41	176.07(9)	175.50	176.26(10)	176.17
N(2)-Ru(1)-O(4)	86.98	89.15(9)	88.41	89.11(10)	89.76
O(1)-Ru(1)-O(2)	89.80	91.88(8)	89.54	91.92(9)	89.96
O(1)-Ru(1)-O(3)	84.65	84.68(8)	83.65	83.38(9)	83.73
O(1)-Ru(1)-O(4)	87.12	87.30(8)	87.32	86.20(9)	87.36
O(2)-Ru(1)-O(3)	87.26	87.01(8)	87.44	86.98(10)	87.06
O(2)-Ru(1)-O(4)	176.62	177.65(8)	176.04	177.85(9)	175.83
O(3)-Ru(1)-O(4)	91.06	90.72(8)	89.56	91.76(9)	89.47

			- (1		
Table S4, Selected Ext	nerimental and DFT	Calculated Bond	Lengths (A)	for 2a.	2h and
I ubic b ii beleetted LA	permicinal and DI I	Cultured Dolla		101 44,	ab unu

2	с
-	·

bond lengths	X-ray	DFT	X-ray	DFT	DFT
	2a	2a (S=0)	2b (Molecule B)	2b (<i>S</i> =0)	2c (<i>S</i> =0)
Ru(1)-N(1)	1.978(2)	2.041	1.973(5)	2.038	2.041
Ru(1)-N(2)	1.974(2)	2.036	1.960(6)	2.038	2.036
Ru(1)-O(1)	2.0346(19)	2.079	2.024(4)	2.099	2.062
Ru(1)-O(2)	2.0182(17)	2.063	2.001(6)	2.099	2.077
Ru(1)-O(3)	2.0529(17)	2.095	2.035(4)	2.081	2.097
Ru(1)-O(4)	2.0504(18)	2.095	2.037(7)	2.063	2.093
C(2)-N(1)	1.311(3)	1.303	1.31(1)	1.307	1.304
C(4)-N(2)	1.316(3)	1.306	1.31(1)	1.303	1.307
C(2)-C(3)	1.486(4)	1.498	1.48(1)	1.495	1.498
C(3)-C(4)	1.481(4)	1.495	1.47(1)	1.498	1.496
C(3)-O(5)	1.240(3)	1.233	1.25(1)	1.233	1.232
C(6)-N(1)	1.453(3)	1.439	1.44(1)	1.439	1.437
C(12)-N(2)	1.449(3)	1.440	1.436(9)	1.440	1.438

Table S5. Selected Experimental and DFT Calculated Bond Angles [deg] for 2a, 2b and

^	
_ <u>/</u>	c
_	·

bond angle [deg]	X-ray	DFT	X-ray	DFT	DFT
	2a	2a (S=0)	2b (Molecule B)	2b (<i>S</i> =0)	2c (<i>S</i> =0)
N(1)-Ru(1)-N(2)	87.19(9)	88.48	87.9(2)	88.74	88.41
N(1)-Ru(1)-O(1)	178.68(7)	176.38	178.4(2)	174.16	84.74
N(1)-Ru(1)-O(2)	87.49(8)	84.75	86.7(2)	94.75	176.45
N(1)-Ru(1)-O(3)	94.07(8)	93.30	94.3(2)	92.57	95.54
N(1)-Ru(1)-O(4)	93.15(8)	95.52	93.3(2)	86.48	93.12
N(2)-Ru(1)-O(1)	92.65(8)	93.12	92.4(2)	93.59	86.48
N(2)-Ru(1)-O(2)	86.49(8)	86.61	88.6(2)	94.69	93.13
N(2)-Ru(1)-O(3)	172.79(7)	174.84	173.5(2)	176.98	94.32
N(2)-Ru(1)-O(4)	94.85(8)	94.11	93.3(2)	85.22	174.78
O(1)-Ru(1)-O(2)	93.81(7)	92.10	94.9(2)	90.39	92.16
O(1)-Ru(1)-O(3)	86.26(7)	84.84	85.7(2)	84.85	179.16
O(1)-Ru(1)-O(4)	85.55(7)	87.61	85.1(2)	88.39	88.69
O(2)-Ru(1)-O(3)	86.47(7)	88.73	85.3(2)	87.91	87.54
O(2)-Ru(1)-O(4)	178.54(6)	179.24	178.1(2)	178.77	85.08
O(3)-Ru(1)-O(4)	92.18(7)	90.55	92.8(2)	92.14	90.51

Table S6. Selected Experimental and DFT Calculated Bond Lengths (Å) for 3a, 3b and

2	c
J	L

bond	X-ray	DFT	DFT	DFT
lengths	3a (Malas Is A)	3a (S=1/2)	3b (<i>S</i> =0)	3c (<i>S</i> =1/2)
Ru(1)-N(1)	(Molecule A) 2.000(3)	2.024	2.021	2.029
Ru(1)-N(2)	2.016(4)	2.087	2.086	2.088
Ru(1)-O(1)	2.030(3)	2.089	2.093	2.086
Ru(1)-O(2)	2.004(3)	2.061	2.062	2.060
Ru(1)-O(3)	2.031(3)	2.042	2.043	2.040
Ru(1)-O(4)	1.998(3)	2.080	2.083	2.078
C(1)-N(1)	1.352(6)	1.371	1.372	1.371
C(2)-N(2)	1.284(5)	1.292	1.293	1.293
C(3)-C(2)	1.499(6)	1.516	1.514	1.516
C(2)-C(1)	1.474(6)	1.497	1.498	1.497
C(1)-O(5)	1.224(5)	1.232	1.233	1.231
C(4)-N(1)	1.352(6)	1.422	1.421	1.419
C(10)-N(2)	1.425(5)	1.430	1.429	1.428

Table S7. Selected Experimental and DFT Calculated Bond Angles [deg] for 3a, 3b and

