Supporting Information

An Implantable Transparent Conductive Film with Water Resistance and Ultrabendability for Electronic Devices

Youngjun Song^{*,†, $//, \perp$}, Sejung Kim[‡] and Michael J. Heller^{*,‡,§}

[†]Department of Electrical and Computer Engineering, [‡]Department of Nanoengineering, and [§]Department of Bioengineering, University of California San Diego, La Jolla 92093-0448, California, United States

¹StandardBioelectronics. Co., Dosan-ro 341beon-gil, Seo-gu, Daejeon 35320, Korea

[⊥]Environment & Energy Research Team, Hyundai Motor Co., 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do16082, Korea

Author Information

Corresponding author

* E-mail: yjunsong@gmail.com (Y. Song), mheller@ucsd.edu (M.J. Heller)

Figure S1. Sheet resistance of transparent electrodes using conductive materials. Reproduced with permission from reference 13. Copyright 2011 John Wiley and Sons. Reproduced with permission from reference 54. Copyright 2011 Cambridge University Press.

Figure S2. The optical images of EPD chamber. (a) left: top electrode, right: bottom chamber electrode, (b) EPD chamber, which is connected with wires (the top electrode is applied positive voltage and the bottom chamber is applied ground.)

Figure S3. XPS data of nitrocellulose with and without coating PLL (a) whole bands, (b) N band (c) C band, (d) O band

Figure S4. Zeta potential of AgNW suspension

Figure S5. The sheet resistance by deposition times: (a) 10 seconds, (b) 20 seconds, (c) 30 seconds and (d) 60 seconds

Figure S6. The current-voltage (IV) curves: (a) AgNW/NC (b) carbon nanotubes/NC and TNC (CNT/NC and CNT/TNC)

Figure S7. The change of sheet resistance (R/R₀) for AgNW/NC and AgNW/TNC

Figure S8. Sheet resistance of transparent electrodes carbon conductive materials fabricated by our EPD method

Figure S9. The fabrication of carbon nanotubes/TNC: (a) Process and optical images, (b) SEM image of pristine nitrocellulose, (c) SEM image of carbon nanotube deposited nitrocellulose and (d) SEM image after DMSO treatment

Figure S10. AFM images and surfaces roughness (R_{rms}) of TNCs and NC values of AFM images: (a)-(b)TNC by DMSO (85°C), (c)-(d)TNC by EtOH (85°C), (e)-(f)TNC by EtOH (25°C), (g)-(h)pristine NC. For calculating average of R_{rms} , 3 represent lines (red, green and blue lines) of each images are selected.

Figure S11. Optical images of 95 % EtOH evaporation process (a) before the process, (b) during the process and (c) after the process

Figure S12. Total transmittance and haze at 85°C for 2 hours (a) Total transmittance of TNC fabricated by DMSO, (b) Haze of TNC fabricated by DMSO

Figure S13. Total transmittance and haze of TNC fabricated by diverse solvents (a) Total transmittances, (b) Hazes

Figure S14. Optical images of 3M tape test (1), (4) 3M tape before the test, (2) 3M tape after AgNWs/TNC peel-off and (3) 3M tape after AgNWs/NC peel-off

Figure S15. The change of resistances by 3M tape peel-off test of (a) AgNW/PDMS and (b) AgNW/PET, which are fabricated by spray (Model S622, Master Airbrush, Co.).

Table S1 Comparison of mechanical test

Test	Test condition	R/R ₀ of AgNW/TNC	R/R_0	Reference
Bending	-180°	0.85	0.85 (G/G ₀)	Ref 56
Folding	-180° (inside)	1.13	0.4 (G/G ₀)	Ref 56
Compressive strain	100%	0.83	1.4	Ref 57
Twist angle	90°	0.97	1.7	Ref 57
3M tape peel-off	9 times	1.7	1.4	Ref 35

Figure S16. Bending test of carbon nanotubes/TNC: (a) SEM image before bending, (b) SEM image after bending (4.7K times) and (c) Optical image of bending test. (300°)

Figure S17. The ratio of change for resistance(R/R_0) for bending cycles of carbon

nanotubes/TNC

Figure S18. (a)-(d) SEM images of carbon nanotube/TNC and (e) optical image of carbon

nanotubes/TNC under folding (red arrow: folded line)

Figure S19. The change of sheet resistance before/after folding of carbon nanotubes/TNC