Supporting Information

Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous

Nanosheets for Promoted Electrocatalytic Urea Oxidation

Yun Tong^{1‡}, Pengzuo Chen^{1‡}, Mengxing Zhang², Tianpei Zhou¹, Lidong Zhang², Wangsheng Chu², Changzheng Wu,* ¹ and Yi Xie¹

- Hefei National Laboratory for Physical Science at the Microscale, iChEM(Collaborative Innovation Center of Chemistry for Energy Materials), and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

To whom correspondence should be addressed. E-mail: czwu@ustc.edu.cn

[‡] These authors contributed equally.

Table of contents

S1. The SEM images of Ni-Mo precursor/NF sample3
S2. The XRD pattern of p-NiMoO ₄ /NF electrode3
S3. The elemental mapping images of r-NiMoO ₄ nanosheet4
S4. The SEM images and TEM images of p-NiMoO ₄ /NF nanosheets4
S5. The EDS spectrum and elemental mapping images of p-NiMoO ₄ /NF
electrode5
S6. The HRTEM image of p-NiMoO ₄ porous nanosheets5
S7. The XPS survey of as-prepared p-NiMoO ₄ and r-NiMoO ₄ samples6
S8. Comparison between the simulations and experimental data of Mo edges
for r-NiMoO ₄ and p-NiMoO ₄ samples6
S9. The theoretical multiple-scattering paths of r-NiMoO $_4$ product7
S10. Cyclic voltammetry (CV) plots of r-NiMoO ₄ /NF with/without KOH
electrolyte7
S11. Cyclic voltammetry (CV) plots of bare Ni foam with/without urea
solution8
S12. Chronoamperometric response of UOR process for r-NiMoO ₄ /NF9
S13. Cyclic voltammetry plots of r-NiMoO ₄ /NF at different scan rates9
S14. CVs at different scan rates from 2 to 10 mV/s for series of $NiMoO_4$
products10

S1. The SEM images of Ni-Mo precursor/NF sample

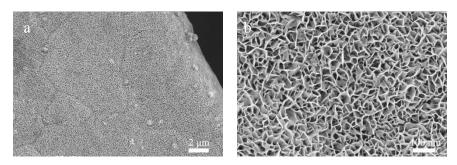


Figure S1 SEM images of Ni-Mo precursor/NF nanosheets at (a) low magnification and (b) high magnification.

S2. The XRD pattern of p-NiMoO₄/NF electrode

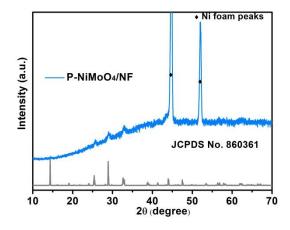


Figure S2 The XRD pattern of as-prepared p-NiMoO $_4$ /NF electrode.

S3. The elemental mapping images of r-NiMoO₄ nanosheet

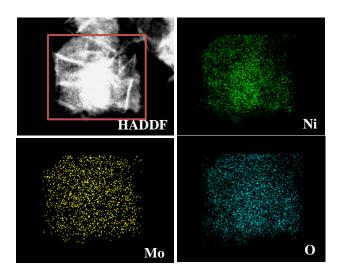


Figure S3 The TEM-EDS mapping images of r-NiMoO $_4$ nanosheet.

S4. The SEM images and TEM images of p-NiMoO₄/NF nanosheets

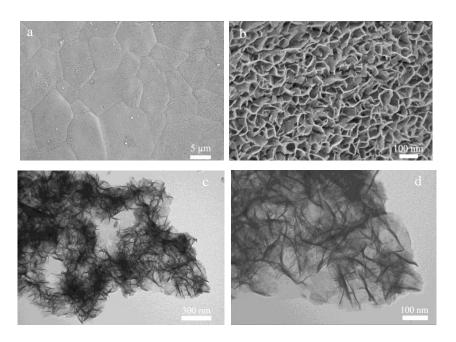


Figure S4 SEM images of $p\text{-NiMoO}_4/NF$ electrode at (a) low magnification and (b) high magnification. TEM images of $p\text{-NiMoO}_4$ nanosheets at (c) low magnification and (d) high magnification.

S5. The EDS spectrum and elemental mapping images of p-NiMoO₄/NF electrode

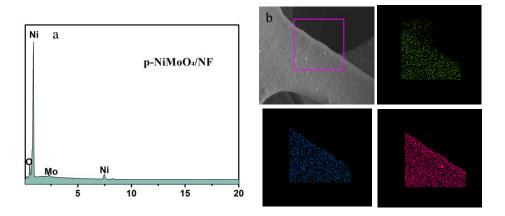


Figure S5 (a) The EDS spectrum and (b) elemental mapping images of p-NiMoO₄/NF electrode

S6. The HRTEM image of p-NiMoO₄ porous nanosheets

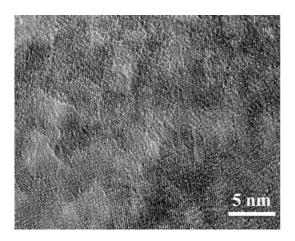


Figure S6 The HRTEM image of p-NiMoO₄ porous nanosheets.

