Supporting Information

Palladium-Catalyzed Oxidative Borylation of Allylic C-H Bonds in Alkenes

Lujia Mao, Rüdiger Bertermann, Simon G. Rachor, Kálmán J. Szabó and Todd B. Marder at Lujia Mao, Rüdiger Bertermann, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Rüdiger Bertermann, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Rüdiger Bertermann, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Rüdiger Bertermann, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Rüdiger Bertermann, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Rüdiger Bertermann, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Rüdiger Bertermann, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Rudiger Bertermann, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Rudiger Bertermann, Kalmán J. Szabó and Todd B. Marder at Lujia Mao, Rudiger Bertermann, Kalmán J. Szabó and Rudiger Bertermann, Kalmán J. Szabó and

Contents

I. General Information	S2
II. Preparation of Pd-pincer complexes A and B	S3
III. Preparation of F-TEDA-PF ₆	S3
IV. Preparation of Compound 1j	S3
V. Preparation of Compounds 11-r	S3
VI. Optimization of Conditions	S4
VII. Allylic C-H Borylation of Alkenes	S7
VIII. Application in One-pot Carbonyl Allylation Reactions	S14
IX. NOE Studies	S21
X. Mechanistic Study	S24
XI. ¹ H, ¹³ C, ¹¹ B and ¹⁹ F NMR Spectra.	S26

^a Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

^b Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

I. General Information

All reagents were purchased from Alfa-Aesar, Aldrich, ABCR or VWR, and were checked for purity by GC-MS and/or ¹H NMR spectroscopy and used as received. B₂pin₂ was kindly provided by AllylChem Co. Ltd. (Dalian, China). HPLC grade solvents were argon saturated, dried using an Innovative Technology Inc. Pure-Solv Solvent Purification System, and further deoxygenated using the freeze-pump-thaw method. CDCl₃ was purchased from Cambridge Isotope Laboratories, and dried over 4Å molecular sieves, deoxygenated using the freeze-pump-thaw method and vacuum transferred into a sealed vessel.

Automated flash chromatography was performed using a Biotage[®] Isolera Four system, on silica gel (Biotage SNAP cartridge KP-Sil 10 g and KP-Sil 25 g). Commercially available, precoated TLC plates (Polygram[®] Sil G/UV254) were purchased from Machery-Nagel. The removal of solvent was performed on a rotary evaporator *in vacuo* at a maximum temperature of 30 °C.

GC-MS analyses were performed using an Agilent 7890A gas chromatograph (column: HP-5MS 5% phenyl methyl siloxane, 10 m, Ø 0.25 mm, film 0.25 µm; injector: 250 °C; oven: 40 °C (2 min), 40 °C to 280 °C (20 °C min⁻¹); carrier gas: He (1.2 mL min⁻¹)) equipped with an Agilent 5975C inert MSD with triple-axis detector operating in EI mode and an Agilent 7693A series auto sampler/injector. HRMS analyses were performed using a Thermo Fischer Scientific Exactive Plus Orbitrap MS system (ASAP, ESI or HESI probe). Elemental analyses were performed on a Leco CHNS-932 Elemental Analyzer in our Institute.

All NMR spectra were recorded at ambient temperature using Bruker Avance III HD 300 NMR (¹H, 300 MHz; ¹³C{¹H}, 75 MHz; ¹¹B, 96 MHz), or Bruker Avance 400 NMR (¹H, 400 MHz; ¹³C{¹H}, 100 MHz; ¹¹B, 128 MHz), or Bruker Avance 500 NMR (¹H, 500 MHz; ¹³C{¹H}, 125 MHz; ¹¹B, 160 MHz; ¹⁹F, 470 MHz) spectrometers. ¹H NMR chemical shifts are reported relative to TMS and were referenced via residual proton resonances of the corresponding deuterated solvent (CDCl₃: 7.26 ppm) whereas ¹³C{¹H} NMR spectra are reported relative to TMS *via* the carbon signals of the deuterated solvent (CDCl₃: 77.16 ppm). ¹¹B NMR chemical shifts are quoted relative to BF₃·Et₂O as external standard. ¹⁹F NMR chemical shifts are quoted relative to CFCl₃ as external standard. All ¹³C NMR spectra were broad-band ¹H decoupled.

II. Preparation of Pd-pincer complexes A and B

The Pd-pincer complexes A and B were prepared via the following method. The characterization data (¹H, ¹³C NMR and elemental analysis) are in accordance with those in the literature.¹

$$PdCl_{2} + conc. HCl \xrightarrow{40 \, ^{\circ}C} \xrightarrow{EtOH, r.t.} Pd(cod)Cl_{2} \qquad (ref. 1a)$$

$$Pd(cod)Cl_{2} \qquad (ref. 1b)$$

$$Pd(ref. 1b)$$

$$Pd(ref. 1b)$$

$$Pd(ref. 1c)$$

$$Pd(ref.$$

III. Preparation of F-TEDA-PF₆

F-TEDA-PF₆ was prepared via anion exchange from the commercial BF₄⁻ salt. The characterization data (¹H, ¹³C and ¹⁹F NMR) are in accordance with those in the literature.²

IV. Preparation of Compound 1j

Compound 1j was prepared via the following method. The characterization data (¹H and ¹³C NMR) are in accordance with those in the literature.³

V. Preparation of Compounds 11-r

Compounds 11-r were prepared via the following method. Their characterization data (¹H and ¹³C NMR) are in accordance with those in the literature.⁴

VI. Optimization of Conditions

1. Catalysts and ligands^a

Entry	Catalyst	Ligand	% 2a ^b	$E:Z^c$	% 3a ^d	% Conversion
1	A	-	89%	50:1	-	100%
2	$Pd(OAc)_2$	-	$N.D.^e$	-	21%	24%
3	$PdCl_2$	-	$N.D.^e$	-	43%	48%
4	$Pd(TFA)_2$	-	$N.D.^e$	-	34%	39%
5	$Pd(PPh_3)_4$	-	$N.D.^e$	-	68%	73%
6	Pd(dba)2	-	$N.D.^e$	-	72%	79%
7	$Pd(OAc)_2$	dtbpy	$N.D.^e$	-	29%	33%
8	$Pd(OAc)_2$	1,10-Phen	$N.D.^e$	-	24%	29%
9	$Pd(OAc)_2$	4,4'- Me ₂ Phen	$N.D.^e$	-	29%	33%
10	$Pd(OAc)_2$	bpy	$N.D.^e$	-	24%	27%
11	$Pd(OAc)_2$	Py	N.D.^e	-	21%	25%

^a Standard conditions: Reactions were carried out on a 0.2 mmol scale. **1a** (1.0 equiv), B_2pin_2 (1.5 equiv), Catalyst (10 mol %), Ligand, K_2CO_3 (2.0 equiv), F-TEDA-BF₄ (1.0 equiv), CH_3NO_2 (1.0 mL). ^b Yields were determined by GC-MS analysis vs. a calibrated internal standard and are averages of two experiments. ^c E/Z isomer ratios were determined by ¹H NMR spectroscopy of the crude product. ^d Yields were determined by ¹H NMR analysis vs. an internal standard and are averages of two experiments. ^e N.D. = not detected.

2. Additives^a

Entry	Base	% 2a ^b	$E:Z^c$	% 3a ^d	% Conversion
1	K_2CO_3	89%	50:1	-	100%
2	Li_2CO_3	61%	44:1	-	68%
3	Cs_2CO_3	74%	47:1	-	79%
4	LiF	58%	41:1	-	64%
5	NaF	52%	48:1	-	55%
6	CsF	55%	43:1	-	59%
7	NaHCO ₃	43%	45:1	-	49%
8	KHCO ₃	49%	50:1	-	56%
9	KO ^t Bu	$N.D.^e$	-	47%	53%

^a Standard conditions: Reactions were carried out on a 0.2 mmol scale. **1a** (1.0 equiv), B₂pin₂ (1.5 equiv), Pd-NCN complex **(A)** (10 mol %), Additive (2.0 equiv), F-TEDA-BF₄ (1.0 equiv), CH₃NO₂ (1.0 mL). ^b Yields were determined by GC-MS analysis vs. a calibrated internal standard and are averages of two experiments. ^c E/Z isomer ratios were determined by ¹H NMR spectroscopy of the crude product. ^d Yields were determined by ¹H NMR analysis vs. an internal standard and are averages of two experiments. ^e N.D. = not detected.

3. Solvents^a

Entry	Solvent	% 2a ^b	$E:Z^c$	% 3a ^d	% Conversion
1	CH_3NO_2	89%	50:1	-	100%
2	toluene	49%	43:1	27%	81%
3	benzene	54%	47:1	29%	85%
4	MTBE	$\mathrm{N.D.}^e$	-	34%	39%
5	CH ₃ CN	$N.D.^e$	-	42%	48%

^a Standard conditions: Reactions were carried out on a 0.2 mmol scale. **1a** (1.0 equiv), B₂pin₂ (1.5 equiv), Pd-NCN complex **(A)** (10 mol %), K₂CO₃ (2.0 equiv), F-TEDA-BF₄ (1.0 equiv), solvent (1.0 mL). ^b Yields were determined by GC-MS analysis vs. a calibrated internal standard and are averages of two experiments. ^c E/Z isomer ratios were determined by ¹H NMR spectroscopy of the crude product. ^d Yields were determined by ¹H NMR analysis vs. an internal standard and are averages of two experiments. ^e N.D. = not detected.

4. Temperature^a

Entry	Temperature (°C)	% 2a ^b	E:Z	% 3a ^c	% Conversion
1	80	74%	48:1	21%	100%
2	60	89%	50:1	-	100%
3	40	63%	50:1	32%	100%
4	room temperature	39%	43:1	35%	79%

^a Standard conditions: Reactions were carried out on a 0.2 mmol scale. **1a** (1.0 equiv), B₂pin₂ (1.5 equiv), Pd-NCN complex **(A)** (10 mol %), K₂CO₃ (2.0 equiv), F-TEDA-BF₄ (1.0 equiv), CH₃NO₂ (1.0 mL). ^b Yields were determined by GC-MS analysis vs. a calibrated internal standard and are averages of two experiments. ^cYields were determined by ¹H NMR analysis vs. an internal standard and are averages of two experiments.

VII. Allylic C-H Borylation of Alkenes

$$C_5H_{11} + O B - B O O Pd-NCN complex A 10 mol % F-TEDA-BF_4 (1 equiv) \\ \mathbf{1a} \quad B_2\mathbf{pin_2} \text{ (1.5 equiv)} \quad K_2\mathbf{CO_3} \text{ (2 equiv)} \\ \mathbf{CH_3NO_2} \text{ (1 mL), 60 °C} \quad \mathbf{2a} \quad (A) \quad F-TEDA-BF_4$$

Pd-NCN complex **A** (10 mol %, 7 mg) and F-TEDA-BF₄ (1 equiv, 71 mg, 0.2 mmol) were dissolved in 0.5 mL of CH₃NO₂ in a dried vial in a glove-box under argon and the reaction was stirred for 5 min. Then, B₂pin₂ (1.5 equiv, 76 mg, 0.3 mmol), **1a** (1.0 equiv, 31 μ L, 0.2 mmol), and K₂CO₃ (2.0 equiv, 55 mg, 0.4 mmol) were added in this order. Finally, another 0.5 mL of CH₃NO₂ was added to the mixture. The reaction was heated at 60 °C under argon until the starting material was completely consumed (determined by GC-MS). The crude mixture was filtered through a pad of Celite. Then, the solvent was slowly removed on a rotary evaporator (30 °C, 300 mbar). A colorless oil in 83% yield (40 mg, E:Z=50:1) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs.

The reaction was scaled up to 1 mmol according to the following procedure:

Pd-NCN complex **A** (10 mol %, 36 mg) and F-TEDA-BF₄ (1 equiv, 354 mg, 1 mmol) were dissolved in 2 mL of CH₃NO₂ in a dried vial in a glove-box under argon and the reaction was stirred for 5 min. Then, B₂pin₂ (1.5 equiv, 381 mg, 1.5 mmol), **1a** (1.0 equiv, 157 μ L, 1 mmol), and K₂CO₃ (2.0 equiv, 276 mg, 2 mmol) were added in this order. Finally, another 3 mL of CH₃NO₂ was added to the mixture. The reaction was heated at 60 °C under argon until the starting material was completely consumed (determined by GC-MS). The crude mixture was filtered through a pad of Celite. Then, the solvent was slowly removed on a rotary evaporator (30 °C, 300 mbar). A colorless oil in 79% yield (188 mg, E:Z = 50:1) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs.

(E)-4,4,5,5-Tetramethyl-2-(oct-2-en-1-yl)-1,3,2-dioxaborolane (2a)

2a-major (E)-isomer

¹**H NMR** (400 MHz, CDCl₃) δ 5.48–5.33 (m, 2H), 1.99-1.92 (m, 2H), 1.63 (d, J = 6 Hz, 2H), 1.37–1.19 (m, 6H), 1.24 (s, 12H), 0.87 (t, J = 7 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 131.2, 124.8, 83.3, 32.8, 31.5, 29.5, 24.9, 22.7, 16.4 (broad, low intensity), 14.2.

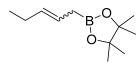
¹¹**B NMR** (128 MHz, CDCl₃) δ 33.0.

HRMS (ASAP): m/z for $C_{14}H_{28}BO_2$ [M+H⁺] calcd: 239.2177, found: 239.2172.

2-(Hex-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2b)

Following the above method, a colorless oil in 84% yield (35 mg, E:Z = 20:1) from **1b** (25 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

2b-major (E)-isomer


¹**H NMR** (400 MHz, CDCl₃) δ 5.47–5.33 (m, 2H), 1.99–1.90 (m, 2H), 1.65–1.61 (m, 2H), 1.34 (tq, $J_I = 7$ Hz, $J_2 = 7$ Hz, 2H), 1.24 (s, 12H), 0.86 (t, J = 7 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 130.9, 125.0, 83.3, 35.0, 24.9, 22.9, 16.1 (broad, low intensity), 13.8.

¹¹**B NMR** (128 MHz, CDCl₃) δ 33.0.

HRMS (ASAP): m/z for $C_{12}H_{24}BO_2$ [M+H⁺] calcd: 211.1864, found: 211.1860.

4,4,5,5-Tetramethyl-2-(pent-2-en-1-yl)-1,3,2-dioxaborolane (2c)

Following the above method, a colorless oil in 79% yield (31 mg, E:Z=17:1) from **1c** (22 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

2c-major (E)-isomer

¹H NMR (300 MHz, CDCl₃) δ 5.50–5.33 (ov. m, 2H), 2.04–1.93 (m, 2H), 1.66–1.58 (ov. m, 2H), 1.24 (s, 12H), 0.94 (t, J = 7 Hz, 3H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 132.8, 123.8, 83.3, 25.9, 24.9, 16.3 (broad, low intensity), 14.2.

¹¹**B NMR** (96 MHz, CDCl₃) δ 33.0.

HRMS (ASAP): m/z for $C_{11}H_{22}BO_2$ [M+H⁺] calcd: 197.1707, found: 197.1704.

2-(2-Cyclohexylideneethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)

Following the above method, a colorless oil in 86% yield (41 mg) from 1d (31 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 5.17 (tquint, J_1 = 8 Hz, J_2 = 1 Hz, 1H), 2.12–2.04 (m, 4H), 1.60 (d, J = 8 Hz, 2H), 1.54–1.45 (m, 6H), 1.24 (s, 12H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 139.9, 115.1, 83.2, 37.2, 28.8, 28.7, 27.8, 27.1, 24.9, 11.2 (broad, low intensity).

¹¹**B NMR** (160 MHz, CDCl₃) δ 33.1.

HRMS (ASAP): m/z for $C_{14}H_{26}BO_2$ [M+H⁺] calcd: 237.2020, found: 237.2018.

2-(2-Cyclopentylideneethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e)

Following the above method, a colorless oil in 78% yield (35 mg) from 1e (28 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 5.33 (tquint., $J_1 = 8$ Hz, $J_2 = 1$ Hz, 1H), 2.25–2.12 (m, 4H), 1.71–1.53 (ov. m, 6H), 1.24 (s, 12H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 143.7, 114.1, 83.2, 33.7, 28.9, 26.8, 26.4, 24.9, 11.0 (broad, low intensity).

¹¹**B NMR** (96 MHz, CDCl₃) δ 33.1.

HRMS (ASAP): m/z for $C_{13}H_{24}BO_2$ [M+H⁺] calcd: 223.1864, found: 223.1861.

4,4,5,5-Tetramethyl-2-(3-methylpent-2-en-1-yl)-1,3,2-dioxaborolane (2f)

Following the above method, a colorless oil in 83% yield (35 mg, E:Z=2:1) from **1f** (25 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

2f-a mixture of isomers

¹**H NMR** (500 MHz, CDCl₃) δ 5.26–5.16 (m, 1H), 2.04–1.95 (m, 2H), 1.68–1.66 and 1.62–1.56 (m, 5H), 1.23 (s, 12H), 0.99–0.92 (m, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 137.24, 137.21, 118.1, 117.2, 83.20, 83.17, 32.6, 24.89, 24.88, 23.0, 15.9, 13.1, 12.6, 11.9 (broad, low intensity).

¹¹**B NMR** (160 MHz, CDCl₃) δ 33.1.

HRMS (ASAP): m/z for $C_{12}H_{24}BO_2$ [M+H⁺] calcd: 211.1864, found: 211.1860.

