Two-Dimensional Lead Halide Perovskites Templated by a

Conjugated Asymmetric Diammonium

Matthew P. Hautzinger ${ }^{1}$, Jun Dai ${ }^{2}$, Yujin Ji ${ }^{3}$, Yongping Fu ${ }^{1}$, Jie Chen ${ }^{I}$, Ilia A. Guzei ${ }^{1}$, John C. Wright ${ }^{1}$, Youyong Li 3, Song Jin ${ }^{1 *}$
${ }^{1}$ Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
${ }^{2}$ Department of Physics, College of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China.
${ }^{3}$ Institute of Functional Nano \& Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China

Equations used to calculate Quadratic Elongation ($\langle\lambda\rangle$) and Bond angle variance ($\boldsymbol{\sigma}^{\mathbf{2}}$). ${ }^{\text {s1, S2 }}$ Equation S1: Quadratic Elongation $(\langle\lambda\rangle)$

$$
\langle\lambda\rangle=\frac{1}{6} \sum_{\{\mathrm{i}=1\}}^{6}\left(\frac{d_{i}}{d_{o}}\right)^{2}
$$

Where d_{i} is the $\mathrm{Pb}-\mathrm{X}$ bond length, d_{o} is the $\mathrm{Pb}-\mathrm{X}$ bond length from an ideal octahedron of the same volume, $\langle\lambda\rangle$ is dimensionless.

Equations S2: Bond angle variance (σ^{2})

$$
\sigma^{2}=\frac{1}{11} \sum_{\{i=1\}}^{12}\left(\alpha_{i}-90\right)^{2}
$$

Where α_{i} is the $\mathrm{Pb}-\mathrm{X}-\mathrm{Pb}$ bond angles of the octahedra.

Figure S1. PXRD patterns of (DPDA) PbI_{4} powders (crushed from single crystals) before and after one month of storage in ambient conditions.

Figure S2. (A) Crystal structure of (DPDA) $2_{2} \mathrm{PbI}_{5} \cdot \mathrm{I}$ showing 1D corner sharing chains. Upon heating, these crystals turned from yellow to red (C) and showed peaks of the 2DN perovskite in the PXRD pattern (B) indicating partial degradation/conversion to the 2DN layered compound.

Figure S3. Reflectance spectroscopy of bulk powders of (DPDA)PbI4 and (DPDA) PbBr_{4}.

Figure S4. PXRD patterns of the spin coated thin films of (A) (DPDA) PbI_{4} and (B) (DPDA) PbBr_{4} in comparison with their respective calculated patterns from single crystal structures.

References

S1. Robinson, K.; Gibbs, G. V.; Ribbe, P. H., Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 1971, 172, 567.
S2. Brese, N. E.; O'Keeffe, M., Bond-valence parameters for solids. Acta Crystallogr., Sect. B 1991, 47, 192-197.

