Supporting Information for

Synthesis of $\mathbf{4 H} \mathbf{- 1 , 3}$-benzoxazines via Metal- and Oxidizing Reagent-Free Aromatic C-H Oxygenation

Fan Xu, Xiang-Yang Qian, Yan-Jie Li and Hai-Chao Xu*

Contents Page

1. General Information S2
2. Procedures for the Electrolysis S2
3. Characterization Data for Electrolysis Products S3
4. Synthesis and Characterization of New Substrates S9
5. Transformation of Products S25
6. Computational Studies S26
7. References S28
8. NMR Spectra for New Compounds S29

1. General Information

Anhydrous potassium phosphate and tetraethylammonium hexafluorophosphate were purchased from Aldrich. Anhydrous dichloromethane, acetonitrile and tetrahydrofuran were obtained by distillation under argon from calcium hydride and sodium/benzophenone, respectively. Trifluoroacetic acid and triethylamine were commercial available and used without further purification. Flash column chromatography was performed with silica gel (230-400 mesh). NMR spectra were recorded on Bruker AV-400 and Bruker AV-500 instruments. Data were reported as chemical shifts in ppm relative to TMS (0.00 ppm) for ${ }^{1} \mathrm{H}$ and $\mathrm{CDCl}_{3}(77.2 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$. The abbreviations used for explaining the multiplicities were as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Infrared spectra were recorded on a Nicolet AVATER FTIR330 spectrometer. High resolution mass spectra (ESI) were recorded by the instrumentation center of Department of Chemistry, Xiamen University, on a Micromass QTOF2 Quadruple/Time-of-Flight Tandem mass spectrometer. The electrodes used for the preparative electrolysis were the same as those previously reported. ${ }^{1}$

2. Procedures for the Electrolysis

General procedure for the electrolysis in batch: A 10 mL three-necked roundbottomed flask was charged with the amide substrate (0.2 mmol) and $\mathrm{Et}_{4} \mathrm{NPF}_{6}(0.2$ $\mathrm{mmol})$. The flask was equipped with a reflux condenser, a reticulated vitreous carbon (100 PPI) anode ($1.2 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$) and a platinum plate ($1 \mathrm{~cm} \times 1 \mathrm{~cm}$) cathode, and flushed with argon. Anhydrous $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and THF (1 mL) were added. The constant current (10 mA) electrolysis was carried out at $80^{\circ} \mathrm{C}$ (oil bath temperature). After complete consumption of the starting amide, the reaction mixture was cooled to rt and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired product.

Procedure for reaction scale up: The amide $1(1.07 \mathrm{~g}, 3.4 \mathrm{mmol})$ and $\mathrm{Et}_{4} \mathrm{NPF}_{6}(95 \mathrm{mg}$, $0.34 \mathrm{mmol})$ was dissolved in dry $\mathrm{MeCN} / \mathrm{THF}(5: 1,67 \mathrm{~mL})$ and flowed through the electrochemical microreactor (volume $=250 \mu \mathrm{~L}$) in a flow rate of $0.3 \mathrm{~mL} / \mathrm{min}$ (Figure S1). A constant current of 50 mA was employed. The solution was concentrated under reduced pressure on a rotary evaporator. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the product 2.

Parameters of the flow reactor: The anode and cathode are held apart by a fluorinated ethylene propylene (FEP) foil of $250 \mu \mathrm{~m}$ thick. A rectangular reaction channel (total length: 313 mm , width: 3.2 mm) is cut in the FEP foil to give an overall channel volume of $250 \mu \mathrm{~L}$. The whole device is held together by steel screws and wing nuts.

Figure S1. Design of the microreactor.

3. Characterization Data for Electrolysis Products

6-Methoxy-4,4-dimethyl-2-(2-phenylpropan-2-yl)-4H-benzo [e] [1,3]oxazine
The title compound contained a regioisomer in a ratio of 15.7:1. Colorless oil; Yield $=$ $63 \%(40.0 \mathrm{mg})$; Current $=6.5 \mathrm{~F} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H})$, 7.24-7.19 (m, 2H), 7.14-7.09 (m, 1H), $6.65(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.54(\mathrm{~m}, 2 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,156.2$, 146.5, 142.7, 129.8, 128.3, 126.3, 125.8, 116.0, 112.6, 110.4, 55.8, 52.8, 44.5, 32.3, 27.4. IR (neat, cm^{-1}): $3059,2972,1682,1497,1092,699$. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 310.1802, obsd 310.1810.

2-(2-(4-Chlorophenyl)propan-2-yl)-6-methoxy-4,4-dimethyl-4H-benzo $[e][1,3]$
oxazine (3). The title compound contained a regioisomer in a ratio of 13:1. Colorless oil; Yield $=65 \%(45.3 \mathrm{mg})$; Current $=6.5 \mathrm{~F}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.28$ (m, 2H), 7.27-7.22 (m, 2H), $6.72(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (s, $3 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0,156.3,145.0$, 142.6, 132.1, 129.7, 128.4, 127.3, 115.9, 112.7, 110.5, 55.8, 52.9, 44.2, 32.3, 27.3. IR (neat, cm^{-1}): 2972, 2929, 1682, 1495, 827. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 344.1412,
obsd $344.1421\left[\mathrm{C}_{20} \mathrm{H}_{23}{ }^{35} \mathrm{ClNO}_{2}\right]^{+}$.

6-Methoxy-4,4-dimethyl-2-(1-phenylcyclopropyl)-4H-benzo[e][1,3]oxazine Colorless oil; Yield $=69 \%(42.3 \mathrm{mg})$; Current $=5.2 F ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19$ (m, 1H), 6.71-6.68 (m, 2H), 6.65 (dd, $J=8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 3H), 1.51-1.47 (m, 2H), 1.45 (s, 6H), 1.15-1.11 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,155.8,142.6,141.2,129.7,129.1,128.2,126.6$, 116.0, 112.6, 110.4, 55.8, 52.9, 32.2, 28.9, 14.5. IR (neat, cm^{-1}): 2963, 1646, 1507, 1076, 803. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 330.1465, obsd 330.1479.

2-(1-(4-Chlorophenyl)cyclopentyl)-6-methoxy-4,4-dimethyl-4H-benzo $e \boldsymbol{e}[1,3]$
oxazine (5). The title compound contained a regioisomer in a ratio of 11.5:1. Light yellow oil; Yield $=66 \%(43.4 \mathrm{mg})$; Current $=6.5 \mathrm{~F} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.26 (m, 2H), 7.19-7.15 (m, 2H), 6.62-6.55 (m, 3H), 3.68 (s, 3H), 2.64-2.56 (m, 2 H), $1.83-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3,156.0,143.7,142.7,132.1,129.5,128.3,128.2,115.9,112.6,110.5,56.6,55.8$, 52.9, 36.3, 32.2, 23.5. IR (neat, cm^{-1}): 2969, 2872, 1682, 1495, 818. ESI HRMS m/z $(\mathrm{M}+\mathrm{H})^{+}$calcd 370.1568 , obsd $370.1576\left[\mathrm{C}_{22} \mathrm{H}_{25}{ }^{35} \mathrm{ClNO}_{2}\right]^{+}$.

2-(tert-Butyl)-6-methoxy-4,4-dimethyl-4H-benzo $[\boldsymbol{e}][1,3]$ oxazine (6). The title compound contained a regioisomer in a ratio of 6.7:1. Colorless oil; Yield $=43 \%$ (21.3 mg); Current $=5.2 \mathrm{~F}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.59(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8$, $156.2,142.9,130.0,115.8,112.6,110.5,55.8,52.4,36.8,32.2,27.7$. IR (neat, cm^{-1}): 2970, 1683, 1425, 805. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 248.1645, obsd 248.1653.

2-Isopropyl-6-methoxy-4,4-dimethyl-4H-benzo $[\boldsymbol{e}][1,3]$ oxazine (7). The title compound contained a regioisomer in a ratio of 9.4:1. Colorless oil; Yield $=66 \%(31.9$ mg); Current $=4.3 \mathrm{~F} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.77-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.62(\mathrm{~m}$, $2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~d}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5,156.3,142.5,129.7,115.9,112.7,110.6,55.8,52.3,34.0,32.4$, 19.7. IR (neat, cm^{-1}): 2968, 1653, 1424, 1048, 809. ESI HRMS m/z (M+H) ${ }^{+}$calcd 234.1489, obsd 234.1488.

6-Methoxy-2,4,4-trimethyl-4 \boldsymbol{H}-benzo $[\boldsymbol{e}][1,3]$ oxazine (8). The title compound contained a regioisomer in a ratio of 9.4:1. Colorless oil; Yield $=44 \%(18.0 \mathrm{mg})$; Current $=4.4 F ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.5,152.1$, $142.1,129.2,115.9,112.9,110.7,55.8,52.6,32.6,21.1$. IR (neat, cm^{-1}): 2931, 1654, 1509, 1212, 1046. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 206.1176, obsd 206.1180.