2	^
5	L

bond angle [deg]	X-ray	DFT	DFT	DFT
	3a (Molecule A)	3a (S=1/2)	3b (<i>S</i> =0)	3c (<i>S</i> =1/2)
N(1)-Ru(1)-N(2)	79.70(14)	79.64	79.81	79.50
N(1)-Ru(1)-O(1)	176.00(13)	176.68	177.06	176.49
N(1)-Ru(1)-O(2)	90.35(12)	91.63	91.64	91.53
N(1)-Ru(1)-O(3)	97.88(13)	91.85	91.90	91.86
N(1)-Ru(1)-O(4)	89.97(12)	96.91	96.87	97.02
N(2)-Ru(1)-O(1)	96.35(12)	97.05	97.25	96.99
N(2)-Ru(1)-O(2)	91.25(13)	93.01	92.94	93.25
N(2)-Ru(1)-O(3)	177.56(12)	176.15	176.30	176.02
N(2)-Ru(1)-O(4)	86.79(12)	86.30	86.40	86.06
O(1)-Ru(1)-O(2)	90.41(11)	88.41	88.47	88.44
O(1)-Ru(1)-O(3)	86.06(11)	88.04	87.92	88.10
O(1)-Ru(1)-O(4)	89.13(11)	86.41	86.07	86.49
O(2)-Ru(1)-O(3)	89.15(12)	88.79	88.79	88.76
O(2)-Ru(1)-O(4)	177.92(11)	176.27	176.22	176.36
O(3)-Ru(1)-O(4)	92.85(11)	92.13	92.09	92.15

Table S8. Selected Experimental and DFT Calculated Bond Lengths (Å) for 4a, 4b and

4c	
----	--

bond lengths	DFT	X-ray	DFT	DFT
	4a (<i>S</i> =0)	4b (Molecule A)	4b (<i>S</i> =0)	4c (<i>S</i> =0)
Ru(1)-N(1)	2.001	1.934(8)	2.001	2.002
Ru(1)-N(2)	2.072	2.002(8)	2.071	2.073
Ru(1)-O(1)	2.091	2.052(7)	2.092	2.088
Ru(1)-O(2)	2.099	2.031(6)	2.104	2.098
Ru(1)-O(3)	2.074	2.029(7)	2.076	2.072
Ru(1)-O(4)	2.051	2.020(7)	2.050	2.051
C(2)-N(1)	1.323	1.333(14)	1.323	1.324
C(4)-N(2)	1.296	1.285(13)	1.296	1.296
C(2)-C(3)	1.496	1.468(16)	1.496	1.496
C(3)-C(4)	1.513	1.499(15)	1.512	1.512
C(3)-O(5)	1.222	1.241(13)	1.222	1.221
C(1)-O(6)	1.216	1.164(15)	1.216	1.215

Table S9. Selected Experimental and DFT Calculated Bond Angles [deg] for 4a, 4b and

bond angle [deg]	DFT	X-ray	DFT	DFT
-	4 a	4b (Molecule A)	4b (<i>S</i> =0)	4c (<i>S</i> =0)
N(1)-Ru(1)-N(2)	88.55	88.3(3)	88.51	88.54
N(1)-Ru(1)-O(1)	175.19	174.2(3)	174.63	175.51
N(1)-Ru(1)-O(2)	95.16	92.9(3)	95.55	94.96
N(1)-Ru(1)-O(3)	92.85	96.6(3)	93.11	92.94
N(1)-Ru(1)-O(4)	87.48	88.8(3)	87.24	87.55
N(2)-Ru(1)-O(1)	92.51	90.7(3)	92.29	92.25
N(2)-Ru(1)-O(2)	94.48	93.1(3)	94.76	94.53
N(2)-Ru(1)-O(3)	177.05	174.8(3)	176.79	176.96
N(2)-Ru(1)-O(4)	87.94	88.0(3)	87.54	88.12
O(1)-Ru(1)-O(2)	89.44	92.9(3)	89.68	89.39
O(1)-Ru(1)-O(3)	85.89	84.5(3)	85.85	86.07
O(1)-Ru(1)-O(4)	84.98	85.4(3)	84.86	84.88
O(2)-Ru(1)-O(3)	87.98	85.0(3)	87.84	88.0
O(2)-Ru(1)-O(4)	177.29	178.0(3)	177.18	177.41
O(3)-Ru(1)-O(4)	92.49	93.8(3)	92.45	92.52

complex	g_1	<i>g</i> ₂	g 3	$\langle g \rangle^a$	Δg^b
1a	2.185	2.111	1.871	2.060	0.314
1b	2.192	2.099	1.872	2.059	0.320
1c	2.185	2.114	1.880	2.064	0.305
$2a^+$	2.496	2.220	1.882	2.214	0.614
2a ⁻	2.079	2.005	_	2.030	0.074
$2b^+$	2.412	2.141	1.805	2.134	0.607
2b ⁻	2.088	2.006	_	2.034	0.082
$2c^+$	2.365	2.116	1.872	2.127	0.493
2c ⁻	2.086	2.006	-	2.033	0.080
3a	2.392	2.215	1.810	2.153	0.582
3b	2.379	2.226	1.813	2.153	0.566
3c	2.398	2.212	1.811	2.154	0.587

Table S10. EPR Data in CH₃CN/Toluene (1:1) at 100 K

^{*a*} <*g*> = {(1/3)($g_1^2 + g_2^2 + g_3^2$)}^{1/2}. ^{*b*} $\Delta g = g_1 - g_3$.¹¹

complex	Ru	nacnac	L^1	L^5	acac
1a (S=1/2)	0.728	0.221	_	_	0.051
1b (<i>S</i> =1/2)	0.742	0.195	_	_	0.063
1c (<i>S</i> =1/2)	0.737	0.200	_	_	0.063
2a ⁺ (<i>S</i> =1/2)	0.770	_	-0.014	_	0.244
2a ⁻ (<i>S</i> =1/2)	0.050	_	0.940	_	0.006
2b ⁺ (<i>S</i> =1/2)	0.779	_	-0.009	_	0.230
2b ⁻ (<i>S</i> =1/2)	0.051	_	0.950	_	-0.001
2c ⁺ (<i>S</i> =1/2)	0.767	_	-0.013	_	0.246
2c ⁻ (<i>S</i> =1/2)	0.052	_	0.947	_	0.001
3a (S=1/2)	0.780	_	_	0.138	0.082
3a ⁺ (<i>S</i> =1)	1.077	_	_	0.609	0.315
3b (<i>S</i> =1/2)	0.767	-	_	0.182	0.051
3b ⁺ (<i>S</i> =1)	0.914	_	_	0.763	0.280
3c (<i>S</i> =1/2)	0.782	_	_	0.132	0.086
3c ⁺ (<i>S</i> =1)	1.044	_	_	0.656	0.303

