Use of Topotactic Phase Transformations to Obtain Solutions of the Crystal Structures of Highly

Disordered Materials

Logan C. Lorson, Onkei Tai and Bruce M. Foxman*
Department of Chemistry, MS 015, Brandeis University, Waltham, MA 02453-2700

Supporting information

1. X-Ray data collection, solution, and refinement for 1_II. S-2
2. X-Ray data collection, solution, and refinement for 1_I. S-3
3. Figure S1. Prismatic and acicular crystals of compound 1. S-8
4. Figure S2. View of the asymmetric unit of polymorph 1_II, with labels. S-9
5. Figure S3. Separate views of disordered ferrocene molecules in Figures

1 and S2 S-10
6. Diffractometer files (*.p4p) for calculations using program TOPO.

S-11
7. Topotactic matrices for phase transformation, component 1 (usedS-12 to obtain coordinates for polymorph 1_I)

X-Ray data collection, solution, and refinement for 1_II. All operations were performed on a Bruker-Nonius Kappa Apex2 diffractometer, using graphite-monochromated MoK α radiation. All diffractometer manipulations, including data collection, integration, scaling, and absorption corrections were carried out using the Bruker Apex2 software. ${ }^{1}$ Preliminary cell constants were obtained from three sets of 12 frames. Data collection was carried out at 135 K , using a frame time of 10 sec and a detector distance of 60 mm . The optimized strategy used for data collection consisted of one phi and two omega scan sets, with 0.5° steps in phi or omega; completeness was 97.6%. A total of 1041 frames were collected. Final cell constants were obtained from the xyz centroids of 4012 reflections after integration.

From the systematic absences, the observed metric constants and intensity statistics, space group $P 2_{1} / a$ was chosen initially; subsequent solution and refinement confirmed the correctness of this choice. The structure was solved using $\operatorname{SIR}-92,{ }^{2}$ and refined (full-matrix-least squares) using the Oxford University Crystals for Windows program. ${ }^{3}$ The asymmetric unit contains three thiourea molecules and one twofold-disordered ferrocene molecule ($Z=4$ (Fc); $Z=12$ (thiourea)). The ferrocene disorder was modeled as a two-component disorder; occupancies of major/minor component atoms in each group were constrained to sum to 1.0. The components and their occupancies are: $[C(201-204,205-209) / C(101-104,106,108-110) ; 0.516 / 0.484(4)]$. Atoms $C(105)$ and $C(107)$ were treated as ordered atoms, with fixed occupancies of 1.0: these two atoms are common to both components and remaining disorder could not be resolved. All non-hydrogen atoms were refined using anisotropic displacement parameters. Inspection of the individual frames of diffraction data, as well as observations during the course of solution and refinement of the structure, strongly suggested that the structure was twinned. During the refinement, processing of the data with $R O T A X^{4}$ revealed that the crystal was a trill, i.e., it was
triply twinned. For twins, our general laboratory procedure involves (a) solution and refinement of the data with ROTAX, (b) reprocessing of the frames with $C E L L_{-} N O W^{5}$ and $T W I N A B S^{6}$ to produce a (b) hklf4 and (c) hklf5 file. Conventional refinement using these two files is then carried out, and the three models [(a) through (c)] are compared. Experience suggests that it is very difficult to predict which of the three models will be best in an individual case. In this case, the refinement using ROTAX was superior; on many occasions the ability to vary the twin overlap parameter in the Crystals for Windows ${ }^{3}$ software leads to substantive improvement. The crystal is a $(\approx 3: 1: 1)$ TLQS 7 conservative twin ${ }^{8}$ rotated about the 110 and -110 reciprocal directions. The twin laws and corresponding obliquities are (-1 100$) /\left[\begin{array}{lll}-3 & 1 & -1\end{array}\right], 0.45^{\circ},(0.507,-$ $0.493,0.501 /-1.507,-0.507,-0.501 / 0,0,-1)$ and $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right) /\left[\begin{array}{ll}3 & 1\end{array}\right], 0.45^{\circ},(-0.507,-0.493,-$ $0.501 / 1.507,-0.507,0.501 / 0,0,1)$. Final refined values of each component were $0.602(4)$, $0.206(4)$ and $0.192(4)$. If conservative twinning, ${ }^{8}$ i.e., preservation of the trigonal symmetry of 1_I in the resultant monoclinic 1_II crystal by twinning, was fully achieved, one would expect an equal distribution of the three components. Such a distribution is most often seen in TLS ${ }^{23}$ (merohedral or pseudo-merohedral) twins; kinetic factors may intervene to change the distribution. After location of H atoms on electron-density difference maps, the H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C---H in the range $0.93--0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})$ in the range 1.2-1.5 times $U_{e q}$ of the parent atom), after which the positions were refined with riding constraints. ${ }^{9}$ The final least-squares refinement converged to $\mathrm{R}_{1}=0.0456(I>2 \sigma(I), 3771$ data $)$ and $\mathrm{wR}_{2}=0.1226\left(F^{2}, 5357\right.$ data, 283 parameters). The final CIF is available as supporting material.