6-Methoxy-4,4-dimethyl-2-phenyl-4H-benzo $[e][1,3]$ oxazine (9). The title compound contained a regioisomer in a ratio of 4.4:1. Colorless oil; Yield $=66 \%(37.4 \mathrm{mg})$; Current $=6.5 F ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 3 \mathrm{H})$, $7.02(\mathrm{dd}, J=8.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.7,150.4,142.4,132.9,130.8,129.7,128.3,127.6,116.3$, $112.9,110.7,55.8,53.2,32.6$. IR (neat, cm^{-1}): 3063, 2970, 2929, 1667, 1297, 695. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 268.1332, obsd 268.1336.

6-Methoxy-4,4-dimethyl-2-(o-tolyl)-4H-benzo $[\boldsymbol{e}][1,3]$ oxazine (10). The title compound contained a regioisomer in a ratio of 9.1:1. Colorless oil; Yield $=68 \%(38.6$ $\mathrm{mg})$; Current $=6.5 \mathrm{~F} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{td}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.7,152.5,142.4,137.3,133.3,131.0,129.9,129.5,129.1$, $125.8,116.2,112.9,110.6,55.8,53.5,32.5,20.7$. IR (neat, cm^{-1}): 3068, 2972, 1660, 1495, 700. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 282.1489, obsd 282.1495.

6-Methoxy-4,4-dimethyl-2-(thiophen-2-yl)-4H-benzo[e] [1,3]oxazine (11). The title compound contained a regioisomer in a ratio of 5.1:1. Colorless oil; Yield $=79 \%(45.8$ mg); Current $=6.1 \mathrm{~F} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{dd}, J=3.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.71-$ $6.65(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.6,147.2$, $142.1,136.9,129.7,129.0,128.7,127.4,116.2,112.9,110.7,55.8,53.3,32.4$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3074,2970,1663,1496,710$. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 274.0896, obsd 274.0905 .

2-(Benzo[b]thiophen-2-yl)-6-methoxy-4,4-dimethyl-4H-benzo $[e][1,3]$ oxazine (12). The title compound contained a regioisomer in a ratio of 4.7:1. Light yellow solid; Yield $=62 \%(40.5 \mathrm{mg})$; Current $=6.5 \mathrm{~F}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.86-$ $7.76(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.74(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,147.4,142.0,141.1,139.5,137.1$, $125.8,125.5,124.7,124.6,122.5,116.2,113.0,110.8,55.8,53.6,32.5$. IR (neat, cm^{-1}): 3057, 2971, 2926, 1662, 1497, 747. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 324.1053, obsd 324.1046 .

4-Cyclohexyl-6-methoxy-4-methyl-2-(2-phenylpropan-2-yl)-4H-benzo[e][1,3] oxazine (13). The title compound contained a regioisomer in a ratio of 8.1:1. Colorless oil; Yield $=65 \%(49.0 \mathrm{mg})$; Current $=6.5 \mathrm{~F} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.29$ (m, 2H), 7.24-7.17 (m, 2H), 7.15-7.06 (m, 1H), 6.57-6.52 (m, 3H), 3.67 (s, 3H), 1.81$1.67(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.23-0.92(\mathrm{~m}, 5 \mathrm{H}), 0.90$ $0.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6,155.9,146.5,143.6,128.2,128.1$, 126.2, 126.0, 115.6, 112.2, 111.1, 58.0, 55.7, 49.9, 44.8, 28.8, 28.0, 27.1, 26.9, 26.7, 26.3. IR (neat, cm^{-1}): 2929, 2850, 1686, 1495, 1132, 765. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 378.2428, obsd 378.2441.

6-Methoxy-2-phenylspiro[benzo[e][1,3]oxazine-4,1'-cyclohexane] (14). The title compound contained a regioisomer in a ratio of 4.9:1. Colorless oil; Yield $=61 \%(37.1$ mg); Current $=5.2 \mathrm{~F}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.31(\mathrm{~m}$, $3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.7,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.25(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6,148.8,143.0,133.1,130.7,130.4,128.2$, $127.6,116.1,112.6,110.4,55.8,54.9,40.6,26.4,21.5$. IR (neat, cm^{-1}): 3059, 2932, 1672, 1497, 694. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd 308.1645, obsd 308.1655.

6-Methoxy-2-phenylspiro[benzo[e][1,3]oxazine-4,1'-cyclopentane] (15). The title compound contained a regioisomer in a ratio of 6.7:1. Colorless oil; Yield $=57 \%$ (34.1 mg); Current $=4.2 \mathrm{~F} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}$,
$3 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.18-1.97(\mathrm{~m}, 6 \mathrm{H}), 1.92-1.81$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.5,149.0,143.2,133.0,130.7,128.6,128.2$, $127.5,116.0,112.8,110.6,63.4,55.8,45.2,25.0$. IR (neat, cm^{-1}): 2955, 2852, 1670, 1498, 1198, 694. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 294.1489, obsd 294.1497.

6-Methoxy-4-methyl-2-(2-phenylpropan-2-yl)-4H-benzo $[e][1,3]$ oxazine
(16).

Colorless oil; Yield $=31 \%(18.2 \mathrm{mg})$; Current $=6.5 F ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.41-7.36 (m, 2H), 7.34-7.28 (m, 2H), 7.23-7.18 (m, 1H), 6.66-6.65 (m, 2H), 6.60$6.57(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,156.4,146.2,143.2,128.4,126.4$, $125.8,125.7,116.2,113.3,110.6,55.8,50.6,44.8,27.6,27.0,25.5$. IR (neat, cm^{-1}): 3254, 2970, 2929, 1635, 1506, 1205, 700. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 296.1645, obsd 196.1649.

6-(Benzyloxy)-4,4-dimethyl-2-(2-phenylpropan-2-yl)-4H-benzo[e][1,3]oxazine
(17). The title compound contained a regioisomer in a ratio of 14.2:1. Colorless oil; Yield $=65 \%(50.1 \mathrm{mg}) ;$ Current $=6.5 \mathrm{~F}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.26(\mathrm{~m}$, $6 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.8$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,155.4,146.5,142.9,137.1,129.8,128.7,128.3,128.1$, 127.7, 126.3, 125.8, 116.0, 113.6, 111.7, 70.7, 52.8, 44.5, 32.3, 27.4. IR (neat, cm^{-1}): 3030, 2966, 1682, 1495, 1091, 806. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 386.2115 , obsd 386.2123.

6-(Allyloxy)-4,4-dimethyl-2-(2-phenylpropan-2-yl)-4H-benzo[e][1,3]oxazine (18). The title compound contained a regioisomer in a ratio of 14.8:1. Colorless oil; Yield $=$ $53 \%(35.9 \mathrm{mg})$; Current $=7.2 \mathrm{~F} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H})$, 7.25-7.18 (m, 2H), 7.14-7.10 (m, 1H), 6.71-6.63 (m, 1H), 6.60-6.51 (m, 2H), $5.95(\mathrm{~m}$, $1 \mathrm{H}), 5.32(\mathrm{dd}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dt}, J=5.4$, $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,155.2$, $146.5,142.8,133.5,129.7,128.3,126.3,125.8,117.8,115.9,113.5,111.5,69.5,52.8$, $44.5,32.3,27.4$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 2971,2927,1683,1195,1076$. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$ calcd 336.1958, obsd 336.1968 .

4,4-Dimethyl-6-phenoxy-2-(2-phenylpropan-2-yl)-4H-benzo[e][1,3]oxazine (19).

Colorless oil; Yield $=80 \%$ (61.5 mg); Current $=6.5 F ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.88-$ $6.84(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1$, 158.0, 152.9, 146.3, 144.6, 130.1, 129.8, 128.4, 126.4, 125.8, 122.9, 118.6, 118.0, 116.4, 116.2, 52.8, $44.5,32.4,27.3$. IR (neat, cm^{-1}): 3060, 2970, 2929, 1685, 1588, 1485, 696. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd 372.1958, obsd 372.1968.

4,4,6-Trimethyl-2-phenyl-4H-benzo $[e][1,3]$ oxazine (20). The title compound contained a regioisomer in a ratio of 1:1. Colorless oil; Yield $=71 \%(35.6 \mathrm{mg})$; Current $=5.0 F ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.05(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.21-$ $7.03(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3$ (2C), 146.5, 146.1, 134.2, 133.0, 132.9, $130.9,130.8,129.1,128.4$ (2C), 128.3 (2C), 127.6, 125.7, 124.8, 124.1, 122.8, 115.3, $53.0,52.8,32.7,32.6,21.2,15.8$. IR (neat, cm^{-1}): 3059, 2970, 1668, 1499, 694. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 252.1383, obsd 252.1392.