 Table S11. DFT Calculated (UB3LYP/LanL2DZ/6-31G*) Mulliken Spin Densities

complex	$\lambda [\mathrm{nm}] (\varepsilon [\mathrm{M}^{-1} \mathrm{cm}^{-1}])$
1c	640(1100), 342(26670), 228(35140)
2a	826(420), 541(8160), 369(11030), 278(18370), 206(39440)
2b	844(490), 541(9000), 367(13150), 277(21000), 226(29970)
2c	831(450), 544(7270), 370(10490), 278(16950), 227(36410)
3 a	539(770), 478(950), 395(1530), 332(2290), 275(4690), 222(7840)
3b	534(790), 479(1010), 394(1650), 328(2450), 273(4980), 222(8410)
3c	542(710), 478(910), 376(1610), 330(2210), 277(4430), 224(7510)
4a	864(370), 540(5370), 436(11420), 332(6950), 274(15170)
4b	862(370), 546(5630), 439(12030), 335(7360), 279(16060)
4c	869(340), 548(4920), 436(10740), 339(6530), 275(15860), 234(24090)

Table S12. Electronic Spectral Data of Complexes

Table S13. TD-DFT ((U)B3LYP/CPCM/CH3CN) Calculated Electronic Transitions for

1c, 2a, 3a, 4a

λ/nm expt	$\varepsilon / \mathrm{M}^{-1} \mathrm{cm}^{-1} (f)$	transitions	character
(DFT)			
		1c (<i>S</i> =1/2)	
648 (695)	1100 (0.052)	HOMO-1(β) \rightarrow LUMO(β) (0.92)	$\operatorname{Ru}(d\pi)/\operatorname{nacnac}(\pi) \rightarrow \operatorname{Ru}(d\pi)/\operatorname{nacnac}(\pi^*)$
342 (298)	26670 (0.084)	HOMO-11(β) \rightarrow LUMO(β) (0.63)	$acac(\pi) \rightarrow Ru(d\pi)/nacnac(\pi^*)$
		HOMO-12(β) \rightarrow LUMO(β) (0.32)	$\operatorname{nacnac}(\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru}(\mathrm{d}\pi)/\operatorname{nacnac}(\pi^*)$
228 (227)	35140 (0.046)	HOMO-9(α) \rightarrow LUMO+1(α) (0.32)	$nacnac(\pi) \rightarrow acac(\pi^*)$
		HOMO-7(β) \rightarrow LUMO+1(β) (0.30)	$acac(\pi) \rightarrow acac(\pi^*)$
		2a (S=0)	
826 (847)	420 (0.002)	HOMO→LUMO (0.66)	$\operatorname{Ru}(d\pi)/\operatorname{acac}(\pi) \rightarrow L^{1}(\pi^{*})/\operatorname{Ru}(d\pi)$
541 (504)	8160 (0.132)	HOMO-2→LUMO (0.44)	$\operatorname{Ru}(d\pi)/\operatorname{L}^{1}(\pi) \rightarrow \operatorname{L}^{1}(\pi^{*})/\operatorname{Ru}(d\pi)$
		HOMO \rightarrow LUMO (0.22)	$\operatorname{Ru}(d\pi)/\operatorname{acac}(\pi) \rightarrow L^{1}(\pi^{*})/\operatorname{Ru}(d\pi)$
369(335)	11030 (0.126)	HOMO-2→LUMO+1 (0.52)	$\operatorname{Ru}(d\pi)/\operatorname{L}^{1}(\pi) \to \operatorname{L}^{1}(\pi^{*})/\operatorname{acac}(\pi^{*})$
278 (250)	19270 (0 122)	HOMO-4 \rightarrow LUMO+2(0.42)	$acac(\pi) \rightarrow acac(\pi^*)/L^1(\pi^*)$
278 (250)	18370 (0.123)	HOMO-3 \rightarrow LUMO+1(0.14)	$acac(\pi)/Ru(d\pi) \rightarrow L^{1}(\pi^{*})/acac(\pi^{*})$
206 (210)	39440 (0.226)	HOMO-5 \rightarrow LUMO+5(0.51)	$L^{1}(\pi)/acac(\pi) \rightarrow L^{1}(\pi^{*})$
		HOMO-4 \rightarrow LUMO+8(0.17)	$acac(\pi) \rightarrow Ru(d\pi)/acac(\pi^*)$
		3a (S=1/2)	
539 (580)	770 (0.042)	$HOMO-2(\beta) \rightarrow LUMO(\beta) (0.82)$	$\operatorname{Ru}(d\pi)/\operatorname{acac}(\pi)/\operatorname{L}^{5}(\pi) \rightarrow \operatorname{Ru}(d\pi)$
478 (494)	950 (0.023)	HOMO-3(β) \rightarrow LUMO(β) (0.87)	$acac(\pi)/L^{5}(\pi) \rightarrow Ru(d\pi)$
395 (366)	1530 (0.044)	HOMO-2(α) \rightarrow LUMO+1(α) (0.64)	$acac(\pi)/Ru(d\pi) \rightarrow acac(\pi^*)$
		HOMO-2(β) \rightarrow LUMO+2(β) (0.29)	$\operatorname{Ru}(d\pi)/L^5(\pi) \rightarrow L^5(\pi^*)$
332 (329)	2290 (0.016)	HOMO-1(β) \rightarrow LUMO+3(β) (0.35)	$\operatorname{Ru}(d\pi)/L^{5}(\pi) \rightarrow \operatorname{acac}(\pi^{*})$
		HOMO-11(β) \rightarrow LUMO(β) (0.33)	$acac(\pi) \rightarrow Ru(d\pi)$
	7040 (0.020)	HOMO-15(β) \rightarrow LUMO+1(β) (0.59)	$L^{5}(\pi) \rightarrow \operatorname{Ru}(d\pi)$
222 (238)	/840 (0.028)	HOMO-14(β) \rightarrow LUMO+1(β) (0.43)	$L^{5}(\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{Ru}(\mathrm{d}\pi)$
		4a (S=0)	
864 (846)	370 (0.002)	HOMO→LUMO (0.60)	$\operatorname{Ru}(d\pi)/\operatorname{acac}(\pi) \rightarrow L^{6}(\pi^{*})/\operatorname{Ru}(d\pi)$
540 (521)	5370 (0.093)	HOMO-2 \rightarrow LUMO (0.39)	$\operatorname{Ru}(d\pi) \rightarrow L^{6}(\pi^{*})/\operatorname{Ru}(d\pi)$
		HOMO-1 \rightarrow LUMO (0.37)	$\operatorname{Ru}(d\pi)/\operatorname{acac}(\pi) \rightarrow L^6(\pi^*)/\operatorname{Ru}(d\pi)$
436 (444)	11420 (0.042)	HOMO \rightarrow LUMO+1 (0.40)	$\operatorname{Ru}(d\pi)/\operatorname{acac}(\pi) \rightarrow \operatorname{acac}(\pi^*)/L^6(\pi^*)$
		HOMO-5 \rightarrow LUMO (0.20)	$\operatorname{Ru}(d\pi)/\operatorname{acac}(\pi) \rightarrow L^{6}(\pi^{*})/\operatorname{Ru}(d\pi)$
332 (364)	6950 (0.133)	HOMO-2 \rightarrow LUMO+1 (0.38)	$Ru(d\pi) \rightarrow L^{6}(\pi^{*})$
~ - /		HOMO-6 \rightarrow LUMO+1 (0.34)	$L^{6}(\pi) \rightarrow L^{6}(\pi^{*})/\operatorname{Ru}(d\pi)$
274 (258)	15167 (0.025)	$HOMO-3 \rightarrow LUMO+2(0.43)$	$acac(\pi)/L^{6}(\pi) \rightarrow acac(\pi^{*})$
	()	$HOMO - 10 \rightarrow LUMO + 2(0.25)$	$\operatorname{acac}(\pi)/L^{6}(\pi) \rightarrow L^{6}(\pi^{*})$
233 (231)	22710 (0.030)	$HOMO-15 \rightarrow LUMO(0.38)$	$L^{6}(\pi) \rightarrow L^{6}(\pi^{*})/\operatorname{Ru}(d\pi)$
	()	$HOMO-4 \rightarrow LUMO+5(0.31)$	$L^{6}(\pi) \rightarrow L^{6}(\pi^{*})$