4,4,5,5-Tetramethyl-2-(3-methylbut-2-en-1-yl)-1,3,2-dioxaborolane (2g)

Following the above method, a colorless oil in 68% yield (27 mg) from 1g (22 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 5.22 (tqq, J_1 = 8 Hz, J_2 = 2 Hz, J_3 = 1 Hz, 1H), 1.69–1.68 (m, 3H), 1.62–1.57 (m, 5H), 1.24 (s, 12H).

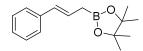
¹³C{¹H} NMR (125 MHz, CDCl₃) δ 131.7, 118.7, 83.2, 25.9, 24.9, 17.8, 12.0 (broad, low intensity). ¹¹B NMR (160 MHz, CDCl₃) δ 33.2.

HRMS (ASAP): m/z for $C_{11}H_{22}BO_2$ [M+H⁺] calcd: 197.1707, found: 197.1703.

2-(Hexa-2,5-dien-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2h)

Following the above method, a colorless oil in 72% yield (30 mg, E:Z=11:1) from **1h** (24 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

2h-major (E)-isomer


¹H NMR (400 MHz, CDCl₃) δ 5.88–5.75 (m, 1H), 5.54–5.35 (m, 2H), 5.04–4.98 (m, 1H), 4.97–4.91 (m, 1H), 2.78–2.70 (m, 2H), 1.66 (d, J = 7 Hz, 2H), 1.24 (s, 12H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.8, 128.3, 126.4, 114.7, 83.3, 37.0, 27.7 (broad, low intensity), 24.9.

¹¹**B NMR** (128 MHz, CDCl₃) δ 33.0.

HRMS (ASAP): m/z for $C_{12}H_{22}BO_2$ [M+H⁺] calcd: 209.1707, found: 209.1700.

(E)-2-Cinnamyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2i)

Following the above method, a colorless oil in 69% yield (34 mg) from 1i (27 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:Et₂O = 97:3), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.35–7.31 (m, 2H), 7.30–7.23 (m, 2H), 7.19–7.13 (m, 1H), 6.41–6.24 (m, 2H), 1.87 (d, J = 7 Hz, 2H), 1.26 (s, 12H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.3, 130.4, 128.5, 126.6, 126.4, 126.0, 83.5, 24.9. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (128 MHz, CDCl₃) δ 33.1.

HRMS (ASAP): m/z for $C_{15}H_{22}BO_2$ [M+H⁺] calcd: 245.1707, found: 245.1702.

(E)-2-(3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)isoindoline-1,3-dione (2j)

Following the above method, a colorless oil in 69% yield (43 mg) from **1j** (37 mg, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 95:5), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.86–7.81 (m, 2H), 7.73–7.68 (m, 2H), 6.67–6.57 (m, 2H), 1.81 (d, J = 6 Hz, 2H), 1.26 (s, 12H).

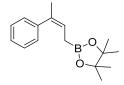
¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.8, 134.3, 131.9, 123.5, 119.0, 117.9, 83.7, 24.9, 14.4 (broad, low intensity).

¹¹**B NMR** (160 MHz, CDCl₃) δ 32.9.

HRMS (ASAP): m/z for $C_{17}H_{20}BNO_4$ [M+H⁺] calcd: 313.1485, found: 313.1481.

2-(Cyclohex-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2k)

Following the above method, a colorless oil in 71% yield (30 mg) from 1k (20 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 95:5), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.


¹**H NMR** (400 MHz, CDCl₃) δ 5.75–5.64 (m, 2H), 2.02–1.95 (m, 2H), 1.83–1.72 (m, 2H), 1.70–1.56 (m, 3H), 1.24 (s, 12H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 127.7, 126.2, 83.3, 25.1, 24.9, 24.8, 24.3, 22.7, 21.4 (broad, low intensity).

¹¹**B NMR** (128 MHz, CDCl₃) δ 33.5.

HRMS (ASAP): m/z for $C_{12}H_{22}BO_2$ [M+H⁺] calcd: 209.1707, found: 209.1701.

(Z)-4,4,5,5-Tetramethyl-2-(3-phenylbut-2-en-1-yl)-1,3,2-dioxaborolane (2l)

Following the above method, a colorless oil in 71% yield (36.7 mg) from 11 (26.4 mg, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 95:5), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.33–7.29 (m, 2H), 7.23–7.18 (m, 3H), 5.60 (tq, J_1 = 8 Hz, J_2 = 1.5 Hz, 1H), 2.03 (dt, J_1 = 1.5 Hz, J_2 = 1.5 Hz, 3H), 1.62 (dq, J_1 = 8 Hz, J_2 = 1.5 Hz, 2H), 1.23 (s, 12H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 142.2, 136.1, 128.3, 128.2, 126.4, 122.0, 83.3, 25.7, 24.9, 13.6 (broad, low intensity).

¹¹**B NMR** (160 MHz, CDCl₃) δ 33.0.

HRMS (ASAP): m/z for $C_{16}H_{24}BO_2$ [M+H⁺] calcd: 259.1864, found: 259.1861.

(Z)-4,4,5,5-Tetramethyl-2-(3-(p-tolyl)but-2-en-1-yl)-1,3,2-dioxaborolane (2m)

Following the above method, a colorless oil in 74% yield (40.3 mg) from 1m (29.2 mg, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 95:5), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

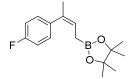
¹H NMR (300 MHz, CDCl₃) δ 7.17–7.07 (m, 4H), 5.58 (tq, J_I = 8 Hz, J_2 = 1.5 Hz, 1H), 2.34 (s, 3H), 2.03 (dt, J_I = 1.5 Hz, J_2 = 1.5 Hz, 3H), 1.64 (dq, J_I = 8 Hz, J_2 = 1.5 Hz, 2H), 1.24 (s, 12H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 139.2, 135.9 (2C), 128.8, 128.2, 121.7, 83.3, 25.7, 24.9, 21.3, 13.8 (broad, low intensity).

¹¹**B NMR** (96 MHz, CDCl₃) δ 33.1.

HRMS (ASAP): m/z for $C_{17}H_{26}BO_2$ [M+H⁺] calcd: 273.2020, found: 273.2016.

(Z)-2-(3-(4-Methoxyphenyl)but-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2n)

Following the above method, a colorless oil in 79% yield (45.5 mg) from 1n (32.4 mg, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 95:5), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.


¹**H NMR** (300 MHz, CDCl₃) δ 7.20–7.13 (m, 2H), 6.90–6.83 (m, 2H), 5.56 (tq, $J_I = 8$ Hz, $J_2 = 1.5$ Hz, 1H), 3.80 (s, 3H), 2.02 (dt, $J_I = 1.5$ Hz, $J_2 = 1.5$ Hz, 3H), 1.65 (dq, $J_I = 8$ Hz, $J_2 = 1.5$ Hz, 2H), 1.24 (s, 12H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.1, 135.4, 134.5, 129.3, 121.5, 113.5, 83.2, 55.3, 25.7, 24.9, 13.7 (broad, low intensity).

¹¹**B NMR** (96 MHz, CDCl₃) δ 33.2.

HRMS (ASAP): *m/z* for C₁₇H₂₆BO₃ [M+H⁺] calcd: 289.1970, found: 289.1965.

(Z)-2-(3-(4-Fluorophenyl)but-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20)

Following the above method, a colorless oil in 70% yield (38.7 mg) from 10 (30.0 mg, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 95:5), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.22–7.13 (m, 2H), 7.04–6.95 (m, 2H), 5.59 (tq, J_1 = 8 Hz, J_2 = 1.5 Hz, 1H), 2.01 (dt, J_1 = 1.5 Hz, J_2 = 1.5 Hz, 3H), 1.60 (dq, J_1 = 8 Hz, J_2 = 1.5 Hz, 2H), 1.23 (s, 12H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 161.6 (d, J_{C-F} = 244 Hz), 138.1 (d, J_{C-F} = 3 Hz), 135.1, 129.8 (d, J_{C-F} = 8 Hz), 122.4, 114.9 (d, J_{C-F} = 21 Hz), 83.3, 25.7, 24.9, 13.6 (broad, low intensity).

¹¹**B NMR** (96 MHz, CDCl₃) δ 33.0.

¹⁹**F NMR** (470 MHz, CDCl₃) δ -116.7 (tt, J_1 = 6 Hz, J_2 = 9 Hz, 1F).

HRMS (ASAP): m/z for $C_{16}H_{23}BFO_2$ [M+H+] calcd: 277.1770, found: 277.1764.

(Z)-4,4,5,5-Tetramethyl-2-(3-(m-tolyl)but-2-en-1-yl)-1,3,2-dioxaborolane (2p)

Following the above method, a colorless oil in 73% yield (39.7 mg) from 1p (29.2 mg, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 95:5), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.25–7.17 (m, 1H), 7.08–7.00 (m, 3H), 5.59 (tq, J_I = 8 Hz, J_2 = 1.5 Hz, 1H), 2.35 (s, 3H), 2.03 (dt, J_I = 1.5 Hz, J_2 = 1.5 Hz, 3H), 1.64 (dq, J_I = 8 Hz, J_2 = 1.5 Hz, 2H), 1.25 (s, 12H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 142.2, 137.5, 136.1, 129.0, 128.0, 127.2, 125.3, 121.8, 83.3,

25.7, 24.9, 21.6, 13.7 (broad, low intensity).

¹¹**B NMR** (96 MHz, CDCl₃) δ 33.1.

HRMS (ASAP): m/z for $C_{17}H_{26}BO_2$ [M+H⁺] calcd: 273.2020, found: 273.2018.

(Z)-2-(3-(3-Fluorophenyl)but-2-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2q)

Following the above method, a colorless oil in 74% yield (40.9 mg) from 1q (30.0 mg, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 95:5), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.31–7.22 (m, 1H), 7.02–6.85 (m, 3H), 5.61 (tq, J_I = 8 Hz, J_2 = 1.5 Hz, 1H), 2.01 (dt, J_I = 1.5 Hz, J_2 = 1.5 Hz, 3H), 1.62 (dq, J_I = 8 Hz, J_2 = 1.5 Hz, 2H), 1.24 (s, 12H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 162.8 (d, J_{C-F} = 245 Hz), 144.6 (d, J_{C-F} = 7 Hz), 134.9 (d, J_{C-F} = 2 Hz), 129.6 (d, J_{C-F} = 8 Hz), 123.9 (d, J_{C-F} = 3 Hz), 122.9, 115.2 (d, J_{C-F} = 21 Hz), 113.2 (d, J_{C-F} = 21 Hz), 83.4, 25.5, 24.9, 13.8 (broad, low intensity).

¹¹**B NMR** (96 MHz, CDCl₃) δ 33.0.

¹⁹**F NMR** (470 MHz, CDCl₃) δ -114.0 (ddd, J_1 = 1.5 Hz, J_2 = 6 Hz, J_3 = 9 Hz, 1F).

HRMS (ASAP): m/z for $C_{16}H_{23}BFO_2$ [M+H⁺] calcd: 277.1770, found: 277.1766.

(Z)-4,4,5,5-Tetramethyl-2-(3-(naphthalen-2-yl)but-2-en-1-yl)-1,3,2-dioxaborolane (2r)

Following the above method, a colorless oil in 64% yield (39.5 mg) from 1r (36.5 mg, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 95:5), during which some decomposition occurs. The reaction was complete within 9 h at 60 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.85–7.77 (m, 3H), 7.70 (s, 1H), 7.48–7.37 (m, 3H), 5.71 (tq, J_I = 8 Hz, J_2 = 1.5 Hz, 1H), 2.14 (dt, J_I = 1.5 Hz, J_2 = 1.5 Hz, 3H), 1.71 (dq, J_I = 8 Hz, J_2 = 1.5 Hz, 2H), 1.25 (s, 12H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 139.7, 136.0, 133.5, 132.3, 127.9, 127.7, 127.6, 126.9, 126.8, 125.9, 125.5, 122.6, 83.3, 25.7, 24.9, 14.0 (broad, low intensity).

¹¹**B NMR** (96 MHz, CDCl₃) δ 33.1.

HRMS (ASAP): m/z for $C_{20}H_{26}BO_2$ [M+H⁺] calcd: 309.2020, found: 309.2016.

VIII. Application in One-pot Carbonyl Allylation Reactions

Step 1: Pd-NCN complex A (10 mol %)

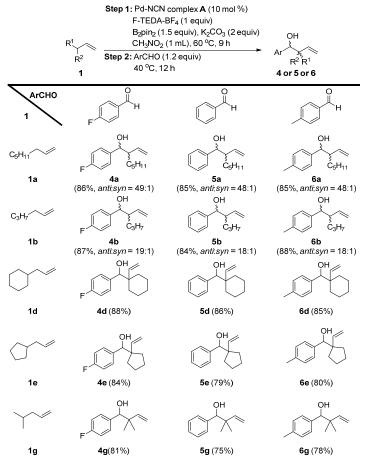
F-TEDA-BF₄ (1 equiv)

$$B_2pin_2$$
 (1.5 equiv), K_2CO_3 (2 equiv)

 CH_3NO_2 (1 mL), 60 °C, 9 h

Step 2: p -FC₆H₄CHO (1.2 equiv)

 40 °C, 12 h


F

 A_a

Step 1: Pd-NCN complex A (10 mol %, 7 mg) and F-TEDA-BF₄ (1 equiv, 71 mg, 0.2 mmol) were dissolved in 0.5 mL of CH₃NO₂ in a dried vial in a glove-box under argon and the reaction was stirred for 5 min. Then, B₂pin₂ (1.5 equiv, 76 mg, 0.3 mmol), 1a (1.0 equiv, 31 μ L, 0.2 mmol), and K₂CO₃ (2.0 equiv, 55 mg, 0.4 mmol) were added in this order. Finally, another 0.5 mL of CH₃NO₂ was added to the mixture. The reaction was heated at 60 °C under argon until the starting material was completely consumed (determined by GC-MS).

Step 2: 4-Fluorobenzaldehyde (1.2 equiv, 26 μ L, 0.24 mmol) was added to the reaction mixture after it cooled to room temperature, and the reaction was heated at 40 °C for 12 h. The crude mixture was filtered through a pad of Celite. Then, the solvent was removed on a rotary evaporator. A colorless oil in 86% yield (41 mg, *anti:syn* = 49:1) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

Scheme S1. Application in One-pot Carbonyl Allylation Reactions^{a,b,c}

 a Step **1**: **1** (0.2 mmol, 1 equiv), Pd-NCN complex **A** (10 mol %), F-TEDA-BF₄ (0.2 mmol, 1 equiv), K₂CO₃ (0.4 mmol, 2 equiv), B₂pin₂ (0.3 mmol, 1.5 equiv), CH₃NO₂ (1 mL), 60 $^{\circ}$ C. Step **2**: ArCHO (0.24 mmol, 1.2 equiv), 40 $^{\circ}$ C. b Isolated yield. c The *anti/syn* ratios were determined by 1 H NMR spectroscopy of the crude product.

The allylic C-H borylation of **1a**, accomplished under the standard conditions, followed by addition of 1.2 equiv of an aldehyde, such as 4-fluorobenzaldehyde, benzaldehyde, and *p*-tolualdehyde, gave homoallyl alcohols **4a**, **5a** and **6a** in overall yields of 86%, 85% and 85%, respectively. When we employed **1b** as the substrate, the one-pot, two-step carbonyl allylation reactions also proceeded with high efficiency, affording **4b**, **5b** and **6b** in overall yields of 87%, 84% and 88%, respectively. When acyclic alkyl groups were replaced with cyclohexyl (**1d**) or cyclopentyl (**1e**) groups, the allylation reactions proceeded smoothly giving the desired homoallyl alcohols (**4-6)d** and (**4-6)e** in high overall yields. With disubstituted alkene **1g** as starting material, products **4g**, **5g** and **6g** were obtained in overall yields of 75%-81%.

1-(4-Fluorophenyl)-2-vinylheptan-1-ol (4a)

4a-major-anti-isomer

¹H NMR (500 MHz, CDCl₃) δ 7.31–7.25 (m, 2H), 7.05–6.99 (m, 2H), 5.63 (ddd, $J_I = 9$ Hz, $J_2 = 10$ Hz, $J_3 = 17$ Hz, 1H), 5.25 (dd, $J_I = 2$ Hz, $J_2 = 10$ Hz, 1H), 5.17 (ddd, $J_I = 1$ Hz, $J_2 = 2$ Hz, $J_3 = 17$ Hz, 1H), 4.35 (dd, $J_I = 2$ Hz, $J_2 = 8$ Hz, 1H), 2.33–2.30 (m, 1H), 2.26–2.19 (m, 1H), 1.37–1.04 (ov. m, 8H, slightly overlapped with the *syn* isomer), 0.83 (t, J = 7 Hz, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.3 (d, J_{C-F} = 245 Hz), 139.3, 138.4 (d, J_{C-F} = 3 Hz), 128.6 (d, J_{C-F} = 8 Hz), 119.0, 115.1 (d, J_{C-F} = 21 Hz), 76.1, 53.1, 31.8, 30.4, 26.9, 22.6, 14.1.

¹⁹**F NMR** (470 MHz, CDCl₃) δ -115.1 (tt, J_1 = 5 Hz, J_2 = 8 Hz, 1F).

HRMS (ASAP): m/z for $C_{15}H_{22}FO$ [M+H⁺] calcd: 237.1649, found: 237.1646.