6-(tert-Butyl)-4,4-dimethyl-2-phenyl-4H-benzo[e][1,3]oxazine (21). The title compound was obtained as a mixture of regioisomers in ratio of 7.7:1. Colorless oil; Yield $=81 \%(47.4 \mathrm{mg}) ;$ Current $=6.5 \mathrm{~F}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-8.05(\mathrm{~m}$, $2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 1 \mathrm{H})$, $1.52(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.3,146.9,136.5,133.1$, 130.7, 128.8, 128.4, 127.6, 125.3, 124.1, 123.5, 52.8, 34.9, 33.0, 30.2. IR (neat, cm^{-1}): 3064, 2967, 1676, 694. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 294.1852, obsd 294.1862.

6-Fluoro-4,4-dimethyl-2-phenyl-4H-benzo[e][1,3]oxazine (22). Colorless oil; Yield $=63 \%(32.8 \mathrm{mg})$; Current $=6.5 \mathrm{~F}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11-8.04(\mathrm{~m}, 2 \mathrm{H})$, $7.51-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=242.1 \mathrm{~Hz}\right), 150.2,144.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 132.5,131.0,130.3\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\mathrm{F}=6.7 \mathrm{~Hz}), 128.3,127.6,116.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right), 114.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.6 \mathrm{~Hz}\right), 111.9(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{F}}=23.6 \mathrm{~Hz}$), $53.2,32.5$.). ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.8$. IR (neat, cm^{-1}): 3064, 2974, 2926, 1672, 1497, 1180, 693. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 256.1132, obsd 256.1142.

6-Fluoro-4,4,7-trimethyl-2-phenyl-4H-benzo $[e][1,3]$ oxazine (23). The title
compound was obtained as a mixture of regioisomers in ratio of 8.2:1. Colorless oil; Yield $=45 \%(24.4 \mathrm{mg})$; Current $=5.2 \mathrm{~F} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09-8.03(\mathrm{~m}$, 2H), 7.48-7.39 (m, 3H), 6.92-6.84 (m, 2H), $2.26(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=241.0 \mathrm{~Hz}\right), 150.2,143.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.2 \mathrm{~Hz}\right)$, 132.6, 130.9, $128.3,127.6,127.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.6 \mathrm{~Hz}\right), 124.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=19.5 \mathrm{~Hz}\right), 118.0(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=4.9 \mathrm{~Hz}\right), 111.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24.5 \mathrm{~Hz}\right), 52.9,32.6,14.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}$ ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.7$ (minor), -122.3 (major). IR (neat, cm^{-1}): 3060, 2971, 1670, 1497, 1065, 694. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd 270.1289, obsd 270.1296.

7-Chloro-6-methoxy-4,4-dimethyl-2-phenyl-4H-benzo $[e][1,3]$ oxazine
Colorless oil; Yield $=56 \%(34.7 \mathrm{mg})$; Current $=5.8 \mathrm{~F} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.09-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,150.0,142.1,132.4,131.0,128.3,127.9$, 127.6, 121.5, 117.5, 108.8, 56.9, 53.1, 32.5. IR (neat, cm^{-1}): 3066, 2971, 2929, 1668, 1487, 695. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 302.0942, obsd $302.0944\left[\mathrm{C}_{17} \mathrm{H}_{17}{ }^{35} \mathrm{ClNO}_{2}\right]^{+}$.

4. Synthesis and Characterization of New Substrates

2-(3-Methoxyphenyl)propan-2-ol (S1). ${ }^{2}$ To a solution of methylmagnesium bromide (3 M in $\mathrm{Et}_{2} \mathrm{O}, 44 \mathrm{~mL}, 1.2$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ was added a solution of 1-(3-methoxyphenyl)ethan-1-one ($16.0 \mathrm{~g}, 106 \mathrm{mmol}, 1$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$. After complete addition, the solution was warmed to rt gradually. Upon complete consumption of ketone (monitored by TLC), saturated $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100$ mL) were added. The phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$. The combined organic solution was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give $\mathbf{S 1}(17.4 \mathrm{~g})$. Colorless oil; Yield $=98 \%$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{dd}, J$ $=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 159.7,151.1,129.3,116.9,111.9,110.7,72.6,55.3,31.8$.

1-(2-Azidopropan-2-yl)-3-methoxybenzene (S2). The title compound was prepared by following a modified procedure in the literature. ${ }^{3}$ To a solution of $\mathbf{S} \mathbf{1}(5.8 \mathrm{~g}, 34.9$ mmol, 1 equiv) and $\mathrm{NaN}_{3}\left(5.0 \mathrm{~g}, 77 \mathrm{mmol}, 2.2\right.$ equiv) in $\mathrm{CHCl}_{3}(180 \mathrm{~mL})$ was added trifluoroacetic acid ($14.5 \mathrm{~mL}, 189 \mathrm{mmol}, 5$ equiv) at rt . The reaction mixture was stirred at rt until complete consumption of $\mathbf{S 1}$ (monitored by TLC). Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(80 \mathrm{~mL})$ was added, followed by slow addition of aqueous ammonia (25%) to adjust the pH of the aqueous phase to 7 . The phases were separated, and the aqueous phase was extracted with dichloromethane (80 mL). The combined organic solution was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give $\mathbf{S 2}$ (5.1 $\mathrm{g})$ as colorless oil in 76% yield; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8,146.5,129.7,117.6,112.5,111.7,63.8,55.4,28.5$. IR (neat, cm^{-1}): 2978, 2936, 2101, 1601, 1269, 700. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 192.1131, obsd 192.1128.
2-(3-Methoxyphenyl)propan-2-amine (S3). To a solution of S2 ($2.7 \mathrm{~g}, 14.1 \mathrm{mmol}, 1$ equiv) in $\mathrm{EtOH}(20 \mathrm{~mL})$ was added Lindlar catalyst ($5 \% \mathrm{Pd}, 3.0 \mathrm{~g}, 0.1$ equiv). The reaction mixture was stirred at rt under hydrogen atmosphere until complete consumption of S2. The mixture was passed through a pad of celite and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was chromatographed through silica gel eluting with dichloromethane/methanol to give $\mathbf{S 3}$ $(1.9 \mathrm{~g})$. Light yellow oil; Yield $=81 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{ddd}, J=8.2,2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}$, 2 H), $1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.6,152.3,129.2,117.2,111.2$, 111.0, 55.2, 52.5, 32.8. IR (neat, cm^{-1}): 3365, 2963, 1601, 1486, 1249, 1049, 702. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 166.1226, obsd 166.1234.
\boldsymbol{N}-(2-(3-Methoxyphenyl)propan-2-yl)-2-methyl-2-phenylpropanamide (1). To a solution of 2-methyl-2-phenylpropanoic acid ($3.4 \mathrm{~g}, 20 \mathrm{mmol}, 1.1$ equiv) in DCM (30 mL) under argon was added three drops of DMF, oxalyl chloride ($1.9 \mathrm{~mL}, 22 \mathrm{mmol}$, 1.2 equiv) was then added dropwise. The resulting reaction mixture was stirred at rt for 3 h before being concentrated under reduced pressure. The residue was dissolved in DCM (30 mL) and treated sequentially with a solution of $\mathbf{S 3}(3.0 \mathrm{~g}, 18 \mathrm{mmol}, 1$ equiv) in $\mathrm{DCM}(10 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(5.0 \mathrm{~mL}, 36 \mathrm{mmol}, 2$ equiv). The reaction mixture was stirred at rt until complete consumption of $\mathbf{S 3}$ (monitored by TLC). The solvent was removed under reduced pressure and the residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the title compound (4.7 g). White solid; Yield $=84 \% ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.73(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H})$, $1.58(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,159.6,149.0,145.6,129.4,128.8$, 127.1, 126.4, 117.0, 111.7, 111.0, 55.6, 55.2, 47.5, 28.9, 27.1. IR (neat, cm^{-1}): 3319, 2970, 1645, 1520, 1245, 696. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 334.1778, obsd 334.1786.

2-(4-Chlorophenyl)-N-(2-(3-methoxyphenyl)propan-2-yl)-2-methylpropanamide
(S4). The title compound was obtained as a white solid in 63% yield (1.0 g) starting from $\mathbf{S 3}(0.78 \mathrm{~g}, 4.7 \mathrm{mmol})$ by following the procedure described for the synthesis of 1. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}$, $1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4,159.8,148.9,144.3,133.0,129.5,129.0,127.8,117.0$, 111.7, 111.1, 55.8, 55.2, 47.2, 28.9, 27.1. IR (neat, cm^{-1}): 3426, 3358, 2973, 1671, 1494, 1265, 830. ESI HRMS m/z $(\mathrm{M}+\mathrm{Na})^{+}$calcd 368.1388, obsd 368.1398 $\left[\mathrm{C}_{20} \mathrm{H}_{24}{ }^{35} \mathrm{ClNNaO}_{2}\right]^{+}$.