Table S14. Electrochemical Data^a

complex	E°_{298}/V	$(\Delta E/\mathrm{mV})^{b}$
	Ox1	Red1
1c	0.44 ^c	-1.06(80)
2a	0.28(70)	-1.31(100)
2b	0.27(70)	-1.36(80)
2c	0.34(70)	-1.25(80)
3a	0.95(70)	-0.71(70)
3b	0.79(70)	-0.67(70)
3c	1.05(70)	-0.58(70)

^{*a*}From cyclic voltammetry in CH₃CN/0.1 M Et₄NClO₄ at 100 mVs⁻¹. ^{*b*}Potentials in V versus SCE; peak potential differences ΔE [mV] (in parentheses). ^{*c*}Irreversible Process.

МО	energy (eV)	composition		
	-	Ru	L	acac ⁻
		α-spin		
HOMO-5	-6.249	0.05	0.69	0.25
HOMO-4	-5.844	0.29	0.17	0.54
HOMO-3	-5.809	0.06	0.18	0.76
HOMO-2	-5.072	0.71	0.09	0.20
HOMO-1	-4.809	0.57	0.07	0.36
SOMO	-4.360	0.33	0.53	0.14
LUMO	-0.461	0.03	0.07	0.89
LUMO+1	-0.291	0.03	0.07	0.89
LUMO+2	-0.136	0.04	0.92	0.04
LUMO+3	0.096	0.10	0.80	0.10
LUMO+4	0.131	0.02	0.93	0.04
LUMO+5	0.239	0.09	0.82	0.09
		β –spin		
HOMO-5	-6.244	0.03	0.71	0.26
HOMO-4	-5.881	0.19	0.10	0.71
HOMO-3	-5.729	0.12	0.06	0.82
HOMO-2	-5.273	0.24	0.64	0.12
HOMO-1	-4.789	0.70	0.12	0.18
SOMO	-4.594	0.63	0.08	0.29
LUMO	-1.918	0.48	0.38	0.14
LUMO+1	-0.449	0.04	0.09	0.87
LUMO+2	-0.190	0.06	0.23	0.71
LUMO+3	-0.118	0.04	0.78	0.18
LUMO+4	0.121	0.06	0.88	0.06
LUMO+5	0.145	0.05	0.88	0.0

Table S15. Composition and Energies of Selected Molecular Orbitals of 1a (S=1/2)

	α-5	pin	
the second		The second second	and a second
SOMO	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3
	β-s	pin	
	and the second s		
НОМО	HOMO-1	HOMO-2	HOMO-3
a second			
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	energy (eV)	composition		
		Ru	L	acac
		a-spin		
HOMO-5	-5.568	0.24	0.53	0.23
HOMO-4	-5.545	0.04	0.38	0.58
HOMO-3	-5.523	0.06	0.83	0.10
HOMO-2	-5.303	0.56	0.31	0.13
HOMO-1	-4.917	0.56	0.10	0.35
SOMO	-4.633	0.28	0.62	0.10
LUMO	-0.520	0.03	0.12	0.85
LUMO+1	-0.443	0.03	0.08	0.89
LUMO+2	-0.146	0.06	0.92	0.02
LUMO+3	0.235	0.03	0.93	0.04
LUMO+4	0.293	0.00	0.93	0.06
LUMO+5	0.421	0.26	0.54	0.19
		β –spin		
HOMO-5	-5.861	0.09	0.26	0.65
HOMO-4	-5.522	0.06	0.84	0.10
HOMO-3	-5.503	0.02	0.81	0.17
HOMO-2	-5.111	0.36	0.48	0.16
HOMO-1	-5.012	0.50	0.35	0.16
SOMO	-4.674	0.62	0.11	0.28
LUMO	-2.156	0.58	0.27	0.16
LUMO+1	-0.478	0.05	0.14	0.81
LUMO+2	-0.373	0.05	0.07	0.88
LUMO+3	-0.073	0.07	0.91	0.03
LUMO+4	0.243	0.02	0.94	0.04
LUMO+5	0.299	0.00	0.93	0.07