1-(4-Fluorophenyl)-2-vinylpentan-1-ol (4b)

Following the above method, a colorless oil in 87% yield (39 mg, anti:syn = 19:1) from **1b** (25 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

4b-major-anti-isomer

¹H NMR (500 MHz, CDCl₃) δ 7.31–7.25 (m, 2H), 7.05–7.00 (m, 2H), 5.63 (ddd, $J_1 = 9$ Hz, $J_2 = 10$ Hz, $J_3 = 17$ Hz, 1H), 5.25 (dd, $J_1 = 2$ Hz, $J_2 = 10$ Hz, 1H), 5.17 (ddd, $J_1 = 1$ Hz, $J_2 = 2$ Hz, $J_3 = 17$ Hz, 1H), 4.36 (dd, $J_1 = 2$ Hz, $J_2 = 8$ Hz, 1H), 2.32–2.28 (m, 1H), 2.28–2.21 (m, 1H), 1.41–1.06 (ov. m, 4H, slightly overlapped with the *syn* isomer), 0.79 (t, J = 7 Hz, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.3 (d, J_{C-F} = 245 Hz), 139.3, 138.4 (d, J_{C-F} = 3 Hz), 128.6 (d, J_{C-F} = 8 Hz), 119.1, 115.1 (d, J_{C-F} = 21 Hz), 76.1, 52.8 (d, J = 1 Hz), 32.6, 20.4, 14.0.

¹⁹**F NMR** (470 MHz, CDCl₃) δ -115.1 (tt, J_1 = 5 Hz, J_2 = 8 Hz, 1F).

HRMS (ASAP): m/z for $C_{13}H_{18}FO$ [M+H⁺] calcd: 209.1336, found: 209.1333.

(4-Fluorophenyl)(1-vinylcyclohexyl)methanol (4d)

Following the above method, a colorless oil in 88% yield (41 mg) from 1d (31 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

¹**H NMR** (500 MHz, CDCl₃) δ 7.24–7.18 (m, 2H), 7.01–6.95 (m, 2H), 5.53 (dd, J_1 = 11 Hz, J_2 = 18 Hz, 1H), 5.41 (dd, J_1 = 2 Hz, J_2 = 11 Hz, 1H), 5.10 (dd, J_1 = 2 Hz, J_2 = 18 Hz, 1H), 4.33 (d, J = 5 Hz, 1H), 2.13 (d, J = 5 Hz, 1H), 1.93–1.83 (m, 1H), 1.61–1.27 (m, 8 H), 1.16–1.05 (m, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.3 (d, J_{C-F} = 247 Hz), 141.8, 136.5 (d, J_{C-F} = 3 Hz), 129.6 (d, J_{C-F} = 8 Hz), 117.9, 114.3 (d, J_{C-F} = 21 Hz), 80.5, 45.8 (d, J = 1 Hz), 33.0, 31.2, 26.5, 22.2, 22.1. ¹⁹F NMR (470 MHz, CDCl₃) δ -115.5 (tt, J_I = 5 Hz, J_Z = 8 Hz, 1F).

HRMS (ASAP): m/z for $C_{15}H_{20}FO$ [M+H⁺] calcd: 235.1493, found: 235.1490.

(4-Fluorophenyl)(1-vinylcyclopentyl)methanol (4e)

Following the above method, a colorless oil in 84% yield (37 mg) from 1e (28 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

¹**H NMR** (500 MHz, CDCl₃) δ 7.27–7.22 (m, 2H), 7.01–6.94 (m, 2H), 5.74 (dd, J_I = 11 Hz, J_2 = 18 Hz, 1H), 5.18 (dd, J_I = 1 Hz, J_2 = 11 Hz, 1H), 5.02 (dd, J_I = 1 Hz, J_2 = 18 Hz, 1H), 4.51 (d, J = 4 Hz, 1H), 2.17–2.12 (m, 1H), 1.84–1.76 (m, 1H), 1.71–1.49 (m, 6H), 1.43–1.35 (m, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.2 (d, J_{C-F} = 246 Hz), 141.5, 137.8 (d, J_{C-F} = 3 Hz), 129.1 (d, J_{C-F} = 8 Hz), 115.3, 114.5 (d, J_{C-F} = 21 Hz), 79.8, 55.3 (d, J = 1 Hz), 34.3, 33.2, 23.50, 23.48.

¹⁹**F NMR** (470 MHz, CDCl₃) δ -115.5 (tt, J_1 = 5 Hz, J_2 = 8 Hz, 1F).

HRMS (ASAP): m/z for $C_{14}H_{18}FO$ [M+H⁺] calcd: 221.1336, found: 221.1331.

1-(4-Fluorophenyl)-2,2-dimethylbut-3-en-1-ol (4g)

Following the above method, a colorless oil in 81% yield (31 mg) from $\mathbf{1g}$ (31 μ L, 0.2 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

¹H NMR (500 MHz, CDCl₃) δ 7.30–7.23 (m, 2H), 7.03–6.96 (m, 2H), 5.89 (dd, J_1 = 11 Hz, J_2 = 18 Hz, 1H), 5.15 (dd, J_1 = 1 Hz, J_2 = 11 Hz, 1H), 5.07 (dd, J_1 = 1 Hz, J_2 = 18 Hz, 1H), 4.41 (d, J = 3 Hz, 1H), 2.07–2.02 (m, 1H), 0.99 (s, 3H), 0.94 (s, 3H).

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.3 (d, J_{C-F} = 245 Hz), 145.0, 136.5 (d, J_{C-F} = 3 Hz), 129.4 (d, J_{C-F} = 8 Hz), 114.5 (d, J_{C-F} = 21 Hz), 114.3, 80.1, 42.4 (d, J = 1 Hz), 24.6, 21.0.

¹⁹**F NMR** (470 MHz, CDCl₃) δ -115.4 (tt, J_1 = 5 Hz, J_2 = 8 Hz, 1F).

HRMS (ASAP): m/z for $C_{12}H_{16}FO$ [M+H⁺] calcd: 195.1180, found: 195.1177.

1-Phenyl-2-vinylheptan-1-ol (5a)

Following the above method, a colorless oil in 85% yield (37 mg, anti:syn = 48:1) from **1a** (31 μ L, 0.2 mmol) and benzaldehyde (1.2 equiv, 24 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7). The characterization data (1 H and 13 C NMR) are in accordance with those in the literature.⁵

5a-major-anti-isomer

¹H NMR (300 MHz, CDCl₃) δ 7.39–7.25 (m, 5H, slightly overlapped with *syn* isomer), 5.67 (ddd, $J_1 = 9$ Hz, $J_2 = 10$ Hz, $J_3 = 17$ Hz, 1H), 5.25 (dd, $J_1 = 2$ Hz, $J_2 = 10$ Hz, 1H), 5.18 (ddd, $J_1 = 1$ Hz, $J_2 = 2$ Hz, $J_3 = 17$ Hz, 1H), 4.39 (dd, $J_1 = 2$ Hz, $J_2 = 8$ Hz, 1H), 2.37–2.20 (ov. m, 2H), 1.38–1.05 (m, 8H, slightly overlapped with *syn* isomer), 0.85 (t, J = 7 Hz, 3H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 142.7, 139.5, 128.3, 127.6, 127.0, 118.7, 76.8, 52.8, 31.8, 30.5, 26.9, 22.6, 14.1.

HRMS (ASAP): m/z for $C_{15}H_{23}O$ [M+H⁺] calcd: 219.1743, found: 219.1740.

1-Phenyl-2-vinylpentan-1-ol (5b)

Following the above method, a colorless oil in 84% yield (32 mg, anti:syn = 18:1) from **1b** (25 μ L, 0.2 mmol) and benzaldehyde (1.2 equiv, 24 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

5b-major-anti-isomer

¹H NMR (300 MHz, CDCl₃) δ 7.41–7.25 (m, 5H, slightly overlapped with *syn* isomer), 5.69 (ddd, $J_1 = 9$ Hz, $J_2 = 10$ Hz, $J_3 = 17$ Hz, 1H), 5.28 (dd, $J_1 = 2$ Hz, $J_2 = 10$ Hz, 1H), 5.20 (ddd, $J_1 = 1$ Hz, $J_2 = 2$ Hz, $J_3 = 17$ Hz, 1H), 4.41 (dd, $J_1 = 2$ Hz, $J_2 = 8$ Hz, 1H), 2.50–2.31 (m, 1H), 2.30 (d, J = 2 Hz, 1H), 1.63–1.08 (m, 4H, slightly overlapped with *syn* isomer), 0.83 (t, J = 7 Hz, 3H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 142.7, 139.5, 128.3, 127.7, 127.1, 118.7, 76.8, 52.6, 32.7, 20.4, 14.0.

HRMS (ASAP): m/z for $C_{13}H_{19}O$ [M+H⁺] calcd: 191.1430, found: 191.1427.

Phenyl(1-vinylcyclohexyl)methanol (5d)

Following the above method, a colorless oil in 86% yield (37 mg) from **1d** (31 μ L, 0.2 mmol) and benzaldehyde (1.2 equiv, 24 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7). The characterization data (1 H and 13 C NMR) are in accordance with those in the literature. 5

¹**H NMR** (300 MHz, CDCl₃) δ 7.34–7.22 (m, 5H), 5.56 (dd, J_I = 11 Hz, J_2 = 18 Hz, 1H), 5.41 (dd, J_I = 2 Hz, J_2 = 11 Hz, 1H), 5.11 (dd, J_I = 2 Hz, J_2 = 18 Hz, 1H), 4.35 (d, J = 5 Hz, 1H), 2.12 (d, J = 5 Hz, 1H), 1.96–1.86 (m, 1H), 1.58–1.27 (m, 9H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 142.0, 140.9, 128.2, 127.5, 127.4, 117.7, 81.2, 45.9, 33.0, 31.5, 26.5, 22.24, 22.15.

HRMS (ASAP): m/z for $C_{15}H_{21}O$ [M+H⁺] calcd: 217.1587, found: 217.1583.

Phenyl(1-vinylcyclopentyl)methanol (5e)

Following the above method, a colorless oil in 79% yield (32 mg) from **1e** (28 μ L, 0.2 mmol) and benzaldehyde (1.2 equiv, 24 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

¹**H NMR** (300 MHz, CDCl₃) δ 7.35–7.22 (m, 5H), 5.78 (dd, J_I = 11 Hz, J_2 = 18 Hz, 1H), 5.19 (dd, J_I = 1 Hz, J_2 = 11 Hz, 1H), 5.05 (dd, J_I = 1 Hz, J_2 = 18 Hz, 1H), 4.54 (d, J = 4 Hz, 1H), 2.09 (d, J = 4 Hz, 1H), 1.67–1.87 (m, 2H), 1.51–1.65 (m, 5H), 1.90–1.36 (m, 8H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 142.1, 141.8, 127.7, 127.6, 127.5, 115.1, 80.4, 55.4, 34.3, 33.3, 23.53, 23.51.

HRMS (ASAP): m/z for $C_{14}H_{19}O$ [M+H⁺] calcd: 203.1430, found: 203.1427.

2,2-Dimethyl-1-phenylbut-3-en-1-ol (5g)

Following the above method, a colorless oil in 75% yield (26 mg) from 1g (31 μ L, 0.2 mmol) and benzaldehyde (1.2 equiv, 24 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

¹**H NMR** (300 MHz, CDCl₃) δ 7.36–7.23 (m, 5H), 5.92 (dd, J_I = 11 Hz, J_2 = 18 Hz, 1H), 5.15 (dd, J_I = 1 Hz, J_2 = 11 Hz, 1H), 5.08 (dd, J_I = 1 Hz, J_2 = 18 Hz, 1H), 4.43 (d, J = 3 Hz, 1H), 2.03 (br. d, J = 3 Hz, 1H), 1.02 (s, 3H), 0.97 (s, 3H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 145.2, 140.9, 127.9, 127.63, 127.55, 114.0, 80.8, 42.4, 24.6, 21.2.

HRMS (ASAP): m/z for $C_{12}H_{17}O$ [M+H⁺] calcd: 177.1274, found: 177.1271.

1-(p-Tolyl)-2-vinylheptan-1-ol (6a)

Following the above method, a colorless oil in 85% yield (39 mg, anti:syn = 48:1) from **1a** (31 μ L, 0.2 mmol) and p-tolualdehyde (1.2 equiv, 28 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

¹H NMR (300 MHz, CDCl₃) δ 7.25–7.20 (m, 2H), 7.19–7.13 (m, 2H), 5.67 (ddd, $J_I = 9$ Hz, $J_2 = 10$ Hz, $J_3 = 17$ Hz, 1H), 5.26 (dd, $J_I = 2$ Hz, $J_2 = 10$ Hz, 1H), 5.18 (ddd, $J_I = 1$ Hz, $J_2 = 2$ Hz, $J_3 = 17$ Hz, 1H), 4.36 (dd, $J_I = 2$ Hz, $J_2 = 8$ Hz, 1H), 2.37 (s, 3H), 2.34–2.23 (ov. m, 2H), 1.39–1.05 (m, 8H, slightly overlapped with the *syn* isomer), 0.85 (t, J = 7 Hz, 3H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 139.7, 137.2, 129.0, 126.9, 118.5, 76.6, 52.7, 31.8, 30.5, 26.9,

22.6, 21.2, 14.1.

HRMS (ASAP): m/z for $C_{16}H_{25}O$ [M+H⁺] calcd: 233.1900, found: 233.1897.

1-(p-Tolyl)-2-vinylpentan-1-ol (6b)

Following the above method, a colorless oil in 88% yield (36 mg, anti:syn = 18:1) from **1b** (25 μ L, 0.2 mmol) and p-tolualdehyde (1.2 equiv, 28 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

6b-major-anti-isomer

¹H NMR (300 MHz, CDCl₃) δ 7.25–7.20 (m, 2H), 7.17–7.13 (m, 2H), 5.67 (ddd, J_I = 9 Hz, J_2 = 10 Hz, J_3 = 17 Hz, 1H), 5.25 (ddd, J_I = 1 Hz, J_2 = 2 Hz, J_3 = 10 Hz, 1H), 5.19 (ddd, J_I = 1 Hz, J_2 = 2 Hz, J_3 = 17 Hz, 1H), 4.35 (dd, J_I = 2 Hz, J_2 = 8 Hz, 1H), 2.36 (s, 3H), 2.35-2.25 (m, 1H), 2.22 (dd, J_I = 1 Hz, J_2 = 2 Hz, 1H), 1.44–1.10 (m, 4H, slightly overlapped with *syn* isomer), 0.81 (t, J = 7 Hz, 3H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 139.7 (2C), 137.3, 129.0, 127.0, 118.6, 76.6, 52.6, 32.7, 21.2, 20.4, 14.0.

HRMS (ASAP): m/z for $C_{14}H_{21}O$ [M+H⁺] calcd: 205.1587, found: 205.1583.

p-Tolyl(1-vinylcyclohexyl)methanol (6d)

Following the above method, a colorless oil in 81% yield (37 mg) from **1d** (31 μ L, 0.2 mmol) and p-tolualdehyde (1.2 equiv, 28 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

¹H NMR (300 MHz, CDCl₃) δ 7.17–7.07 (m, 4H), 5.56 (dd, J_I = 11 Hz, J_2 = 18 Hz, 1H), 5.39 (dd, J_I = 2 Hz, J_2 = 11 Hz, 1H), 5.11 (dd, J_I = 2 Hz, J_2 = 18 Hz, 1H), 4.31 (d, J = 5 Hz, 1H), 2.34 (s, 3H), 2.08 (d, J = 5 Hz, 1H), 1.95–1.84 (m, 1H), 1.62–1.25 (m, 9H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 142.1, 138.0, 137.0, 128.2, 128.0, 117.5, 81.0, 45.9, 33.0, 31.5, 26.5, 22.24, 22.15, 21.2.

HRMS (ASAP): m/z for C₁₆H₂₃O [M+H⁺] calcd: 231.1743, found: 231.1740.

p-Tolyl(1-vinylcyclopentyl)methanol (6e)

Following the above method, a colorless oil in 80% yield (35 mg) from 1e (28 μ L, 0.2 mmol) and p-tolualdehyde (1.2 equiv, 28 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

¹**H NMR** (300 MHz, CDCl₃) δ 7.21–7.15 (m, 2H), 7.15–7.08 (m, 2H), 5.79 (dd, J_1 = 11 Hz, J_2 = 18 Hz, 1H), 5.18 (dd, J_1 = 1 Hz, J_2 = 11 Hz, 1H), 5.04 (dd, J_1 = 1 Hz, J_2 = 18 Hz, 1H), 4.51 (d, J = 4 Hz, 1H), 2.35 (s, 3H), 2.08 (d, J = 4 Hz, 1H), 1.87–1.37 (m, 8H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 142.0, 139.1, 137.0, 128.4, 127.5, 114.9, 80.3, 55.3, 34.3, 33.3, 23.5 (2C), 21.2.

HRMS (ASAP): m/z for $C_{15}H_{21}O$ [M+H⁺] calcd: 217.1587, found: 217.1583.

2,2-Dimethyl-1-(p-tolyl)but-3-en-1-ol (6g)

Following the above method, a colorless oil in 78% yield (30 mg) from 1g (31 μ L, 0.2 mmol) and p-tolualdehyde (1.2 equiv, 28 μ L, 0.24 mmol) was obtained via purification with flash chromatography on silica gel (pentane:EtOAc = 93:7).

¹**H NMR** (300 MHz, CDCl₃) δ 7.21–7.16 (m, 2H), 7.15–7.09 (m, 2H), 5.92 (dd, J_1 = 11 Hz, J_2 = 18 Hz, 1H), 5.13 (dd, J_1 = 1 Hz, J_2 = 11 Hz, 1H), 5.07 (dd, J_1 = 1 Hz, J_2 = 18 Hz, 1H), 4.41 (d, J = 3 Hz, 1H), 2.34 (s, 3H), 1.94 (d, J = 3 Hz, 1H), 1.01 (s, 3H), 0.96 (s, 3H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 145.4, 138.0, 137.2, 128.4, 127.8, 113.9, 80.7, 42.4, 24.7, 21.3, 21.2.