\boldsymbol{N}-(2-(3-Methoxyphenyl)propan-2-yl)-1-phenylcyclopropane-1-carboxamide (S5). The title compound was obtained as a white solid in 65% yield (2.0 g) starting from S3 $(1.6 \mathrm{~g}, 9.8 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.19$ ($\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.84-6.81 (m, 1H), $6.78(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.1,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 8 \mathrm{H}), 1.01-0.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,159.7,149.1,140.5,131.0,129.4,129.2,128.0,117.0$, 111.5, 111.0, 56.0, 55.2, 31.2, 29.3, 15.1. IR (neat, cm^{-1}): 3426, 3003, 2975, 1675, 1502, 1291, 702. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 332.1621, obsd 332.1630.

1-(4-Chlorophenyl)-N-(2-(3-methoxyphenyl)propan-2-yl)cyclopentane-1-carbox
amide (S6). The title compound was obtained as a white solid in 74% yield (1.4 g) starting from $\mathbf{S 3}(0.84 \mathrm{~g}, 5.1 \mathrm{mmol})$ by following the procedure described for the synthesis of $1 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.56(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.4,159.7,149.0,143.3,132.8,129.4,129.0$, $128.2,116.9,111.7,111.0,59.5,55.7,55.2,36.7,29.0,24.0$. IR (neat, cm^{-1}): 3427 , 2958, 1672, 1493, 1266, 699. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 394.1544 , obsd 394.1553 $\left[\mathrm{C}_{22} \mathrm{H}_{26}{ }^{35} \mathrm{ClNNaO}_{2}\right]^{+}$.

S3
S7
\boldsymbol{N}-(2-(3-Methoxyphenyl)propan-2-yl)pivalamide (S7). To a solution of $\mathbf{S 3}$ (0.84 g , $5.0 \mathrm{mmol}, 1$ equiv) in $\mathrm{DCM}(20 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{~mL}, 10 \mathrm{mmol}$, 2 equiv) under argon. Trimethylacetyl chloride ($0.70 \mathrm{~g}, 5.8 \mathrm{mmol}, 1.1$ equiv) was added dropwise. The mixture was stirred at rt until complete consumption of $\mathbf{S 3}$ (monitored by TLC). The solvent was removed under reduced pressure and the residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the product (1.0 g). White solid; Yield $=81 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (ddd, $J=7.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{ddd}, J=8.2,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.86(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 177.3, 159.7, 149.2, 129.5, 117.1, 111.4, 111.3, 55.5, 55.3, 39.1, 29.2, 27.8. IR (neat, cm^{-1}): 3330, 2974, 1645, 1531, 1220, 699. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd 272.1621, obsd 272.1631.

\boldsymbol{N}-(2-(3-Methoxyphenyl)propan-2-yl)isobutyramide (S8). The title compound was obtained as a white solid in 92% yield $(0.98 \mathrm{~g})$ starting from $\mathbf{S 3}(0.75 \mathrm{~g}, 4.5 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S} 7$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{ddd}, J=7.8,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (ddd, $J=8.2,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H})$, $1.14(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.9,159.7,149.1,129.5$, 117.2, 111.4 (2C), 55.6, 55.3, 36.3, 29.2, 19.8. IR (neat, cm^{-1}): 3289, 3066, 2968, 1652, $1548,1050,700$. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 258.1465, obsd 258.1472 .

\boldsymbol{N}-(2-(3-Methoxyphenyl)propan-2-yl)acetamide (S9). The title compound was obtained as a colorless solid in 77% yield $(0.87 \mathrm{~g})$ starting from $\mathbf{S 3}(0.90 \mathrm{~g}, 5.5 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S} 7$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{ddd}, J=7.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=2.2$ Hz, 1H), 6.76 (ddd, $J=8.2,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ (s, 1H), 3.80 (s, 3H), 1.94 (s, 3H), 1.67 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,159.7,148.8,129.5,117.3,111.7$, 111.2, 55.9, 55.3, 29.1, 24.4. IR (neat, cm^{-1}): 3302, 3067, 2974, 2936, 1656, 1547, 1291, 701. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd 230.1151, obsd 230.1159.

\boldsymbol{N}-(2-(3-Methoxyphenyl)propan-2-yl)benzamide (S10). The title compound was obtained as a white solid in 91% yield $(1.1 \mathrm{~g})$ starting from $\mathbf{S 3}(0.75 \mathrm{~g}, 4.5 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 7}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.79-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.04 (ddd, $J=7.8,1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (ddd, $J=8.2,2.6,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5$, $159.8,148.8,135.5,131.4,129.6,128.6,126.9,117.3,111.7,111.4,56.4,55.3,29.2$. IR (neat, cm^{-1}): 3244, 3058, 1633, 1540, 1049, 692. ESI HRMS m/z $(\mathrm{M}+\mathrm{Na})^{+}$calcd 292.1308, obsd 292.1316.

\boldsymbol{N}-(2-(3-Methoxyphenyl)propan-2-yl)-2-methylbenzamide (S11). The title compound was obtained as a light yellow solid in 70% yield (2.1 g) starting from $\mathbf{S 3}$ $(1.6 \mathrm{~g}, 9.6 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{1}$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.08-$ $7.04(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 1.80(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.2,159.8,148.7,137.4,136.1$, 131.1, 129.8, 129.6, 126.6, 125.8, 117.3, 111.6, 56.5, 55.3, 29.2, 19.9. IR (neat, cm^{-1}): 3285, 2973, 1648, 1530, 1265, 699. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 306.1465, obsd 306.1472.

\boldsymbol{N}-(2-(3-Methoxyphenyl)propan-2-yl)thiophene-2-carboxamide (S12). The title compound was obtained as a white solid in 75% yield $(0.84 \mathrm{~g})$ starting from $\mathbf{S 3}$ (0.67 $\mathrm{g}, 4.0 \mathrm{mmol}$) by following the procedure described for the synthesis of $\mathbf{S} 7$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.07-$ $7.02(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.79$ (s, 3H), $1.80(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,159.8,148.7,140.1,129.8$, 129.7, 127.9, 127.6, 117.3, 111.7, 111.5, 56.7, 55.3, 29.3. IR (neat, cm^{-1}): 3307, 3071, 1626, 1545, 1311, 699. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 298.0872, obsd 298.0881.

\boldsymbol{N}-(2-(3-Methoxyphenyl)propan-2-yl)benzo[b]thiophene-2-carboxamide (S13). The title compound was obtained as a white solid in 78% yield (0.98 g) starting from S3 $(0.64 \mathrm{~g}, 3.9 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.70$ (s, 1H), 8.29 ($\mathrm{s}, 1 \mathrm{H}$), 8.02-7.92 (m, 2H), 7.49-7.39 $(\mathrm{m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$
(dd, $J=8.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) δ $160.9,159.1,149.5,140.9,140.1,139.3,129.0,126.1,125.1,124.8,122.7,117.1,111.3$, 110.6, 55.7, 54.9, 29.4. IR (neat, cm^{-1}): 3304, 2972, 1625, 1539, 1050, 696. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd 348.1029, obsd 348.1038.

N-(1-(3-Methoxyphenyl)ethyl)-2-methyl-2-phenylpropanamide (S14). The title compound was obtained as a white solid in 85% yield (2.4 g) starting from 1-(3-methoxyphenyl)ethan-1-amine ($1.5 \mathrm{~g}, 9.6 \mathrm{mmol}$) by following the procedure described for the synthesis of $\mathbf{1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.67(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5,159.8,145.3,145.2,129.6,128.8,127.1,126.5$, 118.2, 112.6, 111.7, 55.2, 48.8, 47.1, 27.1 (2C), 21.8. IR (neat, cm^{-1}): 3346, 2972, 1653, 1495, 1256, 699. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 320.1621, obsd 320.1629.