Table S16. Composition and Energies of Selected Molecular Orbitals of 1b (S=1/2)

МО	energy (eV)	composition		
		Ru	L	acac
		a-spin		
HOMO-5	-6.330	0.05	0.79	0.16
HOMO-4	-6.288	0.03	0.85	0.13
HOMO-3	-5.851	0.09	0.18	0.73
HOMO-2	-5.706	0.69	0.13	0.19
HOMO-1	-5.231	0.54	0.09	0.37
SOMO	-5.020	0.29	0.62	0.10
LUMO	-0.787	0.03	0.16	0.81
LUMO+1	-0.750	0.03	0.18	0.78
LUMO+2	-0.505	0.05	0.90	0.05
LUMO+3	-0.248	0.05	0.90	0.05
LUMO+4	-0.220	0.11	0.73	0.17
LUMO+5	-0.179	0.04	0.86	0.09
		β -spin		
HOMO-5	-6.320	0.07	0.66	0.27
HOMO-4	-6.284	0.07	0.68	0.25
HOMO-3	-6.075	0.09	0.19	0.72
HOMO-2	-5.474	0.27	0.53	0.20
HOMO-1	-5.394	0.60	0.22	0.17
SOMO	-4.996	0.60	0.10	0.30
LUMO	-2.506	0.59	0.26	0.15
LUMO+1	-0.738	0.04	0.19	0.77
LUMO+2	-0.693	0.05	0.18	0.77
LUMO+3	-0.433	0.06	0.89	0.05
LUMO+4	-0.238	0.01	0.96	0.03
LUMO+5	-0.180	0.03	0.87	0.10

Table S17. Composition and Energies of Selected Molecular Orbitals of 1c (S=1/2)

	α-sr	pin	
SOMO	HOMO-1	HOMO-2	НОМО-3
LUMO	LUMO+1	LUMO+2	LUMO+3
	β-sr	oin	
НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	energy (eV)	composition		
		Ru	L	acac
		α-spin		
HOMO-5	-9.987	0.04	0.86	0.10
HOMO-4	-9.534	0.01	0.35	0.64
HOMO-3	-9.446	0.11	0.17	0.72
HOMO-2	-9.323	0.07	0.84	0.09
HOMO-1	-9.209	0.04	0.89	0.07
НОМО	-9.096	0.21	0.66	0.13
LUMO	-4.406	0.10	0.74	0.15
LUMO+1	-4.337	0.33	0.28	0.39
LUMO+2	-4.298	0.10	0.15	0.75
LUMO+3	-4.257	0.16	0.11	0.73
LUMO+4	-4.061	0.38	0.34	0.28
LUMO+5	-3.195	0.01	0.96	0.03
		β -spin		
HOMO-5	-9.893	0.35	0.58	0.07
HOMO-4	-9.760	0.29	0.40	0.31
HOMO-3	-9.531	0.31	0.15	0.54
HOMO-2	-9.271	0.04	0.91	0.06
HOMO-1	-9.221	0.07	0.80	0.14
НОМО	-9.116	0.11	0.44	0.46
LUMO	-7.247	0.64	0.12	0.24
LUMO+1	-6.890	0.44	0.45	0.11
LUMO+2	-4.254	0.04	0.16	0.80
LUMO+3	-4.222	0.03	0.10	0.87
LUMO+4	-4.041	0.10	0.80	0.10
LUMO+5	-3.886	0.48	0.20	0.31

 Table S18. Composition and Energies of Selected Molecular Orbitals of 1c⁺ (S=1)

МО	energy (eV)	Composition		
		Ru	L	acac
HOMO-5	-2.644	0.13	0.07	0.80
HOMO-4	-2.535	0.11	0.12	0.77
HOMO-3	-1.908	0.13	0.64	0.22
HOMO-2	-1.020	0.74	0.10	0.15
HOMO-1	-0.662	0.69	0.13	0.18
НОМО	-0.158	0.57	0.29	0.14
LUMO	2.630	0.03	0.78	0.19
LUMO+1	2.650	0.03	0.77	0.20
LUMO+2	2.712	0.02	0.83	0.15
LUMO+3	2.884	0.07	0.76	0.18
LUMO+4	3.015	0.06	0.45	0.50
LUMO+5	3.044	0.04	0.40	0.56

 Table S19. Composition and Energies of Selected Molecular Orbitals of 1c⁻ (S=0)

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	energy (eV)	Composition		
		Ru	L	acac
HOMO–5	-6.474	0.03	0.55	0.42
HOMO-4	-6.104	0.19	0.11	0.70
HOMO-3	-5.881	0.20	0.07	0.73
HOMO-2	-5.083	0.63	0.21	0.17
HOMO-1	-4.899	0.61	0.17	0.21
НОМО	-4.765	0.59	0.10	0.31
LUMO	-2.079	0.22	0.71	0.07
LUMO+1	-0.664	0.02	0.58	0.40
LUMO+2	-0.522	0.06	0.47	0.47
LUMO+3	-0.324	0.04	0.09	0.87
LUMO+4	-0.097	0.03	0.90	0.06
LUMO+5	-0.065	0.06	0.85	0.09