HRMS (ASAP): m/z for $C_{13}H_{19}O$ [M+H⁺] calcd: 191.1430, found: 191.1426.

IX. NOE Studies

1. Assignment of the Geometry of the C=C Bond in Compound 21

To assign the geometry of the C=C bond in compound 21, we used α -methyl styrene as a model compound to investigate the relationship between 4J coupling constants and the geometry of the C=C bond, as well as the NOE study (*vide infra*). In α -methyl styrene, 4J (H_a, H_b) = 1.5 Hz, and 4J (H_a, H_c) = 0.8 Hz. The 4J (H_a, H_b) coupling constant is identical to the 4J (H_e, H_f) coupling constant in compound 21. A 1H , 1H NOESY study of α -methyl styrene also suggests that there is NOE between H_a and H_b, H_a and H_d, as well as H_c and H_d.

with NOE
$$H_a$$
 H_a H_a H_b H_b H_b H_b with NOE H_d H_c H_d H_d

NOE-enhancements in [%]						
irrad.	Ha	H_b	H _c	H_d		
Ha		0.7	0	1.7		
$\mathbf{H}_{\mathbf{b}}$	1.5		-3.7	-0.3		
H _c	0	-2.5		2.8		
H_d	H _d is					

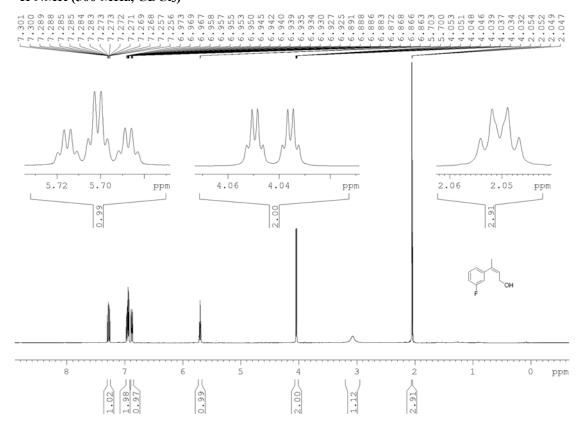
Due to fact that the NOE is strongly correlated with dipolar relaxation phenomena of two nuclei and the protons of the CH_3 group relax mainly by spin rotation, the NOE's in this compound are small. The relaxation process involved is thus not only dipolar, but due to the rotation of methyl group, the residual NOE of the three protons is also averaged. This leads to a small NOE between H_a and H_b which is of the same order of magnitude as that between H_a and H_c .

A ${}^{1}H, {}^{1}H$ NOESY study has also been carried out on compound **21**. There is also NOE between H_{e} and H_{f} , H_{e} and H_{h} , H_{h} and H_{i} , as well as H_{i} and H_{j} . The NOE between H_{g} and H_{h} , H_{h} and H_{i} as well as H_{i} and H_{j} in combination with ${}^{4}J(H_{e}, H_{f}) = 1.5$ Hz suggests that the C=C bond has the Z configuration. Additionally, the ${}^{1}H$ and ${}^{13}C$ NMR data of compound **21** are identical to those in a literature report. 6a

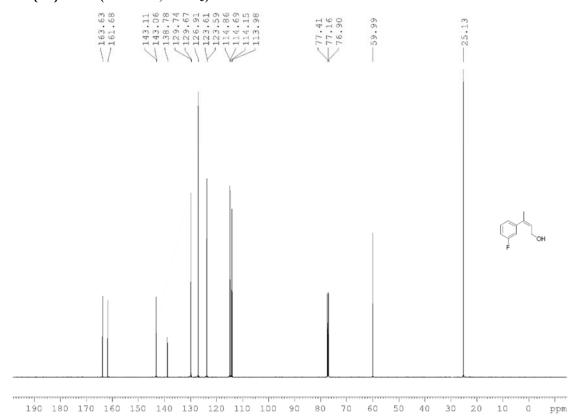
with NOE
$$H_e$$
 H_e H_g H

2. Assignment of the Geometry of the C=C Bond in Compound 2q

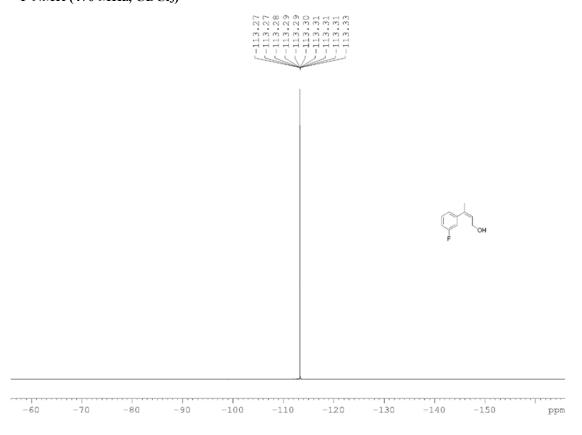
According to a literature procedure, ^{6b} **2q** was oxidized to provide the corresponding allylic alcohol **2q-O** in a 55% yield (46 mg). The NMR data are in agreement with the known compound (*Z*)-3-(3-fluorophenyl)but-2-en-1-ol. ^{6c}


Characterization data of 2q-O are listed below:

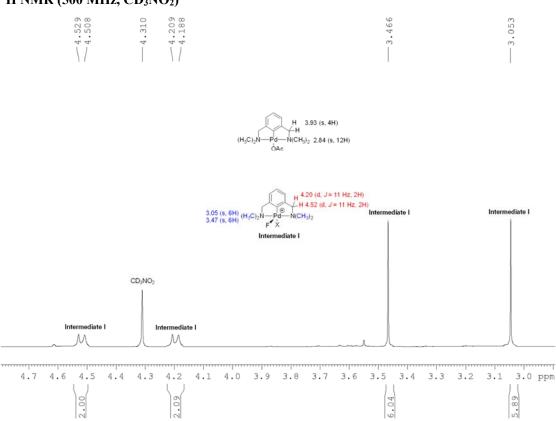
¹H NMR (500 MHz, CDCl₃) δ 7.31-7.25 (m, 1H), 6.98-6.92 (m, 2H), 6.90-6.86 (m, 1H), 5.70 (tq, $J_I = 7$ Hz, $J_2 = 1.5$ Hz, 1H), 4.04 (dq, $J_I = 7$ Hz, $J_2 = 1$ Hz, 2H), 3.07 (br.s, 1H), 2.05 (dt, $J_I = 1$ Hz, $J_2 = 0.5$ Hz, 3H).

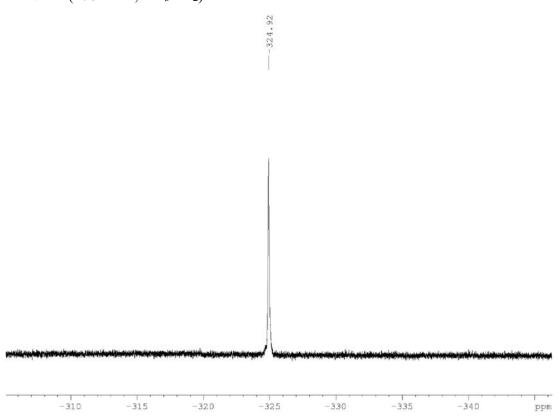

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.7 (d, J_{C-F} = 246 Hz), 143.1 (d, J_{C-F} = 8 Hz), 138.8, 129.7 (d, J_{C-F} = 8 Hz), 126.9, 123.6 (d, J_{C-F} = 3 Hz), 114.8 (d, J_{C-F} = 21 Hz), 114.1 (d, J_{C-F} = 21 Hz), 60.0, 25.1.

¹⁹**F NMR** (470 MHz, CDCl₃) δ -113.3 (ddd, $J_1 = 1.5$ Hz, $J_2 = 6$ Hz, $J_3 = 9$ Hz, 1F). **HRMS** (ASAP) m/z for C₁₀H₁₂FO [M+H⁺] calcd: 167.0867, found: 167.0864.


Spectra of 2q-O ¹H NMR (500 MHz, CDCl₃)

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (125 MHz, CDCl₃)

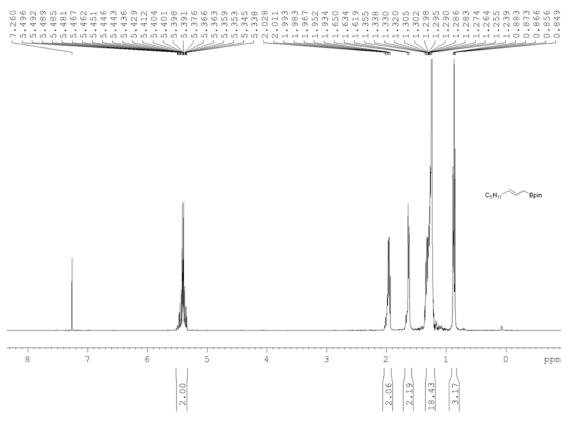

¹⁹F NMR (470 MHz, CDCl₃)



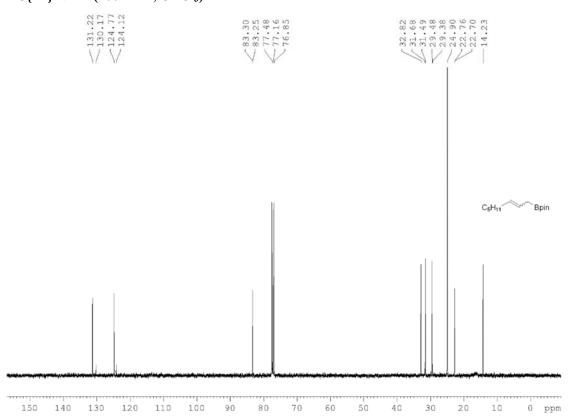
X. Mechanistic Study

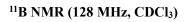
Palladium complex **A** (38 mg, 0.1 mmol, 1 equiv) was dissolved in CD₃NO₂ (0.5 mL), and F-TEDA-BF₄ (53 mg, 0.15 mmol, 1.5 equiv) was added. The sample was vigorously stirred for 5 min. to give a homogeneous solution. *In situ* 1 H and 19 F NMR were recorded at room temperature. Spectroscopic data for the relevant benzyl and methyl protons of proposed intermediate **I**: 1 H NMR (500 MHz, CD₃NO₂): δ 4.52 (d, J = 11 Hz, 2H, Ar-CH₂), 4.20 (d, J = 11 Hz, 2H, Ar-CH₂), 3.47 (s, 6H, NCH₃), 3.05 (s, 6H, NCH₃). The inequivalence of the benzylic protons and also the NMe₂ groups indicates that the Pd no longer has a square planar geometry and is likely square pyramidal with a vacant coordination site or octahedral with the two axial ligands being different. A single peak at -324.9 ppm was found by an *in situ* 19 F NMR study of the reaction mixture of **A** and F-TEDA-BF₄ in CD₃NO₂ at room temperature. These results suggest that a Pd(IV) intermediate was generated *in situ* from the reaction of palladium pincer-complex **A** with F-TEDA-BF₄.

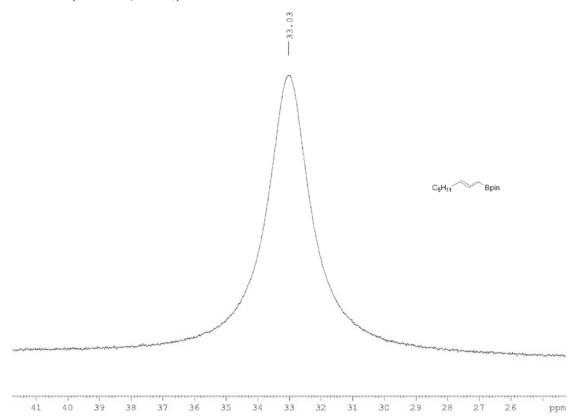
¹H NMR (500 MHz, CD₃NO₂)


References

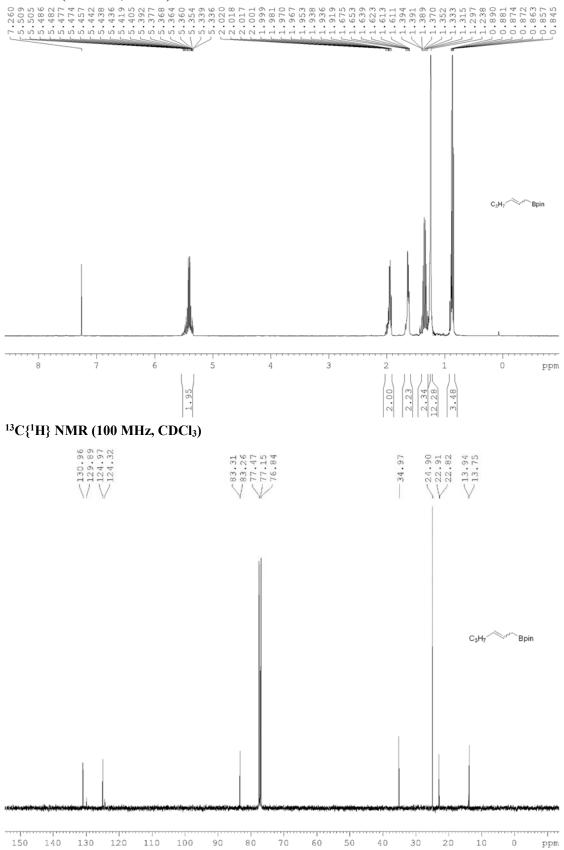
- 1. (a) Pratihar, S.; Pegu, R.; Guha, A. K.; Sarma, B. *Dalton Trans.* **2014**, *43*, 17136. (b) Akira Sakakura, A.; Ohkubo, T.; Yamashita, R.; Akakura, M.; Ishihara, K. *Org. Lett.* **2011**, 13, 892. (c) van de Kuil, L.; Luitjes, A. H.; Grove, D. M.; Zwikker, J. W.; van der Linden, J. G. M.; Roelofsen, A. M.; Jenneskens, L. W.; Drenth, W.; van Koten, G. *Organometallics* **1994**, *13*, 468. (d) van Beek, J. A. M.; van Koten, G.; Dekker, G. P.C.M.; Wissing, E.; Zoutberg, M. C.; Stam, C. H. *J. Organomet. Chem.* **1990**, *394*, 659. (e) Canty, A. J.; Denney, M. C.; van Koten, G.; Skelton, B. W.; White, A. H. *Organometallics* **2004**, *23*, 5432.
- 2. Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662.
- 3. Xiong, T.; Li, Y.; Mao, L.; Zhang, Q.; Zhang, Q. Chem. Commun. 2012, 48, 2246.
- 4. López-Pérez, A.; Adrio, J.; Carretero, J. C. Org. Lett. 2009, 11, 5514.
- 5. Selander, N.; Kipke, A.; Sebelius, S.; Szabó, K. J. J. Am. Chem. Soc. 2007, 129, 13723.
- 6. (a) Hepburn, H. B.; Lam, H. W. *Angew. Chem., Int. Ed.* **2014**, *53*, 11605. (b) Chatterjee, N.; Chowdhury, H.; Sneh, K.; Goswami, A. *Tetrahedron Lett.* **2015**, *56*, 172. (c) Fañanás-Mastral, M.; Vitale, R.; Pérez, M.; Feringa, B. L. *Chem. Eur J.* **2015**, *21*, 4209.
- 7. (a) Selander, N.; Willy, B.; Szabó, K. J. Angew. Chem., Int. Ed. 2010, 49, 4051. (b) Hickman, A. J.; Sanford, M. S. ACS Catal. 2011, 1, 170. (c) Racowski, J. M.; Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18022. (d) Racowski, J. M.; Gary, J. B.; Sanford, M. S. Angew. Chem., Int. Ed. 2012, 51, 3414. (e) Maleckis, A.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2013, 135, 6618.