1-(3-Methoxyphenyl)cyclopentan-1-ol (S15). The title compound was prepared by following a modified procedure in the literature. ${ }^{4}$ To an oven dried two-necked round bottom flask was added magnesium turnings ($1.1 \mathrm{~g}, 45.0 \mathrm{mmol} 1.5$ equiv). The flask was equipped with a reflux condenser and flushed with argon before adding $\mathrm{I}_{2}(51 \mathrm{mg}$, 0.2 mmol) and THF (30 mL). The solution was stirred at rt for 30 min . 1-bromo-3methoxybenzene ($30.0 \mathrm{mmol}, 1$ equiv) was then added dropwise. The resulting reaction mixture was then refluxed for 2 h and then cooled to rt . The freshly prepared Grignard reagent was transferred by cannula to a round bottom flask. Cyclopentanone (2.6 mL , $30 \mathrm{mmol}, 1$ equiv) in THF (10 mL) was added to the solution dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt overnight. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added. The phases were separated, and the aqueous phase was extracted with ethyl acetate. The combined organic solution was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the product (2.6 g). Colorless oil; Yield $=45 \%$ in two steps; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.78$ (ddd, $J=8.2,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~s}$,

1H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,149.0,129.3,117.6,112.0,111.4,83.6,55.3$, 42.0, 24.0. IR (neat, cm^{-1}): 3443, 2959, 1601, 1287, 700. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$ calcd 215.1043, obsd 215.1043.
1-(3-Methoxyphenyl)cyclopentan-1-amine (S16). The title compound was prepared by following a modified procedure in the literature. ${ }^{5}$ To a solution of $\mathbf{S} 15(2.6 \mathrm{~g}, 13.5$ mmol, 1 equiv) and sodium azide ($2.0 \mathrm{~g}, 30 \mathrm{mmol}$, 2.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) under argon was added a solution of TFA ($8.3 \mathrm{~mL}, 108 \mathrm{mmol}, 8$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-5{ }^{\circ} \mathrm{C}$ over 15 min . The resulting suspension was stirred at $-5{ }^{\circ} \mathrm{C}$ until complete consumption of $\mathbf{S 1 5}$ (monitored by TLC). Saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and ammonia solution (25%) was added until the pH of the aqueous phase reached above 7. The phases were separated, and the aqueous phase was extracted with dichloromethane (30 mL). The combined organic solution was dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and treated with $\mathrm{LiAlH}_{4}(0.51 \mathrm{~g}, 13.5 \mathrm{mmol}, 1$ equiv) in several portions at rt . The reaction mixture was stirred at rt for $3 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}(0.51 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.51 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}$ $(1.53 \mathrm{~mL})$ and anhydrous MgSO_{4} were added sequentially. The mixture was stirred at rt for 30 min and then filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed through silica gel eluting with dichloromethane/ methanol to give the product (0.5 g). Light yellow oil; Yield $=19 \%$ in two steps; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.76$ (ddd, $J=8.2$, $2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.74(\mathrm{~m}, 8 \mathrm{H}), 1.60(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}$, CDCl_{3}) $\delta 159.6,151.7,129.3,117.9,111.9,111.1,64.1,55.3,41.6,23.8$ IR (neat, cm^{-1}): 3364, 2956, 2870, 1600, 1050, 701. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 214.1202, obsd 214.1211.
N-(1-(3-Methoxyphenyl)cyclopentyl)benzamide (S17). The title compound was obtained as a light yellow solid in 97% yield $(0.69 \mathrm{~g})$ starting from $\mathbf{S 1 6}(0.46 \mathrm{~g}, 2.4$ mmol) by following the procedure described for the synthesis of S7. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24$ (m, 1H), 7.09 (ddd, $J=7.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{ddd}, J=$ $8.2,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.12(\mathrm{~m}, 2 \mathrm{H})$, 1.97-1.80 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.7, 159.6, 146.9, 135.6, 131.4, 129.2, 128.6, 126.9, 118.3, 112.5, 111.4, 67.1, 55.3, 39.5, 23.5. IR (neat, cm^{-1}): 3261, 3054, 2958, 1633, 1531, 1132, 696. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 318.1465, obsd 318.1472.

1-(3-Methoxyphenyl)cyclohexan-1-ol (S18). ${ }^{6}$ The title compound was obtained as a light yellow oil in 45% yield (2.8 g) starting from 1-bromo-3-methoxybenzene (5.6 g , $30 \mathrm{mmol})$ by following the procedure described for the synthesis of S15. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{ddd}, J=8.1,2.6,0.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.84 (s, 3H), 1.87-1.73 (m, 8H), 1.69-1.60 (m, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.7,151.4,129.3,117.1,111.9,110.9,73.3,55.3,38.9,25.6,22.3$.
1-(3-Methoxyphenyl)cyclohexan-1-amine (S19). The title compound was obtained as a light yellow oil in 63% yield (1.7 g) starting from $\mathbf{S 1 8}(2.7 \mathrm{~g}, 13.1 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 1 6} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.29(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.79$ (ddd, $J=8.1,2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.55(\mathrm{~m}, 9 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.8,152.0,129.3,117.7,111.7,111.2,55.3,54.0,39.4,25.9,22.6$. IR (neat, cm^{-1}): 3383, 2932, 2854, 1600, 1246, 701. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 206.1539, obsd 206.1532.
N-(1-(3-Methoxyphenyl)cyclohexyl)benzamide (S20). The title compound was obtained as a white solid in 99% yield (1.5 g) starting from $\mathbf{S 1 9}(0.81 \mathrm{~g}, 3.9 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S} 7$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.81-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ $(\mathrm{s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{td}, J=13.2,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}$, $3 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3$, 159.7, 148.7, 135.8, 131.4, 129.4, 128.7, 126.9, 117.7, 112.0, 111.3, 58.6, 55.2, 36.3, 25.6, 22.5. IR (neat, cm^{-1}): 3319, 3059, 2933, 1647, 1487, 695. ESI HRMS m/z $(\mathrm{M}+\mathrm{Na})^{+}$calcd 332.1621 , obsd 332.1630 .

1-Cyclohexyl-1-(3-methoxyphenyl)ethan-1-ol (S21). To a solution of 1-bromo-3methoxybenzene ($5.6 \mathrm{~g}, 30 \mathrm{mmol}, 1.0$ equiv) in THF (90 mL) was added $n-\mathrm{BuLi}$ (14 $\mathrm{mL}, 33 \mathrm{mmol}, 1.1$ equiv) dropwise at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred for 1 h
at the same temperature before adding 1-cyclohexylethan-1-one ($4.5 \mathrm{~g}, 36 \mathrm{mmol}, 1.2$ equiv) dropwise. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 48 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ and ethyl acetate $(100 \mathrm{~mL})$ were added. The phases were separated, and the aqueous phase was extracted with ethyl acetate. The combined organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give product (6.3 g). Colorless oil; Yield $=90 \%$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.26-7.21 (m, 1H), 6.99-6.93 (m, 2H), 6.77-6.74 (m, 1H), 3.80 (s, 3H), 1.79$1.66(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.22-0.92(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 159.4,149.9,128.8,117.9,111.7,111.4,76.7,55.3,49.0,27.5,27.3,26.9$, 26.8 (2C), 26.5. IR (neat, cm^{-1}): 3491, 2931, 2852, 1600, 1259, 1046, 703. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd 257.1512 , obsd 257.1510 .
1-(1-Azido-1-cyclohexylethyl)-3-methoxybenzene (S22). The title compound was obtained as a yellow oil in 44% yield (3.1 g) starting from $\mathbf{S 2 1}(6.3 \mathrm{~g}, 27 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S} \mathbf{2}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.78(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.15-0.92(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.6,145.3,129.2,118.7,112.8,111.9,77.4,70.1,55.3,48.9,27.8,27.7$, 26.6, 26.4, 21.2. IR (neat, cm^{-1}): 3334, 2932, 2853, 2103, 1601, 1261, 705. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd 282.1577, obsd 282.1582 .
1-Cyclohexyl-1-(3-methoxyphenyl)ethan-1-amine (S23). To a solution of $\mathbf{S 2 2}$ (2.3 g , $8.9 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$ was added $\mathrm{LiAlH}_{4}(0.67 \mathrm{~g}, 17.7 \mathrm{mmol}, 2.0$ equiv $)$ at rt . The reaction mixture was stirred at rt until complete consumption of $\mathbf{S 2 2}$ (monitored by TLC). $\mathrm{Et}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}(0.67 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.67 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ and anhydrous MgSO_{4} were added sequentially. The resulting mixture was stirred at rt for 30 min and filtered. The filtrate was concentrated under reduced pressure and the residue was chromatographed through silica gel eluting with dichloromethane/ methanol to give the product $(1.7 \mathrm{~g})$. Yellow oil; Yield $=81 \% ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.75-$ $1.57(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.26-0.89(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.3,151.1,128.7,118.1,112.1,110.6,76.8,57.4,55.1,49.4,27.9,27.5$, 27.4, 26.9, 26.5. IR (neat, cm^{-1}): 3357, 2928, 2851, 1599, 1248, 1049, 703. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd 256.1672 , obsd 256.1680 .

\boldsymbol{N}-(1-Cyclohexyl-1-(3-methoxyphenyl)ethyl)-2-methyl-2-phenylpropanamide

(S24). The title compound was obtained as a yellow oil in 60% yield (1.1 g) starting from $\mathbf{S 2 3}(1.3 \mathrm{~g}, 5.5 \mathrm{mmol})$ by following the procedure described for the synthesis of 1. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}$, $1 \mathrm{H}), 6.73-6.65(\mathrm{~m}, 3 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.84(\mathrm{~m}, 3 \mathrm{H}), 0.54-0.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176,159.3,146.9,145.5,128.9,128.8,127.2,126.6,118.3$, $112.3,111.1,60.9,55.2,49.5,47.7,27.5,27.0$ (2C), 26.7, 26.6 (2C), 26.4, 21.6. IR (neat, $\left.\mathrm{cm}^{-1}\right): 3434,3058,2929,2854,1682,1498,1260,702$. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 402.2404, obsd 402.2414.