Table S20. Composition and Energies of Selected Molecular Orbitals of 2a (S=0)

			and the second s
НОМО	HOMO-1	HOMO-2	HOMO-3
			and the second
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	energy (eV)	composition		
		Ru	L	acac
		α-spin		
HOMO-5	-9.874	0.14	0.76	0.11
HOMO-4	-9.731	0.09	0.79	0.12
HOMO-3	-9.641	0.01	0.96	0.03
HOMO-2	-9.550	0.12	0.75	0.13
HOMO-1	-9.223	0.27	0.13	0.60
SOMO	-9.172	0.19	0.09	0.71
LUMO	-6.080	0.12	0.84	0.04
LUMO+1	-4.409	0.03	0.93	0.04
LUMO+2	-4.181	0.04	0.09	0.87
LUMO+3	-3.997	0.05	0.06	0.90
LUMO+4	-3.829	0.45	0.21	0.34
LUMO+5	-3.609	0.36	0.44	0.20
		β -spin		
HOMO-5	-9.762	0.24	0.30	0.46
HOMO-4	-9.650	0.19	0.65	0.16
HOMO-3	-9.643	0.06	0.87	0.07
HOMO-2	-9.550	0.22	0.50	0.28
HOMO-1	-9.105	0.38	0.18	0.44
SOMO	-9.025	0.38	0.13	0.49
LUMO	-7.009	0.65	0.12	0.22
LUMO+1	-6.031	0.17	0.78	0.05
LUMO+2	-4.345	0.04	0.84	0.12
LUMO+3	-4.145	0.05	0.17	0.78
LUMO+4	-3.939	0.04	0.05	0.91
LUMO+5	-3.601	0.41	0.31	0.28

Table S21. Composition and Energies of Selected Molecular Orbitals of $2a^+$ (S=1/2)

S64

МО	energy (eV)		Composition	
		Ru	L	acac
		a-spin		
HOMO-5	-2.542	0.08	0.05	0.88
HOMO-4	-2.067	0.00	0.98	0.01
HOMO-3	-1.336	0.55	0.29	0.16
HOMO-2	-1.005	0.72	0.10	0.18
HOMO-1	-0.865	0.72	0.09	0.19
SOMO	0.694	0.73	0.73	0.07
LUMO	2.768	0.04	0.16	0.79
LUMO+1	2.868	0.06	0.21	0.73
LUMO+2	2.897	0.01	0.85	0.14
LUMO+3	3.009	0.02	0.93	0.05
LUMO+4	3.060	0.06	0.80	0.15
LUMO+5	3.152	0.04	0.86	0.10
		β -spin		
HOMO-5	-2.642	0.09	0.09	0.82
HOMO-4	-2.523	0.06	0.05	0.88
HOMO-3	-1.896	0.00	0.99	0.01
HOMO-2	-0.994	0.71	0.12	0.17
HOMO-1	-0.800	0.73	0.09	0.19
SOMO	-0.623	0.60	0.25	0.14
LUMO	2.505	0.09	0.64	0.26
LUMO+1	2.779	0.05	0.17	0.78
LUMO+2	2.901	0.01	0.92	0.07
LUMO+3	3.016	0.13	0.25	0.62
LUMO+4	3.054	0.01	0.91	0.08
LUMO+5	3.067	0.05	0.80	0.15

Table S22. Composition and Energies of Selected Molecular Orbitals of $2a^{-}(S=1/2)$

МО	energy (eV)	Composition		
		Ru	L	acac
HOMO-5	-5.884	0.10	0.27	0.63
HOMO-4	-5.790	0.03	0.86	0.12
HOMO-3	-5.715	0.04	0.78	0.19
HOMO-2	-5.119	0.71	0.13	0.16
HOMO-1	-4.722	0.60	0.10	0.29
НОМО	-4.709	0.51	0.24	0.25
LUMO	-2.511	0.19	0.76	0.05
LUMO+1	-0.655	0.04	0.81	0.15
LUMO+2	-0.487	0.05	0.21	0.73
LUMO+3	-0.399	0.05	0.18	0.77
LUMO+4	-0.012	0.02	0.92	0.06
LUMO+5	0.049	0.00	0.88	0.11

 Table S23. Composition and Energies of Selected Molecular Orbitals of 2b (S=0)

		and the second s	
НОМО	HOMO-1	НОМО-2	HOMO-3
A CONTRACTOR	Solution of the second se		
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	energy (eV)		composition	
		Ru	L	acac ⁻
		α-spin		
HOMO-5	-9.720	0.59	0.23	0.18
HOMO-4	-9.636	0.32	0.46	0.21
HOMO-3	-9.066	0.15	0.09	0.76
HOMO-2	-8.929	0.29	0.14	0.57
HOMO-1	-8.647	0.02	0.94	0.04
SOMO	-8.596	0.03	0.94	0.04
LUMO	-6.366	0.08	0.90	0.02
LUMO+1	-4.419	0.03	0.96	0.01
LUMO+2	-3.983	0.06	0.11	0.83
LUMO+3	-3.922	0.05	0.06	0.89
LUMO+4	-3.665	0.49	0.16	0.35
LUMO+5	-3.527	0.42	0.33	0.25
		β -spin		
HOMO-5	-9.602	0.46	0.40	0.14
HOMO-4	-9.404	0.33	0.23	0.43
HOMO-3	-9.175	0.37	0.10	0.53
HOMO-2	-8.683	0.26	0.44	0.29
HOMO-1	-8.624	0.09	0.79	0.13
SOMO	-8.574	0.09	0.76	0.15
LUMO	-6.848	0.63	0.14	0.23
LUMO+1	-6.418	0.14	0.83	0.04
LUMO+2	-4.276	0.08	0.87	0.05
LUMO+3	-3.936	0.05	0.11	0.84
LUMO+4	-3.870	0.04	0.08	0.88
LUMO+5	-3.383	0.48	0.20	0.31

Table S24. Composition and Energies of Selected Molecular Orbitals of 2b⁺ (S=1/2)