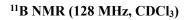

XI. ¹H, ¹³C, ¹¹B and ¹⁹F NMR Spectra

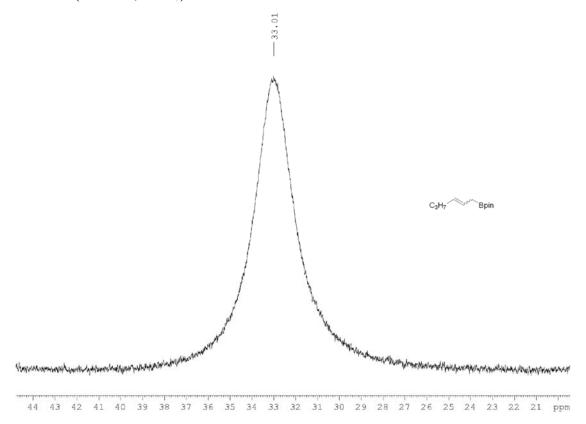

Compound 2a


¹H NMR (400 MHz, CDCl₃)

¹³C{¹H} NMR (100 MHz, CDCl₃)

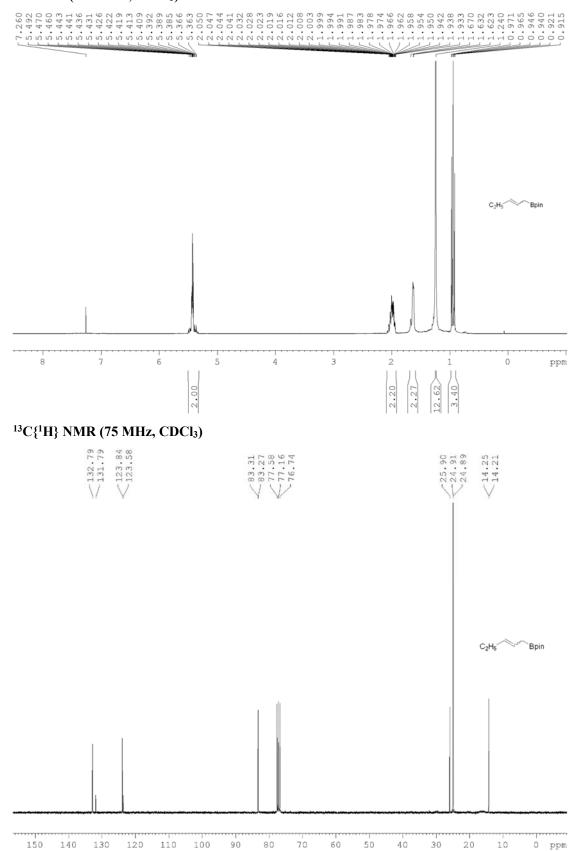


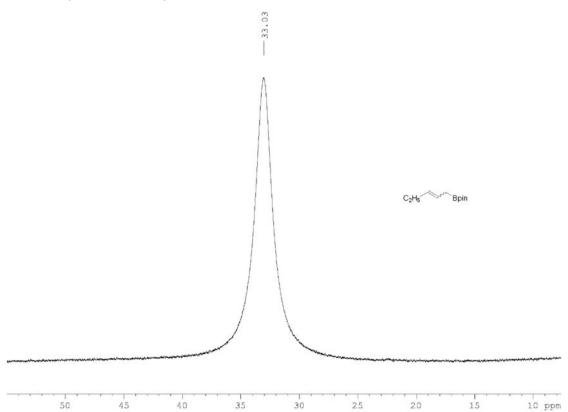




Compound 2b

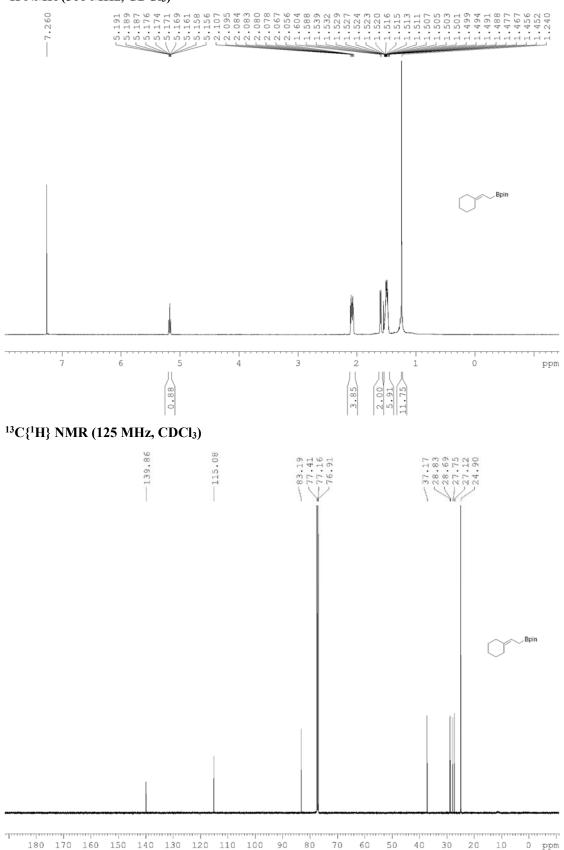
¹H NMR (400 MHz, CDCl₃)

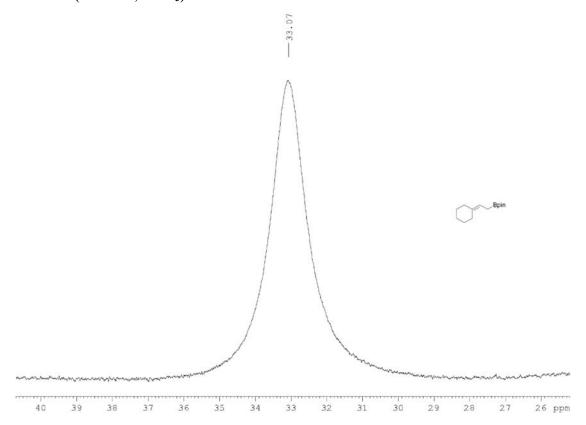




Compound 2c

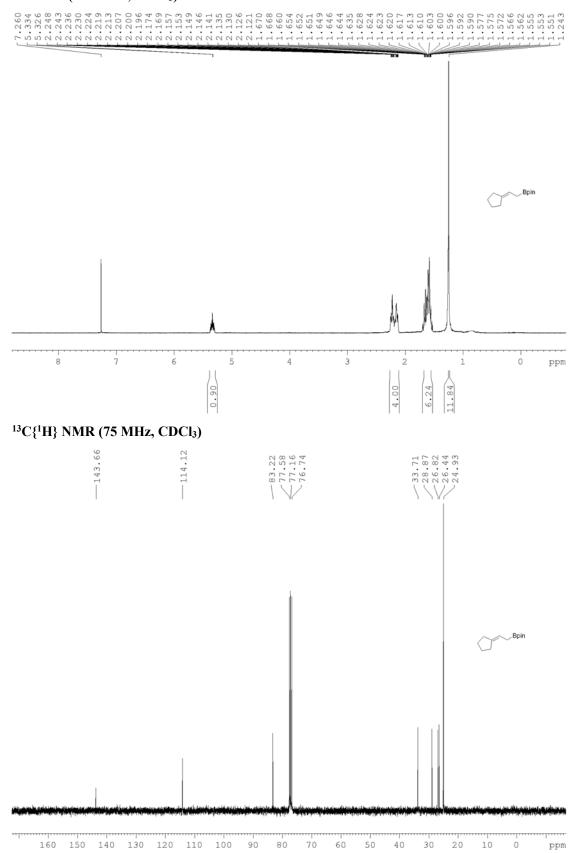
¹H NMR (300 MHz, CDCl₃)



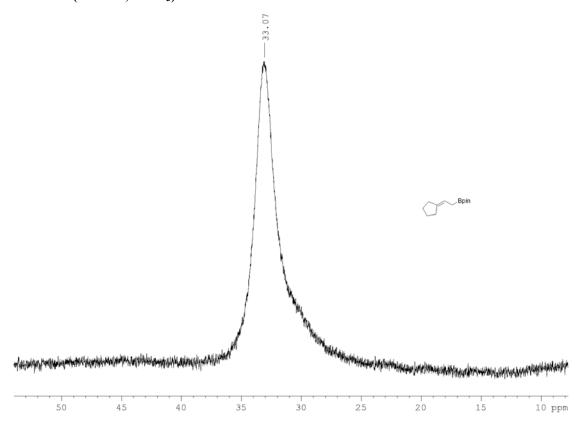


Compound 2d

¹H NMR (500 MHz, CDCl₃)

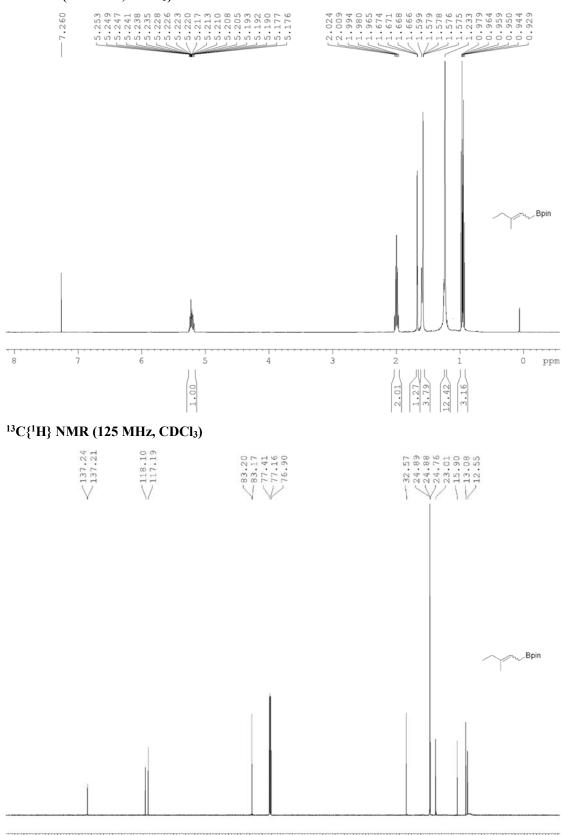


¹¹B NMR (160 MHz, CDCl₃)



Compound 2e

¹H NMR (300 MHz, CDCl₃)


¹¹B NMR (96 MHz, CDCl₃)

Compound 2f

¹H NMR (500 MHz, CDCl₃)

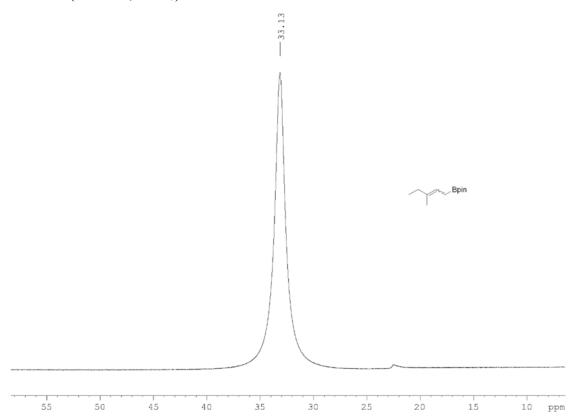
160 150 140 130 120 110

70

50

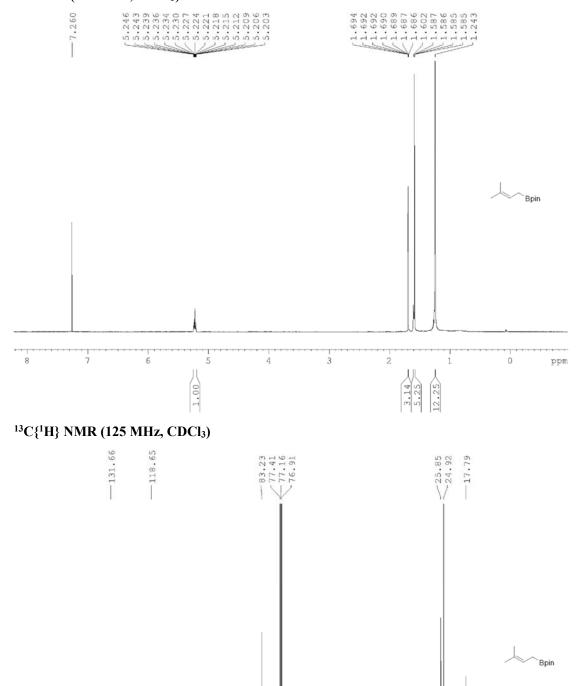
30

10


80

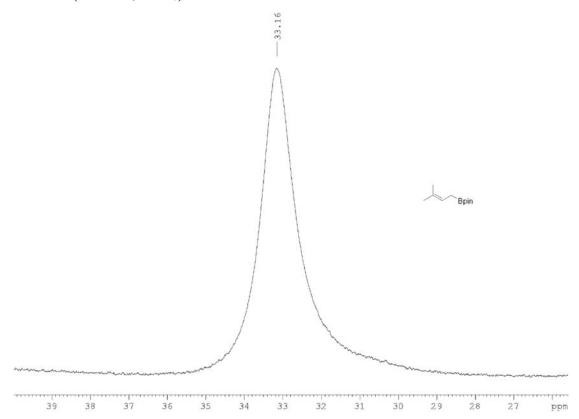
100

90


ppm

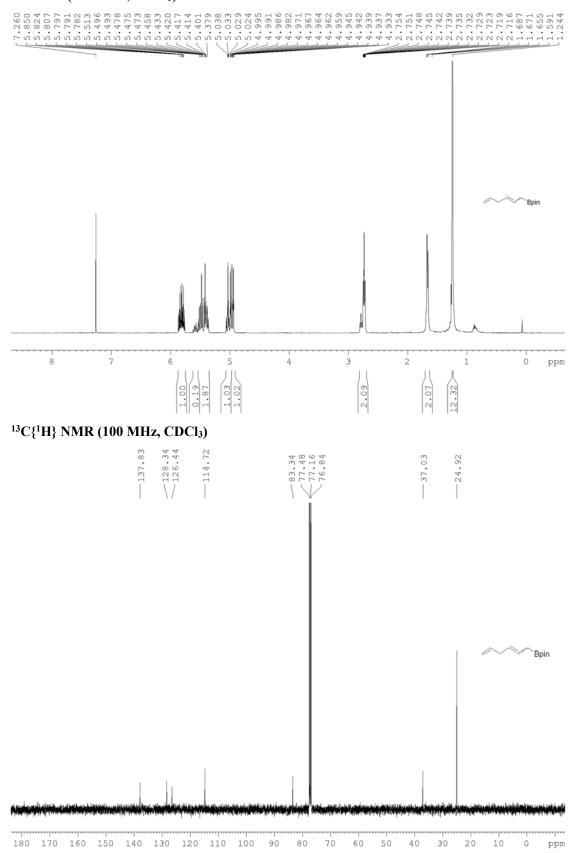
Compound 2g

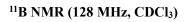
¹H NMR (500 MHz, CDCl₃)

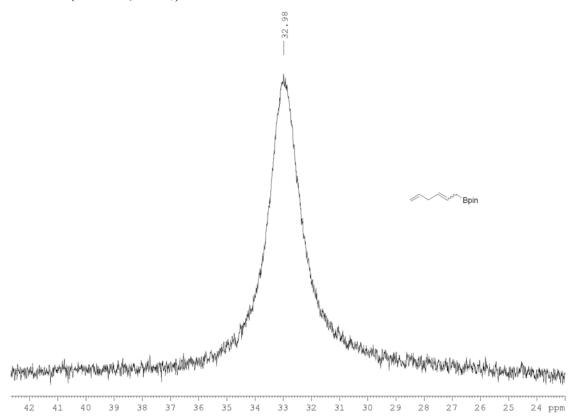

ppm

80

120 110

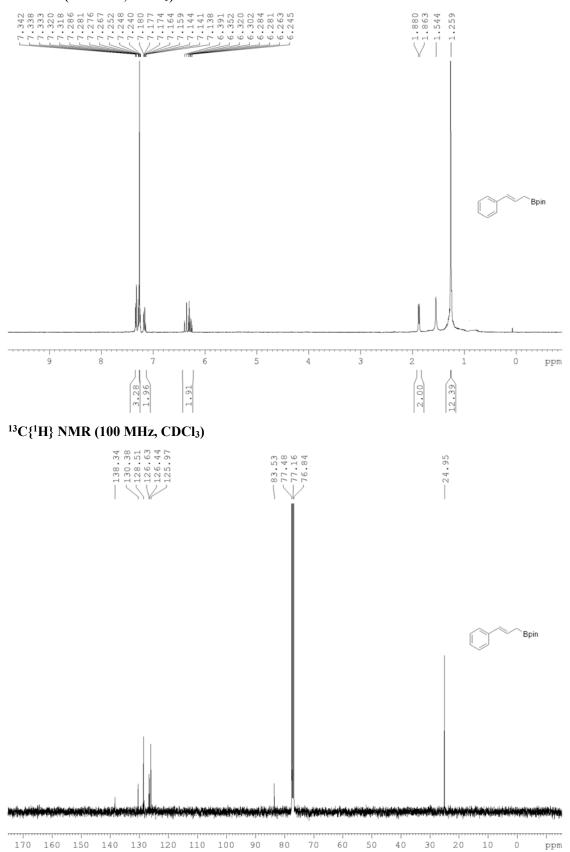

100

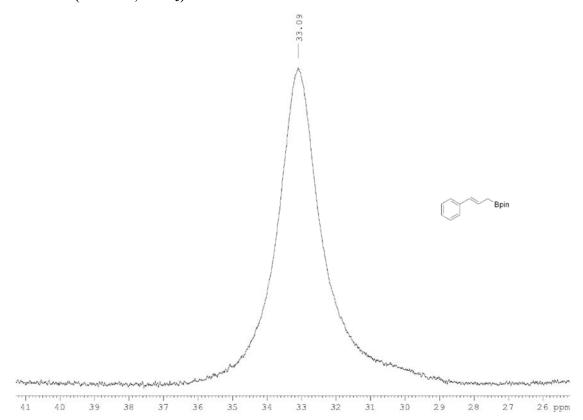




Compound 2h

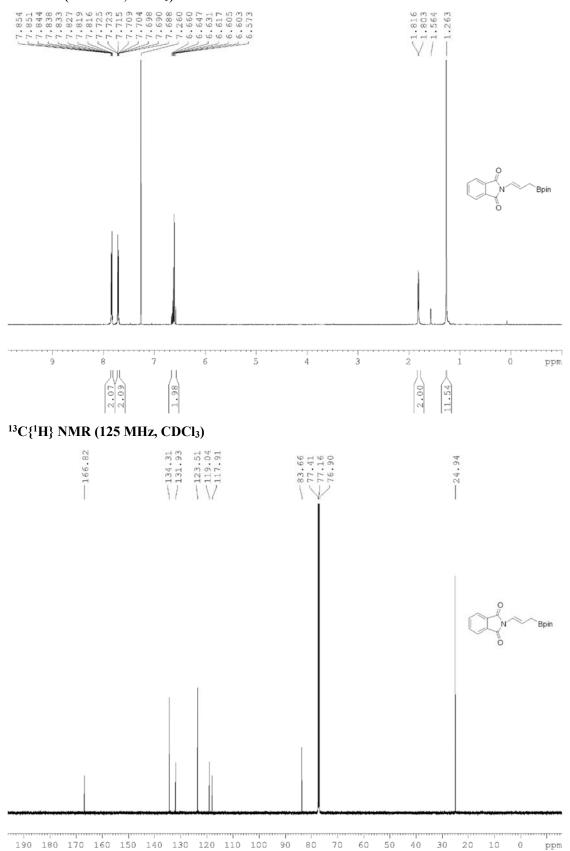
¹H NMR (400 MHz, CDCl₃)