S28
2-(3-(Benzyloxy)phenyl)propan-2-ol (S25). ${ }^{7}$ The title compound was prepared according to a procedure in the literature.
1-(2-Azidopropan-2-yl)-3-(benzyloxy)benzene (S26). The title compound was obtained as a colorless oil in 44% yield (1.9 g) starting from $\mathbf{S 2 5}(4.0 \mathrm{~g}, 16.5 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 2}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.51-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~s}$, $2 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,146.5,137.0,129.6,128.7$, $128.1,127.6,117.8,113.3,112.7,70.2,63.8,28.4$. IR (neat, cm^{-1}): 3032, 2978, 2930, 2102, 1600, 1268, 697. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 290.1264, obsd 290.1267.
2-(3-(Benzyloxy)phenyl)propan-2-amine (S27). The title compound was obtained as a colorless oil in 91% yield $(1.6 \mathrm{~g})$ starting from $\mathbf{S 2 6}(1.9 \mathrm{~g}, 7.1 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 2 3} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44$ $7.21(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H})$, $1.62(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.8,152.3,137.2,129.2$, $128.6,128.0,127.6,117.5,112.2,119.4,70.1,52.5,32.8$. IR (neat, cm^{-1}): 3365, 3031, 2963, 2925, 1580, 1245, 700. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 264.1359, obsd 264.1367. $\boldsymbol{N - (2 - (3 - (B e n z y l o x y) p h e n y l) p r o p a n - 2 - y l) - 2 - m e t h y l - 2 - p h e n y l p r o p a n a m i d e ~ (S 2 8) . ~}$ The title compound was obtained as a colorless oil in 65% yield $(0.76 \mathrm{~g})$ starting from $\mathbf{S 2 7}(0.73 \mathrm{~g}, 3.0 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H})$, $7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.75(\mathrm{~m}, 3 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}), 1.53(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.2,159.0,149.2,145.7,137.3,129.4,128.9$, $128.7,128.1,127.7,127.1,126.4,117.3,112.7,112.0,70.1,55.7,47.5,28.9,27.1$. IR (neat, cm^{-1}): 3424, 3030, 2973, 2929, 1676, 1497, 1265, 699. ESI HRMS m/z $(\mathrm{M}+\mathrm{Na})^{+}$ calcd 410.2091, obsd 410.2098.

2-(3-Phenoxyphenyl)propan-2-ol (S29). The title compound was obtained as a colorless oil in 74% yield (8.4 g) starting from 1-bromo-3-phenoxybenzene ($12.5 \mathrm{~g}, 50$ mmol) by following the procedure described for the synthesis of $\mathbf{S 2 1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.97$ (m, 2H), 6.85 (ddd, $J=8.0,2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,157.3,151.6,129.8,129.6,123.3,119.5,118.9,117.1,115.5,72.5,31.8$. IR (neat, cm^{-1}): 3418, 3067, 2975, 1581, 1489, 1227, 700. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd 251.1043, obsd 251.1050.

1-(2-Azidopropan-2-yl)-3-phenoxybenzene (S30). The title compound was obtained as a colorless oil in 59% yield $(4.5 \mathrm{~g})$ starting from $\mathbf{S 2 9}(6.8 \mathrm{~g}, 29.8 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 2}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-$ $7.23(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.89$ (ddd, $J=8.1,2.4,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5,157.2,147.0,129.9,123.5$, 120.1, 118.9, 117.7, 116.2, 63.7, 28.4.

2-(3-Phenoxyphenyl)propan-2-amine (S31). The title compound was obtained as a yellow oil in 90% yield (3.5 g) starting from $\mathbf{S 3 0}(4.3 \mathrm{~g}, 16.9 \mathrm{mmol})$ by following the procedure described for the synthesis of S23. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.20$ $(\mathrm{m}, 5 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 2 \mathrm{H}), 1.47$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5,157.1,152.7,129.8,129.5,123.2,119.8$, $118.8,116.6,115.9,76.9,52.6,32.8$. \mathbb{R} (neat, cm^{-1}): 3367, 3065, 2964, 1580, 1489, 1240, 700. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 250.1202, obsd 250.1213.
2-Methyl- N -(2-(3-phenoxyphenyl)propan-2-yl)-2-phenylpropanamide (S32). The title compound was obtained as a colorless oil in 82% yield (1.5 g) starting from S30 $(1.3 \mathrm{~g}, 5.5 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.93$ $(\mathrm{m}, 3 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.82(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,157.4,157.1,149.4,145.3,129.8,129.6,128.8$, $127.0,126.3,123.1,119.5,118.8,117.0,115.5,55.3,47.3,29.1,26.9$. IR (neat, cm^{-1}): 3424, 3060, 2974, 2930, 1676, 1490, 1226, 698. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 396.1934, obsd 396.1943.

2-(3-(Allyloxy)phenyl)propan-2-ol (S34). The title compound was obtained as a colorless oil in 22% yield (1.5 g) starting from $\mathbf{S 3 3}(7.4 \mathrm{~g}, 35 \mathrm{mmol}$) by following the procedure described for the synthesis of $\mathbf{S 2 1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.18$ (m, 1H), 7.07-7.00 (m, 2H), 6.77-6.74 (m, 1H), 6.07-5.98 (m, 1H), 5.38 (dddd, $J=$ $17.3,5.2,3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.25 (dddd, $J=17.3,5.2,3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.51-4.48$ (m, 2H), $2.54(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,151.0,133.4$, 129.1, 117.5, 117.0, 125.1, 125.0, 111.5, 72.4, 68.7, 31.6. IR (neat, cm^{-1}): 3424, 2976, 2928, 1601, 1485, 1267, 701. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 215.1043, obsd 215.1042. 1-(Allyloxy)-3-(2-azidopropan-2-yl)benzene (S35). The title compound was obtained as a colorless oil in 42% yield $(0.47 \mathrm{~g})$ starting from $\mathbf{S 3 4}(1.0 \mathrm{~g}, 5.2 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S} \mathbf{2} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-$ 7.23 (m, 1H), 7.02-6.99 (m, 2H), 6.82-6.79 (m, 1H), 6.09-6.00 (m, 1H), 5.43 (dddd, J $=17.3,5.2,3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (dddd, $J=17.3,5.2,3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.52(\mathrm{~m}$, 2 H), $1.60(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,146.5,133.4,129.6,117.9$, 117.8, 113.3, 112.5, 69.0, 63.8, 28.5.

2-(3-(Allyloxy)phenyl)propan-2-amine (S36). The title compound was obtained as a colorless oil in 90% yield $(0.33 \mathrm{~g})$ starting from $\mathbf{S 3 5}(0.42 \mathrm{~g}, 1.9 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 2 3}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.12-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.46$ (dddd, J $=17.3,5.2,3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dddd}, J=17.3,5.2,3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.55(\mathrm{~m}$, 2H), 2.09 (s, 2H), $1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,152.0,133.4$, 129.1, 117.5, 117.3, 112.0, 111.8, 68.8, 52.5, 32.6.
\boldsymbol{N}-(2-(3-(Allyloxy)phenyl)propan-2-yl)-2-methyl-2-phenylpropanamide (S37). The title compound was obtained as a yellow solid in 45% yield $(0.33 \mathrm{~g})$ starting from S36 $(0.3 \mathrm{~g}, 1.6 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.88-$ $6.72(\mathrm{~m}, 3 \mathrm{H}), 6.07$ (ddd, $J=16.9,10.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H})$, $5.33-5.20(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{dt}, J=5.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,158.8,149.1,145.6,133.5,129.4,128.9,127.1,126.4$, $117.7,117.2,112.5,111.8,68.9,55.7,47.5,28.9,27.1$. IR (neat, cm^{-1}): 3424, 3060, 2974, 2929, 1676, 1497, 1265, 700. ESI HRMS m/z (M+Na) ${ }^{+}$calcd 360.1934, obsd 360.1944 .

2-(\boldsymbol{m}-Tolyl)propan-2-ol (S38). ${ }^{2}$ The title compound was obtained as a light yellow oil in 99% yield (4.0 g) starting from 1-(m-tolyl)ethan-1-one ($4.0 \mathrm{~g}, 30 \mathrm{mmol}$) by following the procedure described for the synthesis of $\mathbf{S 1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-$ $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{dt}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,137.8$, 128.2, 127.5, 125.2, 121.5, 72.6, 31.8, 21.7.