МО	energy (eV)	composition		
		Ru	L	acac
		a-spin		
HOMO-5	-2.577	0.07	0.11	0.82
HOMO-4	-2.246	0.00	0.99	0.00
HOMO-3	-1.192	0.72	0.12	0.15
HOMO-2	-1.072	0.55	0.26	0.19
HOMO-1	-0.812	0.70	0.12	0.19
SOMO	0.167	0.22	0.72	0.06
LUMO	2.679	0.05	0.29	0.66
LUMO+1	2.759	0.04	0.30	0.65
LUMO+2	2.929	0.03	0.80	0.17
LUMO+3	2.969	0.02	0.83	0.14
LUMO+4	3.153	0.07	0.75	0.18
LUMO+5	3.447	0.07	0.81	0.12
		β -spin		
HOMO-5	-2.713	0.13	0.09	0.79
HOMO-4	-2.536	0.04	0.11	0.85
НОМО-3	-2.016	0.00	0.99	0.00
HOMO-2	-1.146	0.75	0.10	0.15
HOMO-1	-0.796	0.70	0.11	0.18
SOMO	-0.587	0.66	0.16	0.18
LUMO	2.182	0.06	0.83	0.11
LUMO+1	2.710	0.06	0.34	0.61
LUMO+2	2.788	0.06	0.37	0.58
LUMO+3	2.961	0.02	0.74	0.24
LUMO+4	3.014	0.02	0.67	0.31
LUMO+5	3.537	0.10	0.85	0.04

Table S25. Composition and Energies of Selected Molecular Orbitals of $2b^{-}(S=1/2)$

МО	energy (eV)	Composition		
		Ru	L	acac
HOMO-5	-6.532	0.01	0.83	0.16
HOMO-4	-6.347	0.29	0.12	0.59
HOMO-3	-6.058	0.12	0.09	0.79
HOMO-2	-5.419	0.73	0.11	0.16
HOMO-1	-5.020	0.53	0.22	0.25
НОМО	-4.992	0.59	0.10	0.31
LUMO	-2.770	0.18	0.78	0.04
LUMO+1	-0.939	0.05	0.88	0.07
LUMO+2	-0.768	0.04	0.31	0.65
LUMO+3	-0.692	0.06	0.38	0.56
LUMO+4	-0.487	0.01	0.92	0.07
LUMO+5	-0.393	0.01	0.77	0.22

 Table S26. Composition and Energies of Selected Molecular Orbitals of 2c (S=0)

the second				
НОМО	HOMO-1	НОМО-2	HOMO-3	
A Contraction of the second se				
LUMO	LUMO+1	LUMO+2	LUMO+3	
МО	energy (eV)	Composition		
--------	-------------	---------------	------	------
		Ru	L	acac
		a-spin		
HOMO-5	-10.036	0.64	0.16	0.20
HOMO-4	-9.927	0.42	0.21	0.37
HOMO-3	-9.494	0.04	0.89	0.08
HOMO-2	-9.417	0.05	0.77	0.18
HOMO-1	-9.313	0.16	0.24	0.60
SOMO	-9.226	0.28	0.14	0.59
LUMO	-6.617	0.07	0.90	0.02
LUMO+1	-4.721	0.03	0.96	0.01
LUMO+2	-4.225	0.06	0.15	0.79
LUMO+3	-4.206	0.04	0.10	0.86
LUMO+4	-3.987	0.45	0.24	0.30
LUMO+5	-3.917	0.39	0.32	0.29
		β -spin		
HOMO-5	-9.952	0.50	0.31	0.19
HOMO-4	-9.658	0.36	0.18	0.46
HOMO-3	-9.521	0.15	0.41	0.44
HOMO-2	-9.453	0.13	0.74	0.12
HOMO-1	-9.354	0.21	0.69	0.10
SOMO	-8.965	0.35	0.13	0.51
LUMO	-7.155	0.62	0.13	0.24
LUMO+1	-6.640	0.12	0.85	0.03
LUMO+2	-4.562	0.08	0.88	0.04
LUMO+3	-4.187	0.04	0.13	0.84
LUMO+4	-4.152	0.05	0.12	0.83
LUMO+5	-3.759	0.38	0.38	0.23

Table S27. Composition and Energies of Selected Molecular Orbitals of $2c^+$ (S=1/2)

 β -spin

МО	energy (eV)	Composition		
		Ru	L	acac
		α-spin		
HOMO-5	-2.832	0.06	0.07	0.87
HOMO-4	-2.637	0.00	0.99	0.01
HOMO-3	-1.526	0.74	0.11	0.15
HOMO-2	-1.380	0.58	0.24	0.19
HOMO-1	-1.143	0.69	0.11	0.19
SOMO	-0.052	0.19	0.76	0.05
LUMO	2.337	0.03	0.56	0.41
LUMO+1	2.364	0.04	0.69	0.27
LUMO+2	2.454	0.01	0.88	0.11
LUMO+3	2.567	0.04	0.67	0.28
LUMO+4	2.702	0.06	0.64	0.30
LUMO+5	2.728	0.04	0.55	0.41
		β -spin		
HOMO-5	-3.017	0.14	0.07	0.79
HOMO-4	-2.799	0.04	0.07	0.88
HOMO-3	-2.412	0.00	0.99	0.01
HOMO-2	-1.495	0.75	0.10	0.15
HOMO-1	-1.133	0.70	0.11	0.19
SOMO	-0.963	0.68	0.14	0.18
LUMO	1.970	0.05	0.83	0.12
LUMO+1	2.359	0.04	0.64	0.31
LUMO+2	2.371	0.04	0.73	0.24
LUMO+3	2.482	0.02	0.87	0.11
LUMO+4	2.616	0.05	0.60	0.35
LUMO+5	2.708	0.38	0.62	0.32

Table S28. Composition and Energies of Selected Molecular Orbitals of $2c^{-}(S=1/2)$

 β -spin

НОМО	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	energy (eV)	composition		
		Ru	L	acac
		a-spin		
HOMO-5	-6.375	0.20	0.26	0.53
HOMO-4	-6.098	0.20	0.67	0.14
НОМО-3	-6.046	0.32	0.45	0.23
HOMO-2	-5.683	0.44	0.18	0.38
HOMO-1	-5.437	0.50	0.07	0.43
SOMO	-5.157	0.28	0.64	0.08
LUMO	-1.478	0.04	0.93	0.03
LUMO+1	-0.847	0.03	0.04	0.952
LUMO+2	-0.756	0.04	0.05	0.91
LUMO+3	-0.230	0.06	0.90	0.04
LUMO+4	-0.164	0.18	0.73	0.10
LUMO+5	0.198	0.43	0.26	0.31
		β –spin		
HOMO-5	-6.429	0.08	0.57	0.35
HOMO-4	-6.173	0.07	0.31	0.63
НОМО-3	-6.058	0.04	0.81	0.15
HOMO-2	-5.676	0.47	0.35	0.18
HOMO-1	-5.429	0.47	0.30	0.23
SOMO	-5.105	0.50	0.24	0.26
LUMO	-2.589	0.65	0.19	0.16
LUMO+1	-1.412	0.06	0.90	0.04
LUMO+2	-0.832	0.04	0.05	0.91
LUMO+3	-0.696	0.05	0.06	0.89
LUMO+4	-0.224	0.04	0.93	0.04
LUMO+5	-0.070	0.13	0.81	0.06