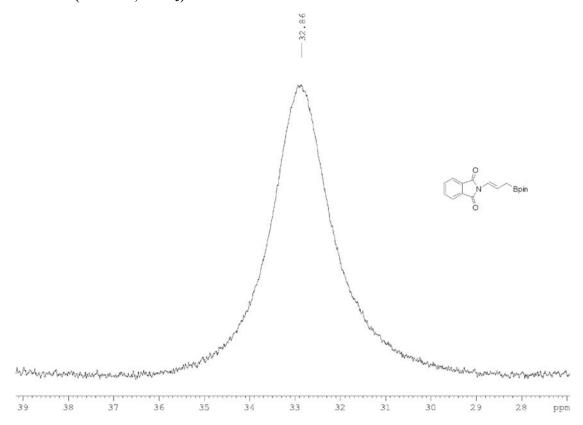


Compound 2i

¹H NMR (400 MHz, CDCl₃)

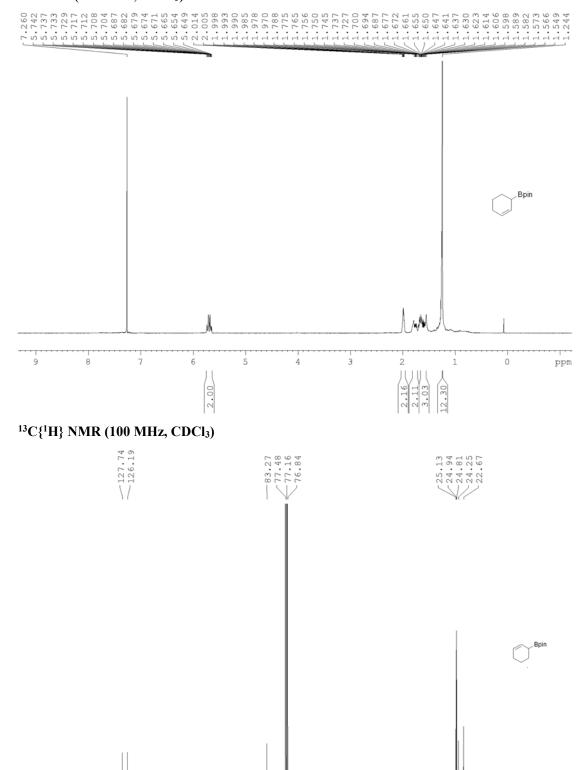


¹¹B NMR (128 MHz, CDCl₃)

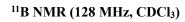


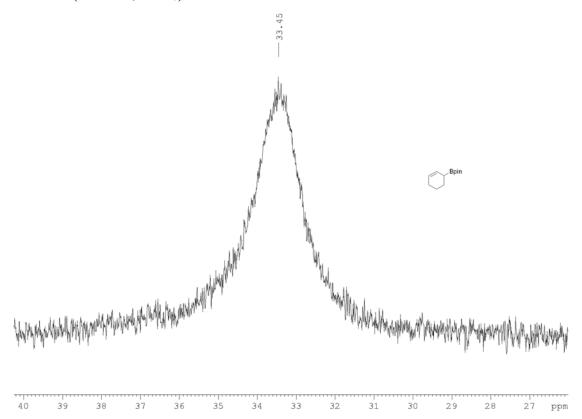
Compound 2j

¹H NMR (500 MHz, CDCl₃)

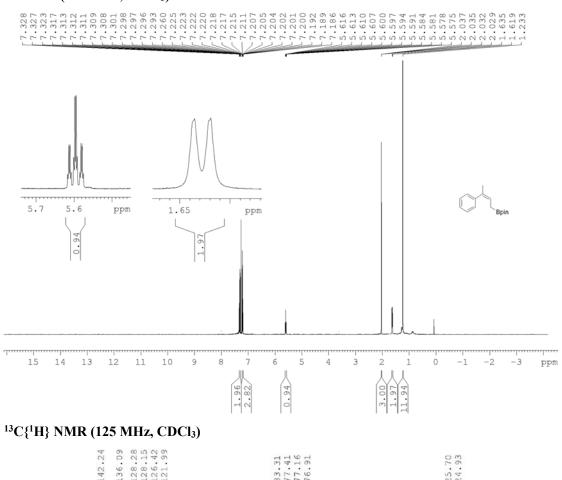


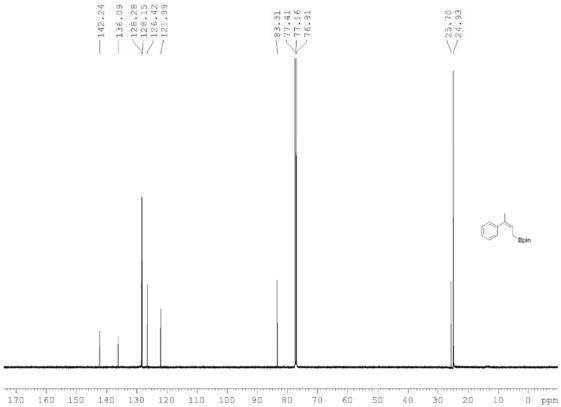
¹¹B NMR (160 MHz, CDCl₃)

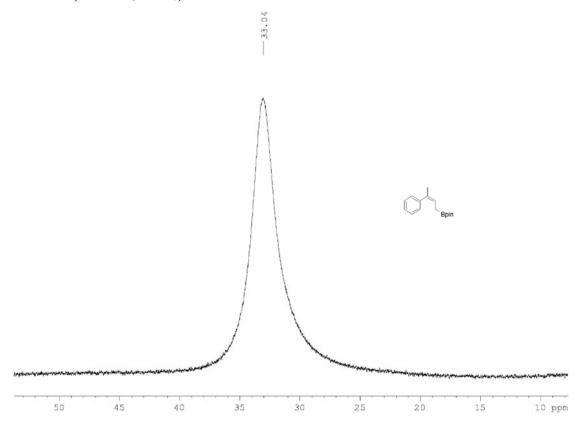

Compound 2k


¹H NMR (400 MHz, CDCl₃)

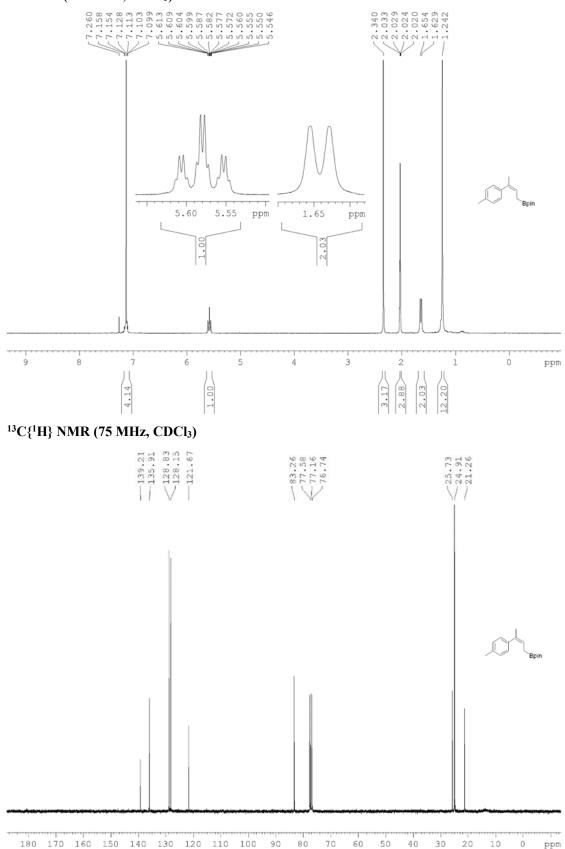
80

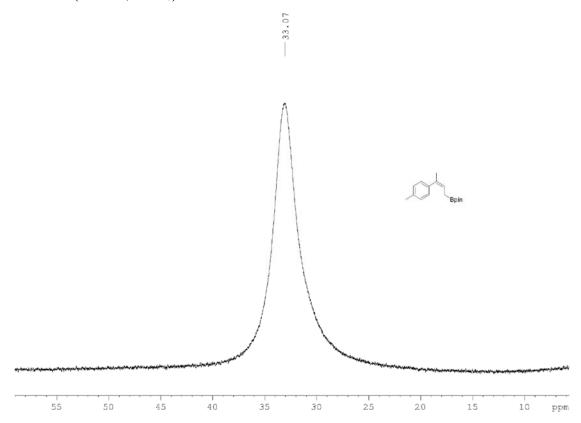

110




Compound 21

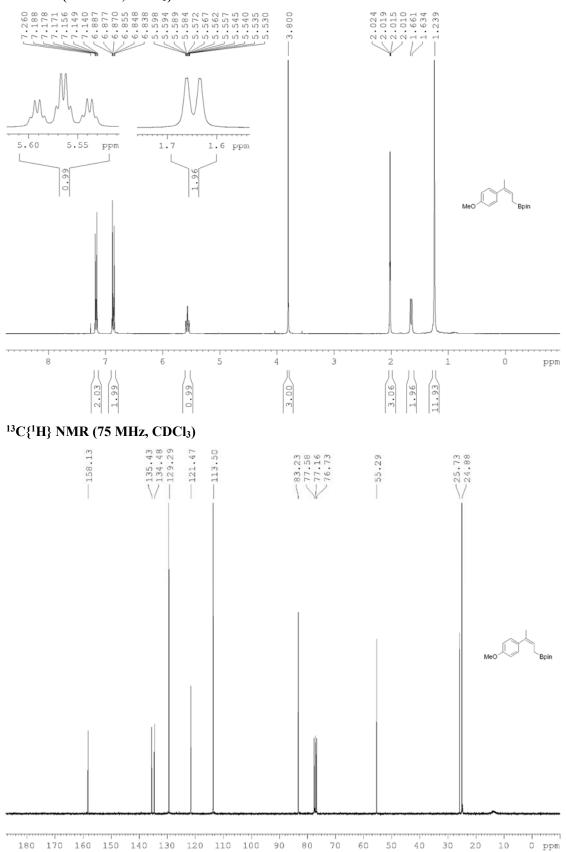
¹H NMR (500 MHz, CDCl₃)

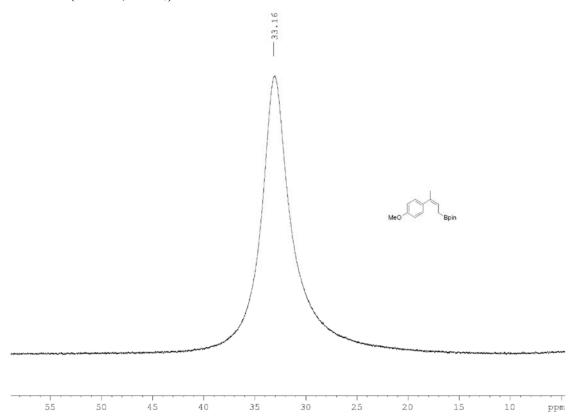




Compound 2m

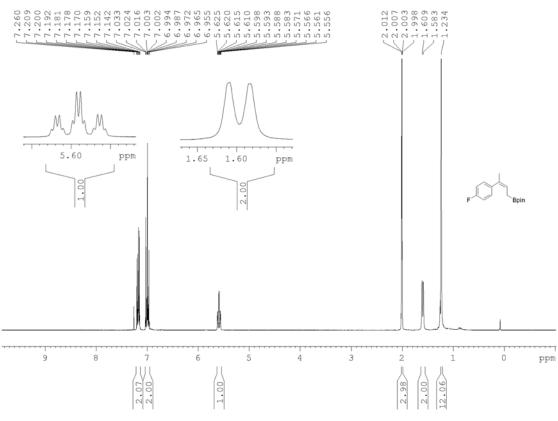
¹H NMR (300 MHz, CDCl₃)

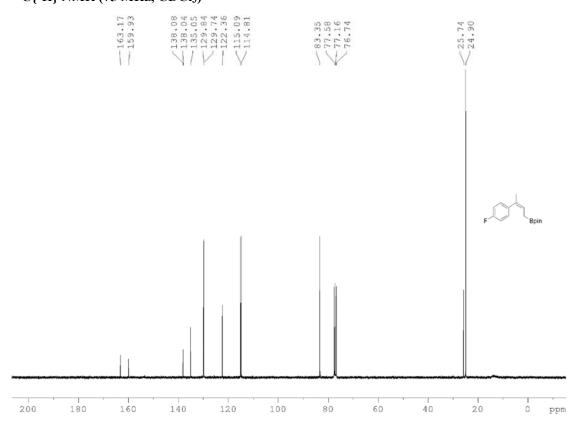


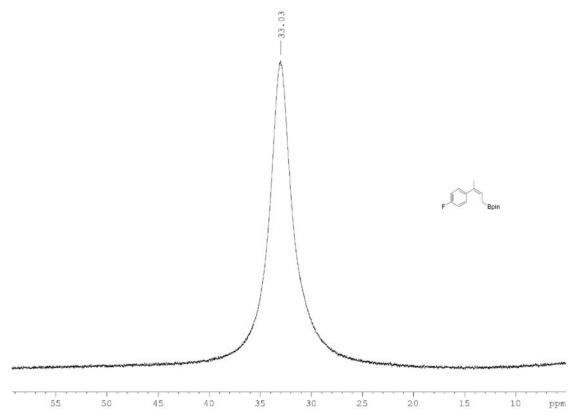


Compound 2n

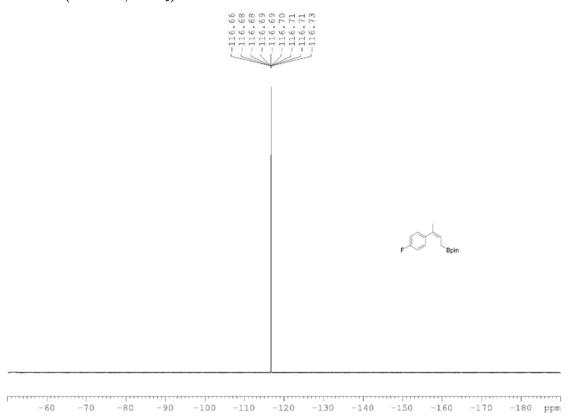
¹H NMR (300 MHz, CDCl₃)

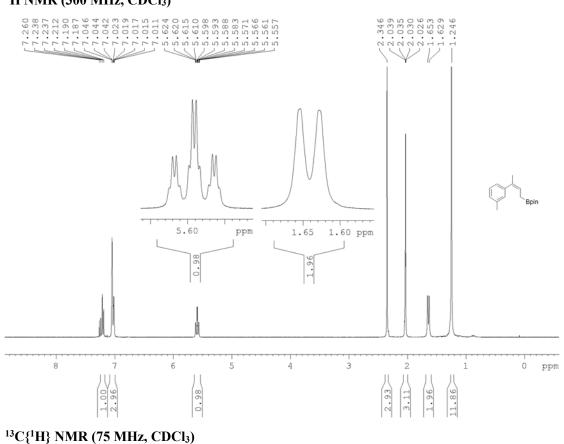


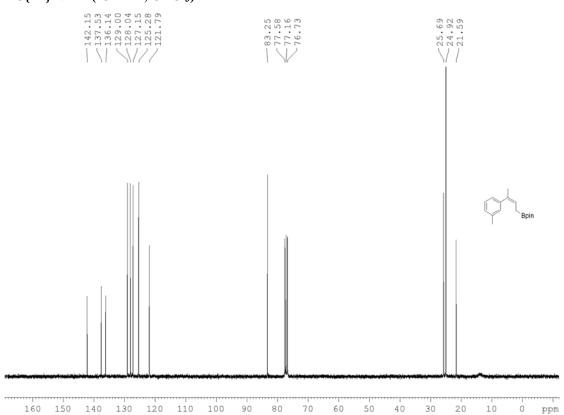


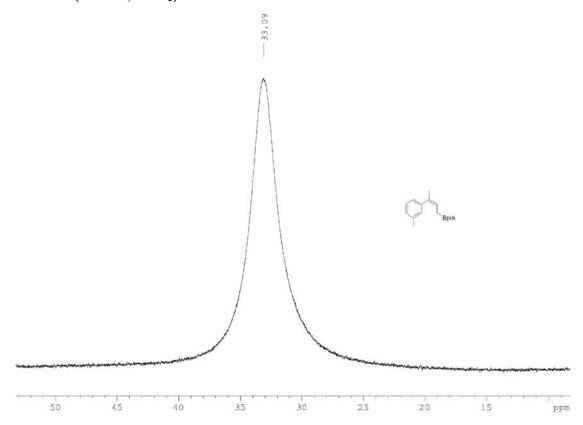

Compound 2o

¹H NMR (300 MHz, CDCl₃)