1-(2-Azidopropan-2-yl)-3-methylbenzene (S39). The title compound was obtained as a colorless oil in 98% yield $(4.6 \mathrm{~g})$ starting from $\mathbf{S 3 8}(4.0 \mathrm{~g}, 26.8 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S} \mathbf{2} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34$ $7.26(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7,138.2,128.5,128.3,126.0,122.3,63.9,28.5,21.7$. IR (neat, cm^{-1}): 2979, 2928, 2101, 1607, 1246, 704. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 176.1182, obsd 176.1185.
2-(\boldsymbol{m}-Tolyl)propan-2-amine (S40). The title compound was obtained as a colorless oil in 99% yield (3.7 g) starting from $\mathbf{S 3 9}(4.4 \mathrm{~g}, 25.1 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 2 3} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.36(\mathrm{~m}, 1 \mathrm{H})$, $7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}$, 2 H), $1.52(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.4,137.7,128.2,126.9,125.5$, $121.8,52.4,32.9,21.7$. IR (neat, cm^{-1}): $3364,3023,2964,2923,1606,1200,705$. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 150.1277, obsd 150.1274.
\boldsymbol{N}-(2-(\boldsymbol{m}-Tolyl)propan-2-yl)benzamide (S41). The title compound was obtained as a white solid in 96% yield (1.6 g) starting from $\mathbf{S 4 0}(0.97 \mathrm{~g}, 6.5 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 7} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.68$ $(\mathrm{m}, 1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 1 \mathrm{H})$, $6.46(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,147.0$, 138.0, 135.6, 131.3, 128.6, 128.5, 127.6, 126.9, 125.6, 121.9, 56.3, 29.2, 21.8. IR (neat, cm^{-1}): 3241, 3057, 2969, 1630, 1535, 1191, 687. ESI HRMS m/z (M+Na) ${ }^{+}$calcd 276.1359, obsd 276.1365.

S44

S45

2-(3-(tert-Butyl)phenyl)propan-2-ol (S42). The title compound was obtained as a white solid in 82% yield (4.5 g) starting from 1-(3-(tert-butyl)phenyl)ethan-1-one (5.0 $\mathrm{g}, 28.4 \mathrm{mmol}$) by following the procedure described for the synthesis of $\mathbf{S} 1 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H})$, 1.37 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.2,148.9,128.0,123.8,121.7,121.4$, $72.9,35.0,32.0,31.6$. IR (neat, cm^{-1}): 3281, 2960, 1600, 1362, 707. ESI HRMS m / z $(\mathrm{M}+\mathrm{Na})^{+}$calcd 215.1406, obsd 215.1409.
1-(2-Azidopropan-2-yl)-3-(tert-butyl)benzene (S43). The title compound was obtained as a light yellow oil in 99% yield $(4.9 \mathrm{~g})$ starting from $\mathbf{S 4 2}(4.4 \mathrm{~g}, 22.9 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S} 2 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 8 7.53-7.48 (m, 1H), 7.35-7.30 (m, 2H), 7.29-7.25 (m, 1H), $1.68(\mathrm{~s}, 6 \mathrm{H}), 1.37$ $(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.6,144.4,128.3,124.5,122.3,122.2,64.2$, 35.0, 31.5, 28.6.

2-(3-(tert-Butyl)phenyl)propan-2-amine (S44). The title compound was prepared by following the procedure described for the synthesis of S23. The title compound was used in next step without purification.
\boldsymbol{N}-(2-(3-(tert-Butyl)phenyl)propan-2-yl)benzamide (S45). The title compound was obtained as a white solid oil in 87% yield $(1.3 \mathrm{~g})$ starting from $\mathbf{S 4 4}(0.97 \mathrm{~g}, 5.1 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 7}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H})$, $6.40(\mathrm{~s}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,151.3$, 146.7, 135.9, 131.3, 128.7, 128.3, 126.9, 124.0, 122.0, 121.8, 56.8, 34.9, 31.6, 29.2. IR (neat, cm^{-1}): 3246, 3060, 2957, 1634, 1539, 693. ESI HRMS m/z (M+Na) ${ }^{+}$calcd 318.1828 , obsd 318.1835 .

2-(3-Fluorophenyl)propan-2-ol (S46). ${ }^{3}$ The title compound was obtained as a colorless oil in 99% yield (4.6 g) starting from 1-(3-fluorophenyl)ethan-1-one (4.1 g , 30 mmol) by following the procedure described for the synthesis of S1. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.90(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.0 \mathrm{~Hz}\right), 152.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.4 \mathrm{~Hz}\right), 129.8$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right), 120.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 113.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}\right), 111.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $22.4 \mathrm{~Hz}), 72.5,31.8 .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.1$.
1-(2-Azidopropan-2-yl)-3-fluorobenzene (S47). The title compound was obtained as a colorless oil in 60% yield $(3.2 \mathrm{~g})$ starting from $\mathbf{S 4 6}(4.5 \mathrm{~g}, 29 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 2} \mathbf{2}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{td}, J$ $=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{ddd}, J=7.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dt}, J=10.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$,
7.01 (tdd, $\left.J=8.3,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=245.8 \mathrm{~Hz}\right), 147.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.6 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right), 120.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $2.9 \mathrm{~Hz}), 114.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}\right), 112.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.8 \mathrm{~Hz}\right), 63.5,28.4 .{ }^{19} \mathrm{~F}$ NMR (471 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-112.4$.
2-(3-Fluorophenyl)propan-2-amine (S48). The title compound was obtained as a light yellow oil in 76% yield $(2.0 \mathrm{~g})$ starting from $\mathbf{S 4 7}(3.0 \mathrm{~g}, 16.7 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 2 3}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.26$ $(\mathrm{m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244.8 \mathrm{~Hz}\right), 153.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.2 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=8.1 \mathrm{~Hz}), 120.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right), 113.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}\right), 112.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.3 \mathrm{~Hz}\right)$, $52.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 32.9 .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.3$. IR (neat, cm^{-1}): 3369, 3072, 2967, 2928, 1585, 1483, 699. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 154.1027, obsd 154.1034.
\boldsymbol{N}-(2-(3-Fluorophenyl)propan-2-yl)benzamide (S49). The title compound was obtained as a white solid in 98% yield $(1.0 \mathrm{~g})$ starting from $\mathbf{S 4 8}(0.61 \mathrm{~g}, 4.0 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 7}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$反 7.80-7.71 (m, 2H), 7.54-7.44 (m, 1H), 7.47-7.36 (m, 2H), $7.29(\mathrm{td}, J=8.0,6.0 \mathrm{~Hz}$, 1 H), 7.21 (ddd, $J=7.9,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (ddd, $J=10.8,2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (tdd, $J=8.3,2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,163.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.0 \mathrm{~Hz}\right), 149.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.4 \mathrm{~Hz}\right), 135.3,131.6,130.0\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ F $=8.3 \mathrm{~Hz}), 128.7,127.0,120.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 113.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.1 \mathrm{~Hz}\right), 112.3(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=22.5 \mathrm{~Hz}\right), 56.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 29.5 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.0$. IR (neat, cm^{-1}): 3259, 3060, 2982, 1633, 1539, 696. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 280.1108, obsd 280.1116 .

2-(3-Fluoro-4-methylphenyl)propan-2-ol (S50). The title compound was obtained as a colorless oil in 95% yield (2.1 g) starting from 1-(3-fluoro-4-methylphenyl)ethan-1one ($2.0 \mathrm{~g}, 13.1 \mathrm{mmol}$) by following the procedure described for the synthesis of $\mathbf{S} 1$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.07(\mathrm{~m}, 3 \mathrm{H}), 2.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{~s}$, $1 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244.1 \mathrm{~Hz}\right.$), $149.3(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=6.4 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.4 \mathrm{~Hz}\right), 123.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=17.4 \mathrm{~Hz}\right), 119.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.2\right.$ $\mathrm{Hz}), 111.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.3 \mathrm{~Hz}\right), 72.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 31.8,14.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.5$.
2-(3-Fluoro-4-methylphenyl)propan-2-amine (S51). The title compound was obtained as a light yellow oil in 74% yield $(2.0 \mathrm{~g})$ starting from $\mathbf{S 5 0}(2.0 \mathrm{~g}, 11.9 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 1 6}$. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.18-7.09(\mathrm{~m}, 3 \mathrm{H}), 2.24(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=243.7 \mathrm{~Hz}\right), 150.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.3 \mathrm{~Hz}\right), 131.2$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=5.5 \mathrm{~Hz}\right), 122.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=17.3 \mathrm{~Hz}\right), 120.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 111.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $23.1 \mathrm{~Hz}), 52.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 32.9,14.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $(471 \mathrm{MHz}$, CDCl_{3}) δ-117.6. IR (neat, cm^{-1}): 3367, 2965, 2928, 1503, 1407, 817, 638. ESI HRMS $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd 168.1183, obsd 168.1182.
\boldsymbol{N}-(2-(3-Fluoro-4-methylphenyl)propan-2-yl)benzamide (S52). The title compound was obtained as a white solid in 94% yield $(1.4 \mathrm{~g})$ starting from $\mathbf{S 5 1}(0.88 \mathrm{~g}, 5.3 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S} 7 .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.78-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-$ $6.97(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.5,161.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=243.9 \mathrm{~Hz}\right), 146.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.7 \mathrm{~Hz}\right), 135.3,131.5,131.5$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=5.8 \mathrm{~Hz}\right), 128.7,127.0,123.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=17.3 \mathrm{~Hz}\right), 120.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 111.9$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=23.5 \mathrm{~Hz}\right), 55.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 29.4,14.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F}$ NMR $(471$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.2$. IR (neat, cm^{-1}): 3309, 3058, 2980, 1641, 1532, 1189. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 294.1265, obsd 294.1273.