Table S29. Composition and Energies of Selected Molecular Orbitals of 3a (S=1/2)

	α-	spin	
SOMO	HOMO-1	HOMO-2	HOMO-3
LUMO	LUMO+1	LUMO+2	LUMO+3
	β-	spin	
300000			
НОМО	HOMO-1	HOMO-2	HOMO-3
	3-37-20-20-20-20-20-20-20-20-20-20-20-20-20-		
LUMO	LUMO+1	LUMO+2	LUMO+3

МО	energy (eV)	composition			
		Ru	L	acac	
		α-spin			
HOMO-5	-6.351	0.05	0.76	0.20	
HOMO-4	-6.263	0.16	0.32	0.52	
НОМО-3	-6.132	0.57	0.30	0.13	
HOMO-2	-5.775	0.45	0.19	0.35	
HOMO-1	-5.555	0.43	0.07	0.50	
SOMO	-5.071	0.15	0.82	0.03	
LUMO	-1.666	0.04	0.94	0.02	
LUMO+1	-1.027	0.05	0.04	0.91	
LUMO+2	-0.966	0.05	0.04	0.91	
LUMO+3	-0.479	0.32	0.51	0.17	
LUMO+4	-0.387	0.14	0.76	0.09	
LUMO+5	-0.227	0.39	0.32	0.29	
β –spin					
HOMO-5	-6.439	0.22	0.28	0.50	
HOMO-4	-6.318	0.02	0.92	0.07	
НОМО-3	-6.139	0.09	0.15	0.76	
HOMO-2	-5.754	0.64	0.16	0.20	
HOMO-1	-5.474	0.51	0.25	0.25	
SOMO	-5.105	0.24	0.60	0.16	
LUMO	-2.758	0.65	0.20	0.15	
LUMO+1	-1.588	0.05	0.91	0.03	
LUMO+2	-1.006	0.04	0.05	0.91	
LUMO+3	-0.913	0.05	0.05	0.89	
LUMO+4	-0.387	0.06	0.91	0.03	
LUMO+5	-0.282	0.23	0.65	0.12	

Table S30. Composition and Energies of Selected Molecular Orbitals of 3b (S=1/2)

МО	energy (eV)	composition		
		Ru	L	acac
		α-spin		
HOMO-5	-6.677	0.12	0.75	0.13
HOMO-4	-6.538	0.18	0.40	0.42
НОМО-3	-6.442	0.52	0.25	0.23
HOMO-2	-5.087	0.40	0.18	0.42
HOMO-1	-5.813	0.42	0.07	0.51
SOMO	-5.508	0.23	0.70	0.07
LUMO	-1.967	0.04	0.94	0.02
LUMO+1	-1.256	0.05	0.05	0.90
LUMO+2	-1.180	0.04	0.05	0.91
LUMO+3	-0.836	0.26	0.61	0.13
LUMO+4	-0.721	0.11	0.81	0.07
LUMO+5	-0.538	0.39	0.31	0.30
		β –spin		
HOMO-5	-6.690	0.26	0.20	0.54
HOMO-4	-6.628	0.03	0.92	0.05
НОМО-3	-6.380	0.11	0.14	0.75
HOMO-2	-6.062	0.54	0.27	0.19
HOMO-1	-5.841	0.44	0.32	0.23
SOMO	-5.487	0.40	0.35	0.25
LUMO	-3.016	0.66	0.19	0.15
LUMO+1	-1.897	0.05	0.92	0.03
LUMO+2	-1.235	0.04	0.05	0.90
LUMO+3	-1.128	0.05	0.05	0.89
LUMO+4	-0.736	0.08	0.88	0.04
LUMO+5	-0.668	0.14	0.78	0.08

Table S31. Composition and Energies of Selected Molecular Orbitals of 3c (S=1/2)

	<i>α</i> -spin					
SOMO	HOMO-1	HOMO-2	HOMO-3			
LUMO	LUMO+1	LUMO+2	LUMO+3			

β -spin

Temp. (K)	$k(s^{-1}) = 1/(t1*60)$		$\ln(k/T)$	1/T x 10 ⁻³
303	6.44x10 ⁻⁶		-17.67	3.3003
313	$7.54 \mathrm{x10}^{-6}$		-17.54	3.1949
323	8.66x10 ⁻⁶		-17.43	3.0960
333	$9.74 \text{x} 10^{-6}$		-17.35	3.0030
Value from ln(k/T) versus 1/			/T) versus 1/T plo	ot
		Value	Standard Error	
Intercept		-14.12	±0.17	
S	lope		-1.07	±0.05

Activation enthalpy (ΔH^{\ddagger}) and activation entropy (ΔS^{\ddagger}) values were obtained from the slope and intercept of plots of $\ln(k/T)$ versus 1/T using the following equation:

 $\ln(k/T) = \ln(R/Nh) + \Delta S^{\ddagger}/R - \Delta H^{\ddagger}/RT$

where N = Avogadro's number, R = universal gas constant, and h = Planck's constant.

complex	Rate Constants (k) (in s^{-1}) at 333 K	Standard Error
	k = [=1/(t1*60)]	
1a	9.74 x 10 ⁻⁶	$\pm 1.9 \text{ x } 10^{-7}$
1b	8.76 x 10 ⁻⁶	$\pm 2.8 \text{ x } 10^{-7}$
1c	6.83 x 10 ⁻⁶	$\pm 1.5 \text{ x } 10^{-7}$

Table S33. Change in Rate Constant Values of 1 on Varying Substituents