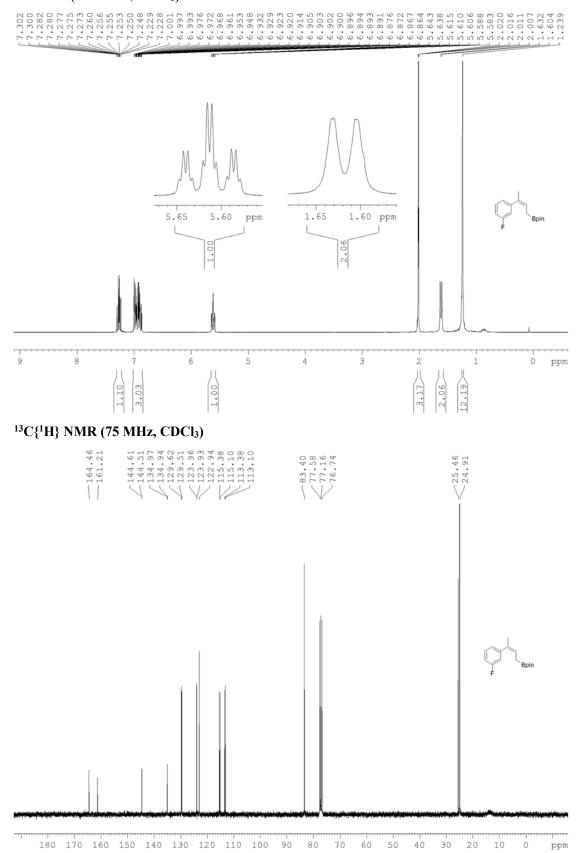




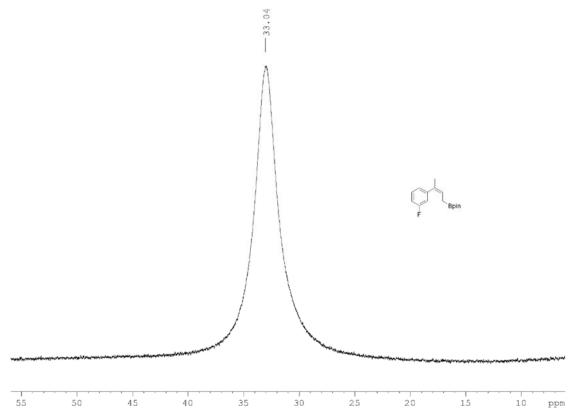

¹⁹F NMR (470 MHz, CDCl₃)


Compound 2p

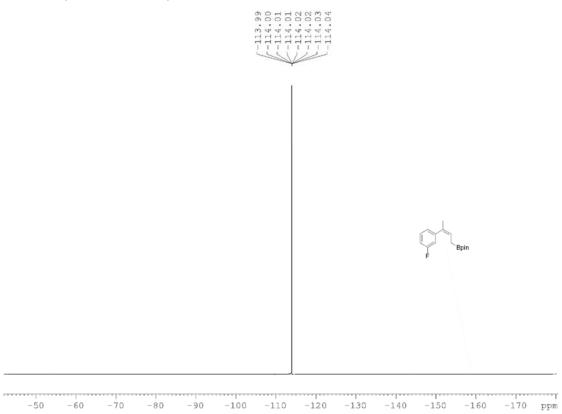
¹H NMR (300 MHz, CDCl₃)

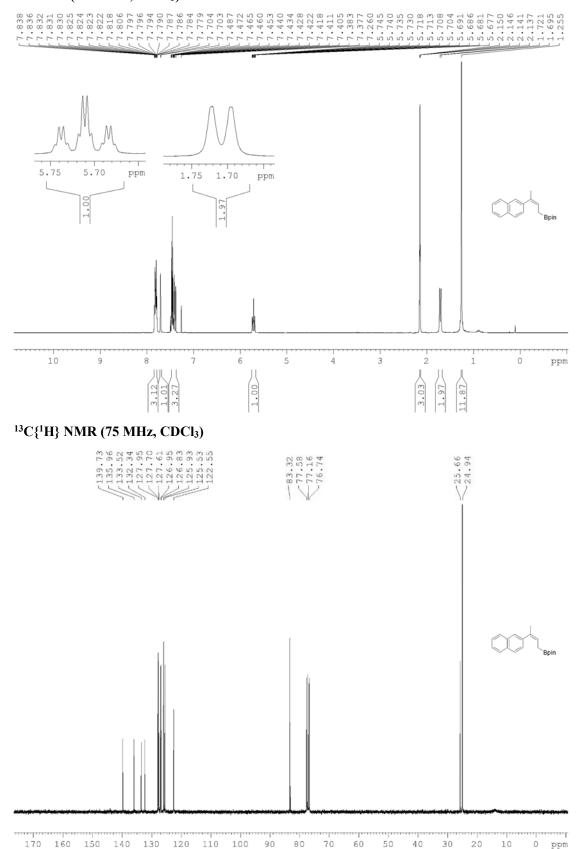


¹¹B NMR (96 MHz, CDCl₃)

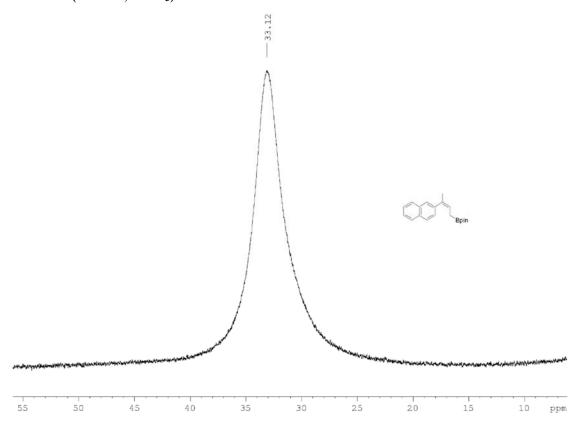


Compound 2q


¹H NMR (300 MHz, CDCl₃)

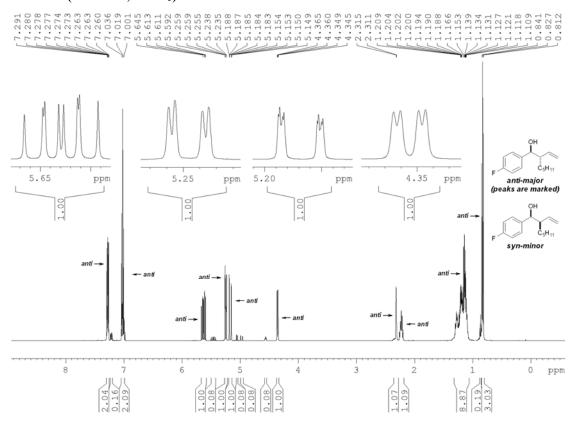


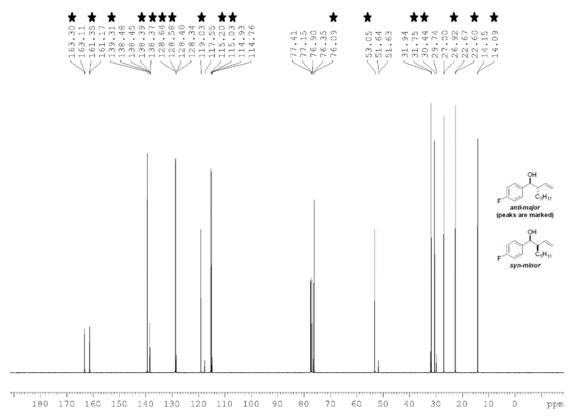
¹⁹F NMR (470 MHz, CDCl₃)

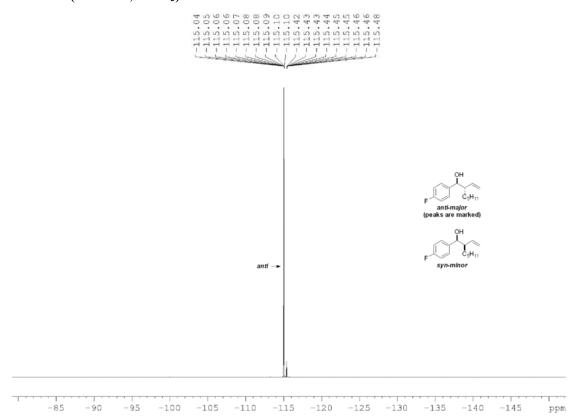


Compound 2r

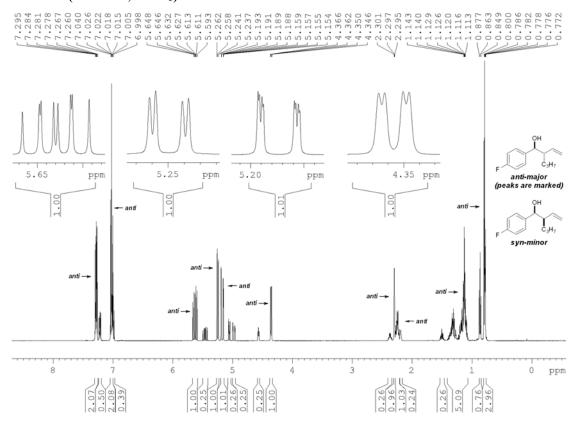
¹H NMR (300 MHz, CDCl₃)

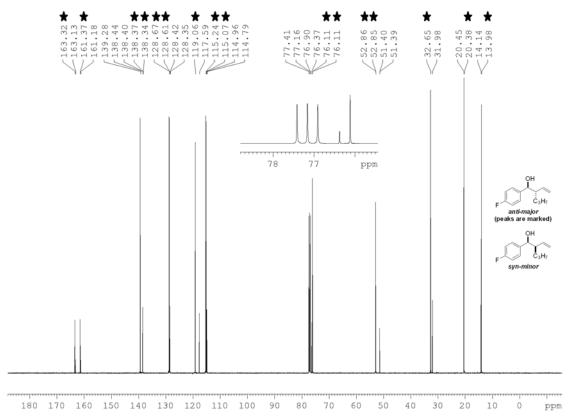


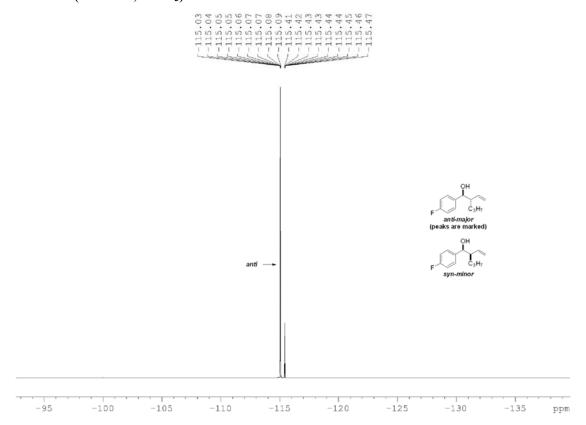

¹¹B NMR (96 MHz, CDCl₃)


Compound 4a

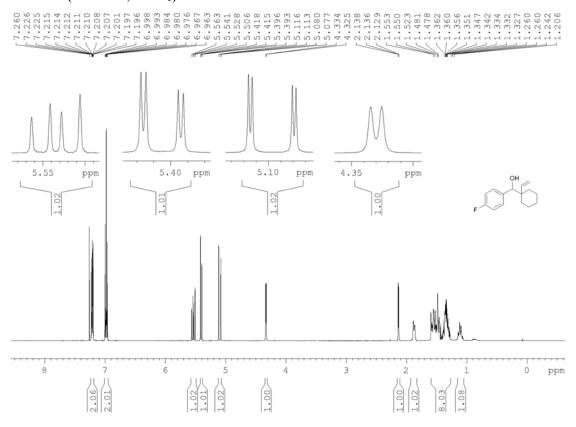
¹H NMR (500 MHz, CDCl₃)



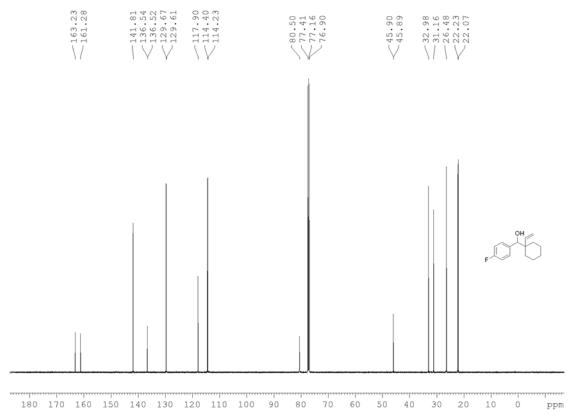

¹⁹F NMR (470 MHz, CDCl₃)


Compound 4b

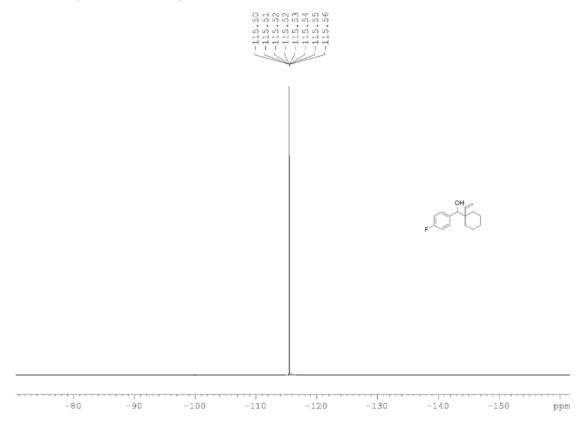
¹H NMR (500 MHz, CDCl₃)



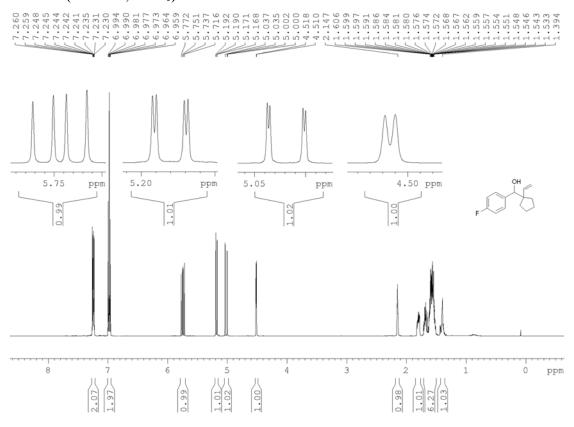
¹⁹F NMR (470 MHz, CDCl₃)



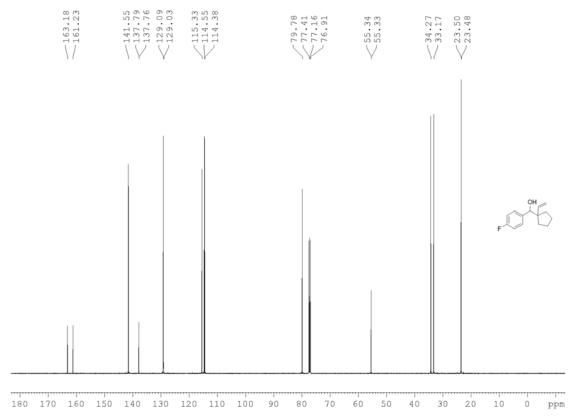
Compound 4d


¹H NMR (500 MHz, CDCl₃)

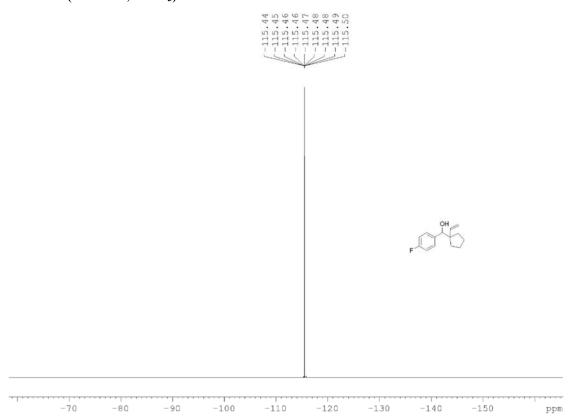
$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (125 MHz, CDCl₃)



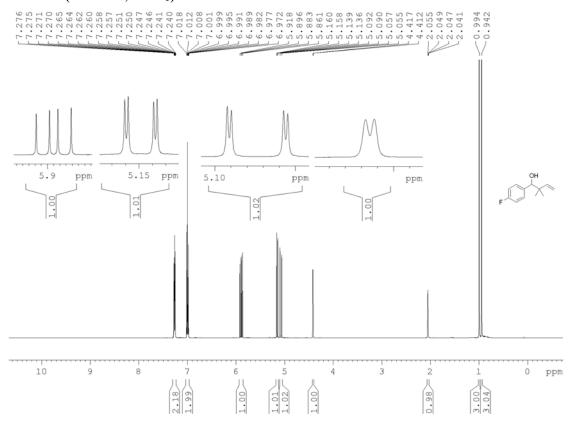
¹⁹F NMR (470 MHz, CDCl₃)



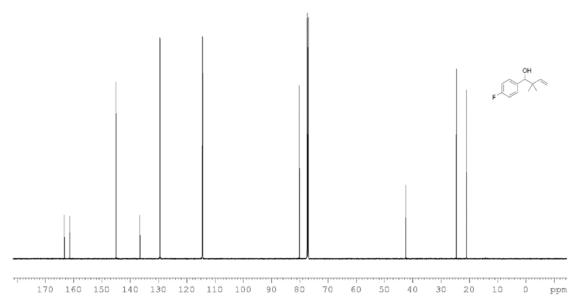
Compound 4e


¹H NMR (500 MHz, CDCl₃)