X-Ray data collection, solution, and refinement for 1_I. All operations were performed on a Bruker-Nonius Kappa Apex2 diffractometer, using graphite-monochromated MoK α radiation.

All diffractometer manipulations, including data collection, integration, scaling, and absorption corrections were carried out using the Bruker Apex2 software. ${ }^{1}$ Preliminary cell constants were obtained from three sets of 12 frames. Data collection was carried out at 260 K , using a frame time of 10 sec and a detector distance of 60 mm . The optimized strategy used for data collection consisted of one phi and two omega scan sets, with 0.5° steps in phi or omega; completeness was 99.8%. A total of 1041 frames were collected. Final cell constants were obtained from the xyz centroids of 2704 reflections after integration.

From the systematic absences, the observed metric constants and intensity statistics, space group $R \overline{3} c$ was chosen initially; subsequent solution and refinement confirmed the correctness of this choice. The structure was solved, in part, using $\operatorname{SIR}-92,{ }^{2}$ and refined after complete solution see below) using the Oxford University Crystals for Windows program. ${ }^{3}$ The asymmetric unit contains one half-molecule ($Z^{\prime}=1 / 2$) of thiourea and one-sixth $\left(Z^{\prime}=1 / 6\right)$ of a ferrocene molecule (Fe on a 32 position; thiourea on a 2 position ($Z=6(\mathrm{Fc}) ; Z=18$ (thiourea)). After a number of unsuccessful attempts at modelling a solution and using spherical density models (see main paper), we decided to explore whether a set of coordinates could be generated for 1_1 using the methods of topotaxy. In any crystal-to-crystal process, reaction or phase transition, one has the opportunity, if the process is observed during a single diffractometer session, to obtain the exact orientation relationship between the pair of unit cells observed. ${ }^{8,10,11}$ The procedure, using the current version (4.40) of our available program TOPO, ${ }^{11}$ involves reading in a pair of.$p 4 p$ or .cif files which contain the orientation matrices for Phase 1 and Phase $2, R_{1}$ and R_{2}, respectively. The product of the inverse of the orientation matrix for Phase 2 and the orientation matrix for Phase 1 gives the topotactic transformation matrix φ; the φ matrix may be used to transform the direct space axial parameters of unit cell 1 to unit cell $2 .{ }^{8,10,11}$

$$
\varphi=R_{2}^{-1} R_{1}
$$

The fractional coordinates associated with Phases 1 and 2 transform contravariantly to the unit cell parameters, ${ }^{12}$ thus we can transform the coordinates as follows,

$$
\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)=\bar{\emptyset}^{-1}\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)
$$

where the bar indicates the transform of matrix φ.

The coordinates of polymorph 1_II were then multiplied by the transpose of the inverse topotactic transformation matrix, $(-0.29240015,-1.02595031,0.00465608 /-0.65292293$, -$0.07470173,-0.00103417 / 0.33493739,-0.00935831,-1.00324917$). Conveniently, both φ and its inverse are part of the TOPO program output, ${ }^{13}$ and the Oxford University Crystals for Windows software provides an option for coordinate transformation. ${ }^{3}$ Once the new coordinate set was generated, redundant atoms, specifically those associated with $2 \frac{1}{2}$ of the original three thiourea moieties, had to be removed; these of course were symmetry-related to those of the halfmolecule in the Wyckoff 18 e position. The derived Fe atom position, (1/3, 2/3, -0.097) was displaced ca. $0.17 \AA$ from the Wyckoff 6 a position $(1 / 3,2 / 3,-0.0833)$ and therefore was assigned an occupancy of 0.5 . Cyclopentadienyl C atoms, involved in a twofold disorder in 1_II, were now initially set to occupancies of $0.0833(=0.5 / 6)$. When the parameter files were completely updated using the predicted new coordinates, and the occupancies adjusted, refinement was carried out using isotropic displacement parameters for the ring C atoms, and the refined occupancies of the two ferrocene orientations were constrained to sum to $1 / 6$. The components and their occupancies are: $\quad[C(201-204, \quad 205-209) / C(101-104,106,108-110)$; $0.0925 / 0.0741 /(11)$, a ratio of $\approx 55.5: 44.5]$. Atoms $C(105)$ and $C(107)$ were treated as ordered atoms, with fixed occupancies of $1 / 6$: these two atoms are common to both components and
remaining disorder was not resolved. Both Fe and remaining non-hydrogen atoms were refined using anisotropic displacement parameters. The atom numbering scheme is identical to that in the polymorph 1_II. Bond length, vibration and angle restraints for the $\mathrm{C}-\mathrm{C}$ and $\mathrm{Fe}-\mathrm{C}$ distances were also included. The final least-squares refinement converged to $\mathrm{R}_{1}=0.0425(I>2 \sigma(I), 934$ data) and $\mathrm{wR}_{2}=0.1330\left(F^{2}, 791\right.$ data, 104 parameters $)$. The final CIF is available as supporting material.