S7. The XPS survey of as-prepared p-NiMoO₄ and r-NiMoO₄ samples

Figure S7 The XPS survey of as-prepared (a) p-NiMoO₄ and (b) r-NiMoO₄ samples. (c) The element atomic content of Ni, Mo and O elements in the as-prepared NiMoO₄ products.

S8. Comparison between the simulations and experimental data of Mo edges for $r\text{-NiMoO}_4$ and $p\text{-NiMoO}_4$ samples

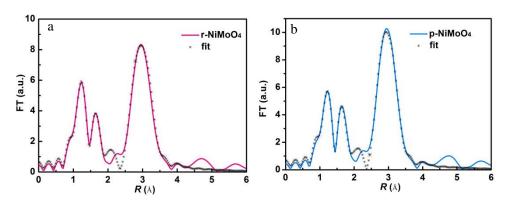


Figure S8 Comparison between the simulations and experimental data of Mo-edges for a) $r\text{-NiMoO}_4$ and b) $p\text{-NiMoO}_4$ products.

S9. The theoretical multiple-scattering paths of r-NiMoO₄ product

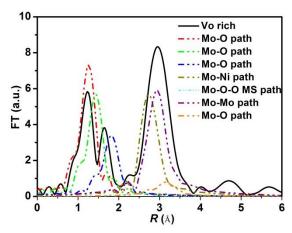


Figure S9 The theoretical simulation of scattering paths for r-NiMoO₄ sample.

S10. Cyclic voltammetry (CV) plots of r-NiMoO4/NF with/without KOH electrolyte

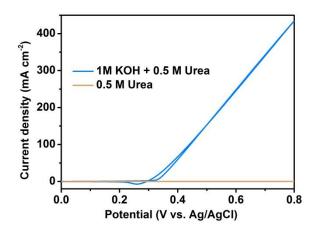


Figure S10 Cyclic voltammetry plots of r-NiMoO₄/NF in 0.5 M urea with and without 1 M KOH electrolyte.

S11. Cyclic voltammetry (CV) plots of bare Ni foam with/without urea solution

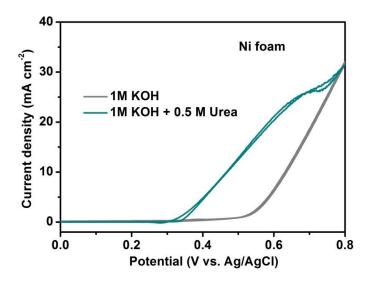


Figure S11 CV curves of Ni foam in 1 M KOH electrolyte with and without 0.5 M urea.

S12. Chronoamperometric response of UOR process for r-NiMoO₄/NF

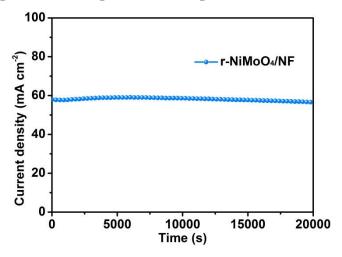


Figure S12 Time dependence of the current density for UOR under a static potential of 400 mV in 1M KOH solution.

S13. Cyclic voltammetry plots of r-NiMoO₄/NF at different scan rates

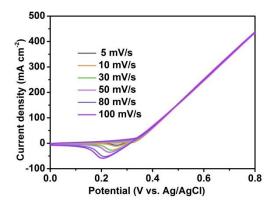


Figure S13 Cyclic voltammetry plots for r-NiMoO₄/NF at different scan rates.

S14. CVs at different scan rates from 2 to 10 mV/s for series of NiMoO₄ products

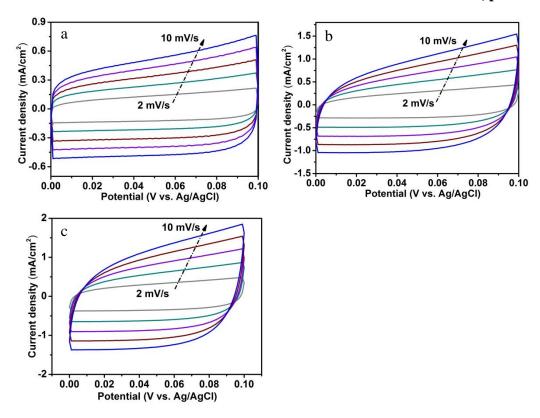


Figure S14 Cyclic voltammograms of (a) Ni-Mo precursor/NF, (b) p-NiMoO₄/NF and (c) r-NiMoO₄/NF at different scan rates from 2 to 10 mV s⁻¹.

The electrochemical double-layer capacitance (EDLC) of p-NiMoO₄ and r-NiMoO₄ catalysts were investigated on the basis of CV curves recorded at different scan rates of 2-10 mV s⁻¹. Under this potential region, charge transfer electrode reactions are considered to be negligible and the current is originated solely from electrical double layer charging and discharging. Finally, we calculated the slope from the linear relationship of the current density against the scan rate.