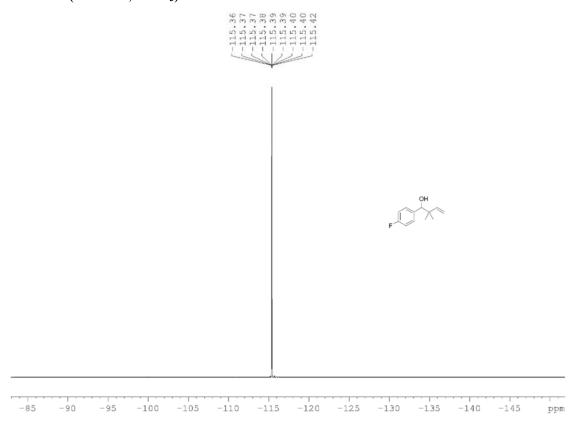
$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (125 MHz, CDCl₃)

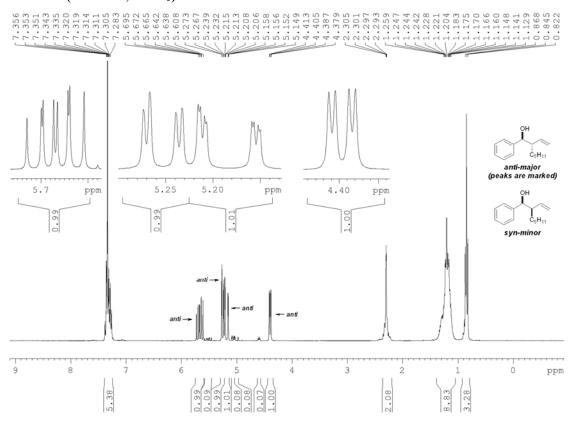


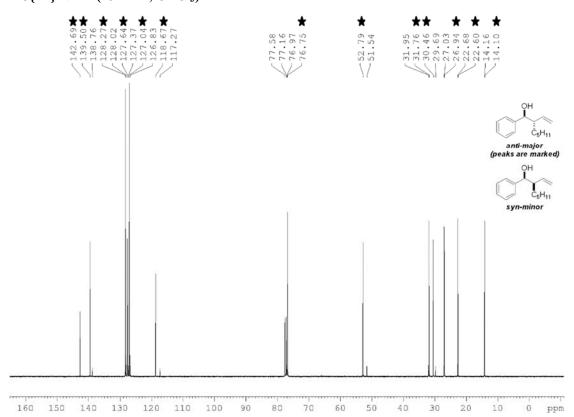
¹⁹F NMR (470 MHz, CDCl₃)



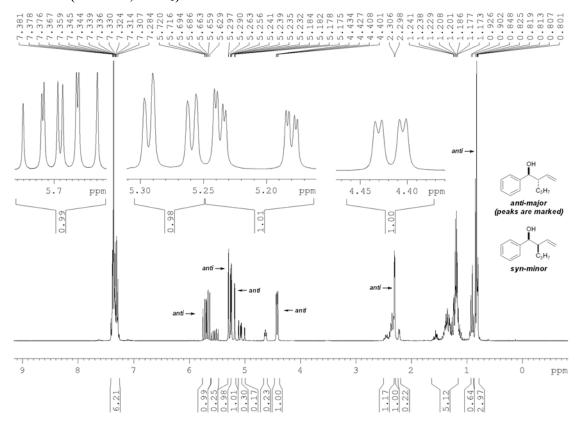
Compound 4g

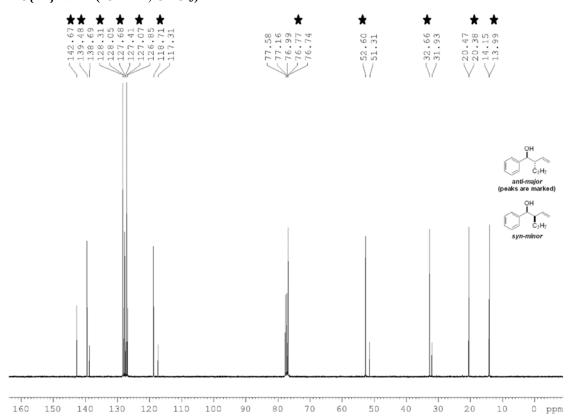

¹H NMR (500 MHz, CDCl₃)



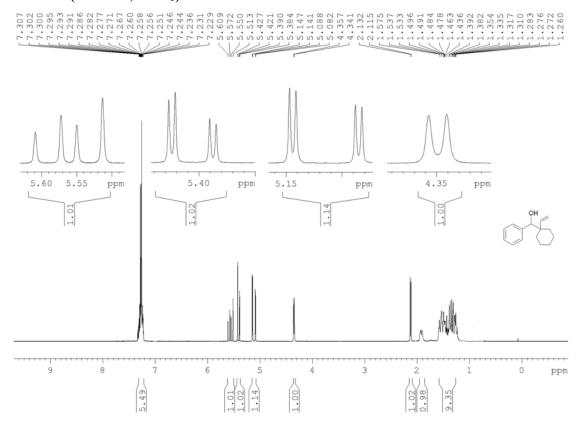

¹⁹F NMR (470 MHz, CDCl₃)

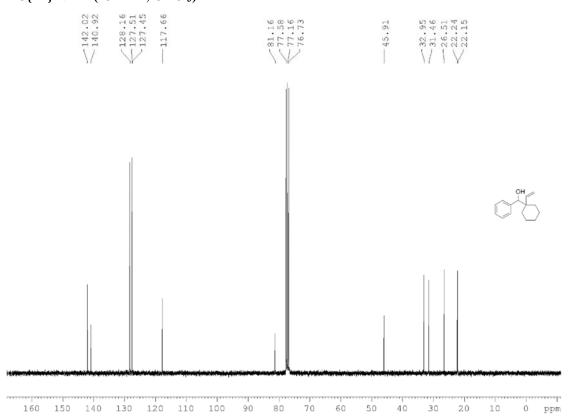
Compound 5a


¹H NMR (300 MHz, CDCl₃)

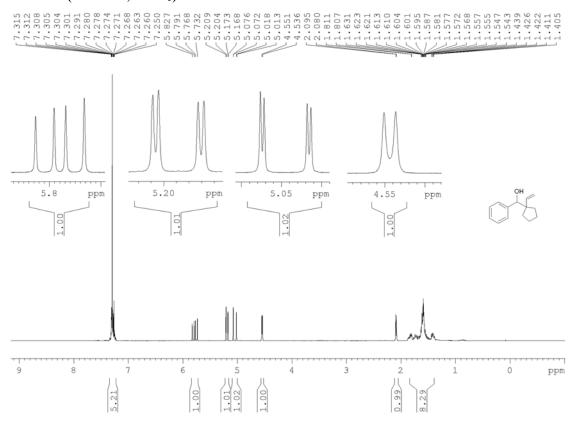


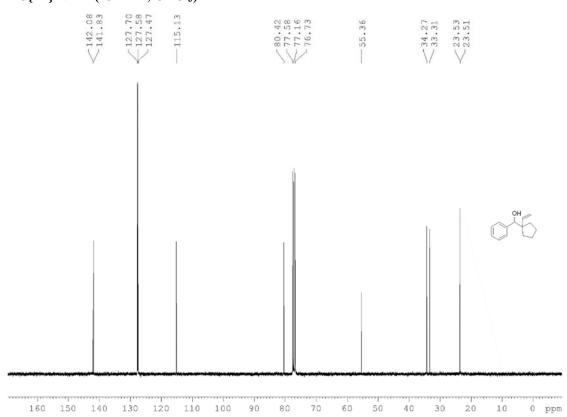
Compound 5b


¹H NMR (300 MHz, CDCl₃)

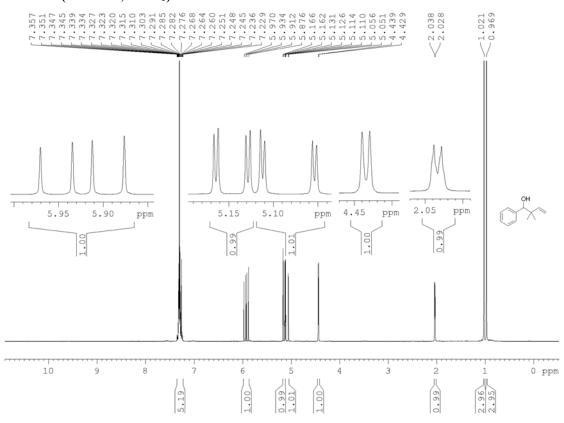


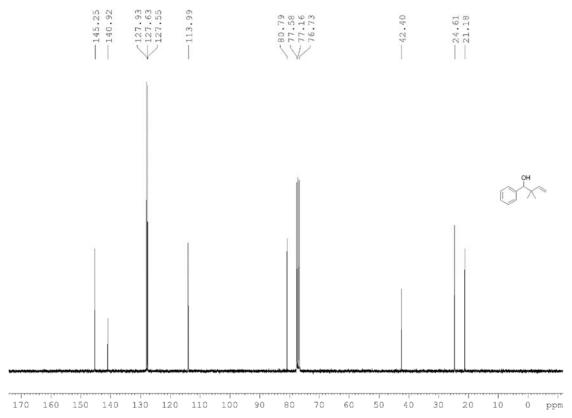
Compound 5d


¹H NMR (300 MHz, CDCl₃)

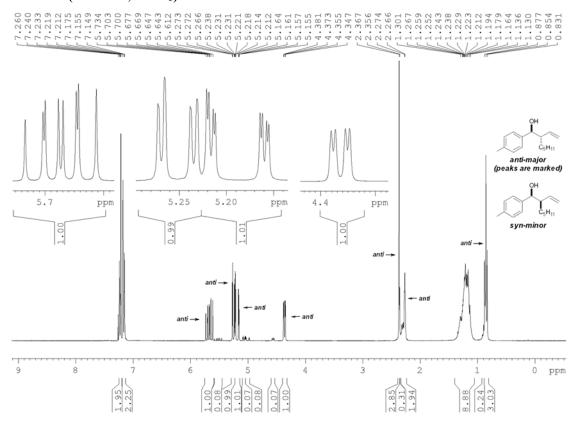


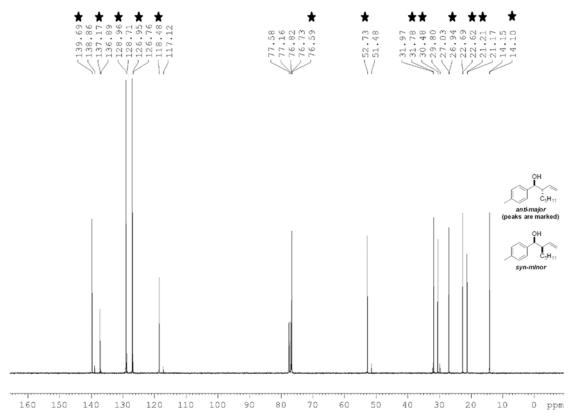
Compound 5e


¹H NMR (300 MHz, CDCl₃)

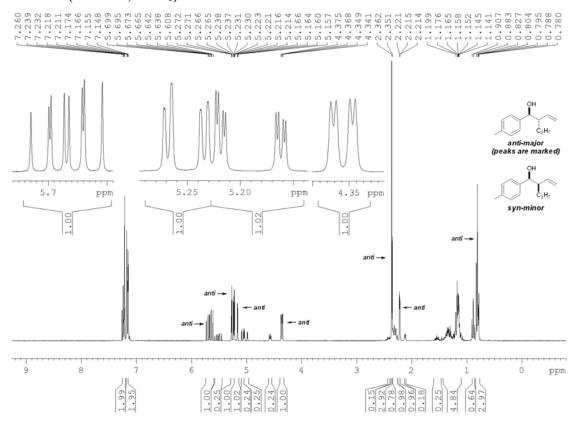


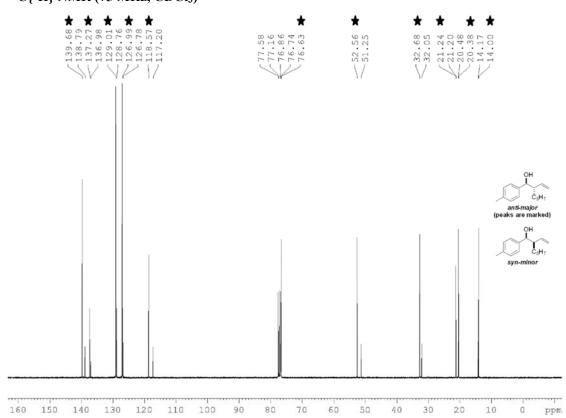
Compound 5g


¹H NMR (300 MHz, CDCl₃)

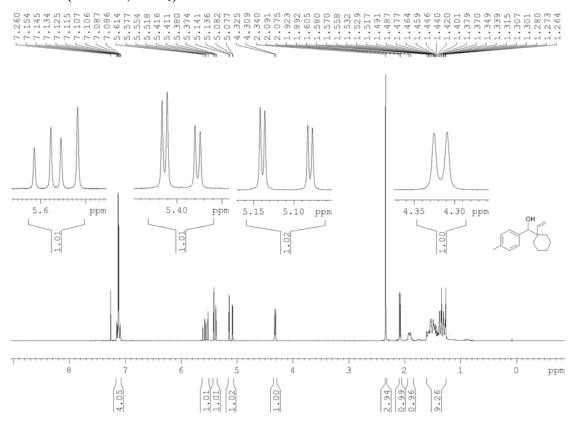


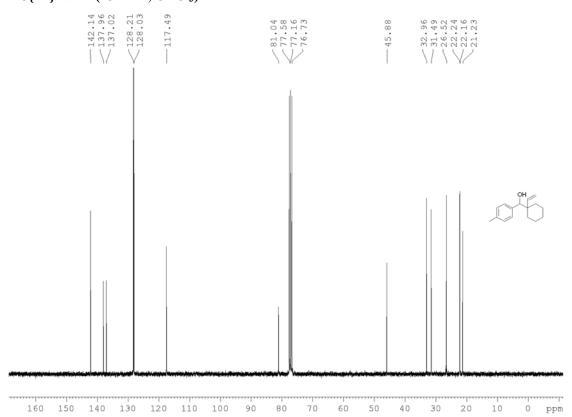
Compound 6a


¹H NMR (300 MHz, CDCl₃)

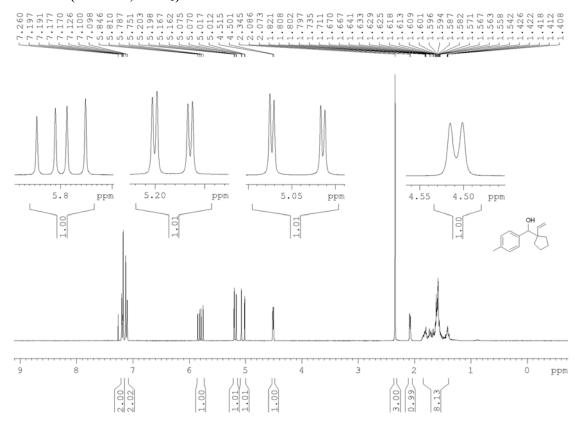


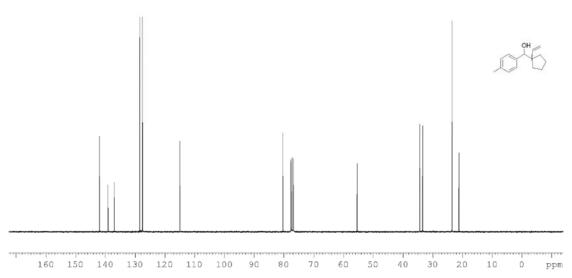
Compound 6b


¹H NMR (300 MHz, CDCl₃)



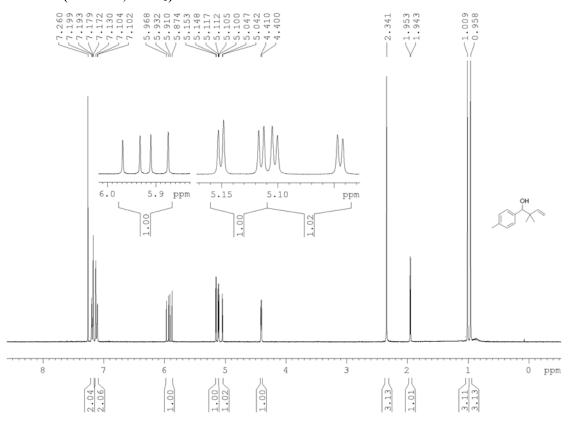
Compound 6d

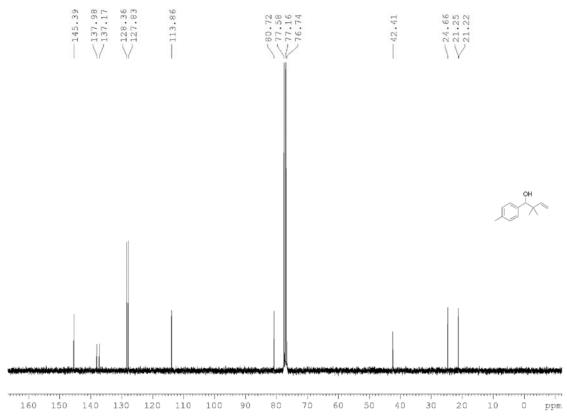

¹H NMR (300 MHz, CDCl₃)



Compound 6e

¹H NMR (300 MHz, CDCl₃)




040 11	0				
43 010	0)	00 00 vp m	m	F F	10 1
		SIOHE	m	NN	10 CT
100 M	42"				
4 m m 010	rel	0 1 1 0	LC3		(m) -1
HHHHHHH		00 1-1-1-	IO.	mm	NO
11111		(())	1	1.7	1 1
1 1 / / /				1/	1 1

Compound 6g

¹H NMR (300 MHz, CDCl₃)