1. Apex2, Version 2 User Manual, M86-E01078, Bruker Analytical X-ray Systems, Madison, WI, June 2006.
2. Altomare, A; Cascarano, G; Giacovazzo, G.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.
3. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487; Prout, C.K;. Pearce, L.J. CAMERON, Chemical Crystallography Laboratory, Oxford, UK, 1996.
4. Cooper, R. I.; Gould, R. O.; Parsons, S.; Watkin, D. J. J. Appl. Crystallogr. 2002, 35, 168-174.
5. Sheldrick, G. M. (2008). CELL_NOW. Version 2008/4. Georg-August-Universität Göttingen, Göttingen, Germany.
6. Sheldrick, G. M. (2012). TWINABS. Version 2012/1. Georg-August-Universität Göttingen, Göttingen, Germany.
7. Donnay, G.; Donnay, J. D. H. Can. Mineral. 1974, 12, 422-425.
8. Gougoutas, J. Z. Isr. J. Chem. 1972, 10, 395-407.
9. Cooper, R. I.; Thompson, A. L.; Watkin, D. J. J. Appl. Crystallogr. 2010, 43, 1100-1107.
10. Posner, S. R.; Lorson, L. C.; Gell, A. R.; Foxman, B. M. Cryst. Growth Des. 2015, 15, 3407-3416.
11. Etter, M. C. J. Am. Chem. Soc. 1976, 98, 5331-5339.
12. Foxman, B. M. TOPO v4.40, A Program for Analysis of Topotactic Relationships, Brandeis University, 2017; http://www.xray.chem.brandeis.edu/ .
13. Sands, D. E. Vectors and Tensors in Crystallography, Addison-Wesley, Reading, MA.; 1982; pp. 50-53.

Figure S1. Prismatic crystals (ca. 2 mm on an edge (left), and acicular crystals (ca. $0.2 \times 0.2 \times 0.7 \mathrm{~mm}$) of compound 1 (right). Acicular crystals had well-developed (101), (-1 01), $\pm(110), \pm(-110), \pm(010)$, $\pm(011), \pm(1-11), \pm(1-10), \pm(100)$ and $\pm(001)$ faces.

Figure S2. View of the asymmetric unit of polymorph 1_II, with labels. C atoms in green are associated with both disordered ring sets and have fixed occupancies of 1.0 ; atom $\mathrm{C}(105)$ is in the upper left and $C(107)$ at lower right. For clarity, atoms $C(204)$ and $C(109)$ have not been labelled; $\mathrm{C}(204$, yellow) bonds to $\mathrm{C}(203$, red $)$ and $\mathrm{C}(107$, green $)$, while $\mathrm{C}(109$, yellow) bonds to $\mathrm{C}(108$, yellow) and $\mathrm{C}(110$, yellow).

Figure S3. View of the two separate disordered ferrocene molecules in Figures 1 and S2.

I. Diffractometer files (*.p4p) for calculations using program TOPO. Only the

 beginning of each file is shown, but these may be cut, pasted into an editor, and saved as text . $p 4 p$ files for further calculations in TOPO.
Compound 1_I, 260K

Compound 1_II, 135K

FILEID	C_NOW	$2008 / 4$	4.00		$08 / 30 / 17$	$09: 26: 09$	FCTU_LL	
SITEID	$?$							
TITLE	$?$							
CHEM	C13	H22	Fe	N6	S3			
CELL	10.1077	16.2085	12.4068	89.9105	114.0199	89.8810	1856.584	
CELLSD	0.0020	0.0032	0.0025	0.0300	0.0300	0.0300	0.928	
ORT1	-0.030734396	0.038954463	0.047956225					
ORT2	-0.032633148	-0.047689125	0.034178820					