2-(4-Chloro-3-methoxyphenyl)propan-2-ol (S53). The title compound was obtained as a light yellow solid in 63% yield (3.8 g) starting from 4-bromo-1-chloro-2methoxybenzene ($6.6 \mathrm{~g}, 30 \mathrm{mmol}$) by following the procedure described for the synthesis of $\mathbf{S 1 5} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,149.6,129.8,120.8,117.5,108.9,72.6,56.2,31.9$. IR (neat, cm^{-1}): 3424, 2974, 2933, 1578, 1487, 1400, 1058, 709. ESI HRMS m / z $(\mathrm{M}+\mathrm{Na})^{+}$calcd 223.0496, obsd $223.0500\left[\mathrm{C}_{10} \mathrm{H}_{13}{ }^{35} \mathrm{ClNaO}_{2}\right]^{+}$.
2-(4-Chloro-3-methoxyphenyl)propan-2-amine (S54). The title compound was obtained as a light yellow oil in 72\% yield (2.0 g) starting from $\mathbf{S 5 3}(2.7 \mathrm{~g}, 13.5 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 1 6}$. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8$, 150.7, 129.7, 120.3, 117.9, 109.4, 56.2, 52.6, 33.1. IR (neat, cm^{-1}): 3366, 2965, 1576, 1487, 1057, 708. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 200.0837, obsd 200.0836 $\left[\mathrm{C}_{10} \mathrm{H}_{15}{ }^{35} \mathrm{ClNO}\right]^{+}$.
\boldsymbol{N}-(2-(4-Chloro-3-methoxyphenyl)propan-2-yl)benzamide (S55). The title compound was obtained as a white solid in 81% yield $(0.66 \mathrm{~g})$ starting from $\mathbf{S 5 4}(0.53$ $\mathrm{g}, 2.7 \mathrm{mmol}$) by following the procedure described for the synthesis of $\mathbf{S} 7 .{ }^{1} \mathrm{H}$ NMR
(400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,155.0,147.2$, 135.3, 131.6, 130.1, 128.7, 126.9, 120.9, 117.9, 109.3, 56.2 (2C), 29.5. IR (neat, cm^{-1}): 3311, 3059, 2975, 1644, 1487, 1059, 713. ESI HRMS $m / z(\mathrm{M}+\mathrm{Na})^{+}$calcd 326.0918, obsd $326.0928\left[\mathrm{C}_{17} \mathrm{H}_{18}{ }^{35} \mathrm{ClNNaO}_{2}\right]^{+}$.

2-(3-Bromophenyl)propan-2-ol (S56). ${ }^{9}$ The title compound was obtained as a colorless oil in 99% yield (6.7 g) starting from 1-(3-bromophenyl)ethan-1-one (6.0 g , 30 mmol) by following the procedure described for the synthesis of $\mathbf{S 1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.92(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.6,130.0,129.9,127.9$, 123.2, 122.6, 72.4, 31.8 .

2-(3-Bromophenyl)propan-2-amine (S57). ${ }^{10}$ The title compound was obtained as a light yellow oil in 34% yield (2.1 g) starting from $\mathbf{S 5 6}(3.6 \mathrm{~g}, 15.1 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S 1 6} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{t}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{ddd}, J=7.9,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{ddd}, J=7.9,2.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9,129.9,129.4,128.3,123.6,122.6,52.5,32.9$.
\boldsymbol{N}-(2-(3-Bromophenyl)propan-2-yl)benzamide (S58). The title compound was obtained as a white solid in 94% yield (1.2 g) starting from $\mathbf{S 5 7}(0.83 \mathrm{~g}, 3.9 \mathrm{mmol})$ by following the procedure described for the synthesis of $\mathbf{S} 7$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,149.3,135.2,131.6,130.1,129.9,128.7,128.3,127.0,123.6$, $122.8,56.0,29.5$. IR (neat, cm^{-1}): 3246, 3056, 2973, 1633, 688. ESI HRMS m / z $(\mathrm{M}+\mathrm{Na})^{+}$calcd 340.0307, 342.0287, obsd 340.0312, 342.0292.

5. Transformation of the Product 2

4,4-Dimethyl-2-(2-phenylpropan-2-yl)-7-((trimethylsilyl)methyl)-4H-benzo $[e][1,3]$ Oxazine (26). To a flame-dried 10 mL round-bottomed flask with a stir bar was added
$2(130 \mathrm{mg}, 0.42 \mathrm{mmol}, 1$ equiv $), \mathrm{Ni}(\mathrm{OAc})_{2}(8.2 \mathrm{mg}, 0.046 \mathrm{mmol}, 0.1$ equiv $)$ and $\mathrm{ICy} \cdot \mathrm{HCl}^{8}$ ($23 \mathrm{mg}, 0.084 \mathrm{mmol}, 0.2$ equiv) in a glove box, then $\mathrm{TMSCH}_{2} \mathrm{MgCl}(1.0 \mathrm{M}$ in THF, $2.1 \mathrm{~mL}, 5$ equiv) was added. The flask was capped with a rubber septum and removed from the glove box. The solvent was removed in vacuo and the residue was dissolved in toluene (2.0 mL). The resulting reaction mixture was stirred at $80^{\circ} \mathrm{C}$ until complete consumption of 2 (monitored by TLC). Saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ $(5.0 \mathrm{~mL})$ was added to quench the reaction. The phases were separated and the aqueous phase was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic solution was washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography over silica gel eluting with ethyl acetate/hexanes to give $26(127 \mathrm{mg})$ as a colorless oil (yield $=83 \%) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 2 \mathrm{H}), 1.64$ $(\mathrm{s}, 6 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.0,146.6,145.4$, $136.1,128.3,128.2,126.9,126.3,125.9,124.4,114.9,52.4,44.5,32.6,27.4,26.5,-1.8$. IR (neat, cm^{-1}): 2967, 2926, 1682, 1493, 847, 696. IR (neat, cm^{-1}): 2967, 2926, 1682, 1493, 847, 696. ESI HRMS $m / z(\mathrm{M}+\mathrm{H})^{+}$calcd 366.2248, obsd 366.2257.

6. Computational Studies

Computational methods: The geometries were optimized in gas phase by M062X functional with $6-31 G^{*}$ basis set for all atoms. Vibrational frequency analysis at the same level was carried out to check the stationary point as minima. Natural orbital ananlysis was performed to examine the single occupied orbital. All the calculations were performed in Gaussian09 package. ${ }^{11}$

Geometries (in \AA) and energies (in a.u.).

C	-4.178136	1.455723	0.421754
C	-4.183902	0.119713	-0.110035
C	-3.044076	-0.708292	-0.029224
C	-1.899024	-0.216007	0.554789
C	-1.910122	1.113540	1.103909
C	-3.044413	1.935374	1.021988
C	-0.648966	-1.064933	0.727816
N	0.526639	-0.194656	0.662468
C	0.665515	0.710991	-0.350194
O	-0.308708	1.057093	-1.012165
C	2.047506	1.362458	-0.508319
C	3.144455	0.327469	-0.272682
C	2.158169	1.947460	-1.923509
C	2.065906	2.515814	0.511994
C	-0.693674	-1.684979	2.135540
C	-0.532123	-2.160635	-0.338754
C	4.142694	0.486341	0.689440
C	5.133406	-0.483344	0.853908
C	5.134289	-1.627366	0.065639
C	4.137118	-1.802710	-0.894209
C	3.155084	-0.834302	-1.059286
O	-5.318678	-0.228404	-0.661232
C	-5.479159	-1.527573	-1.250416
H	-5.087756	2.039008	0.326035
H	-3.066408	-1.702460	-0.455614
H	-1.012070	1.470253	1.597430
H	-3.017238	2.938532	1.431598
H	1.382618	-0.566879	1.061719
H	3.127797	2.440251	-2.031961
H	2.081669	1.168982	-2.686500
H	1.362347	2.674736	-2.098734
H	2.986954	3.096066	0.406073
H	1.999531	2.154203	1.543244
H	1.223694	3.186900	0.318315
H	0.202962	-2.291614	2.298969
H	-1.567115	-2.334018	2.235446
H	-0.736852	-0.911515	2.907875
H	-0.582338	-1.724522	-1.340969
H	0.433218	-2.661041	-0.221597
H	-1.310892	-2.921156	-0.232852
H	4.168547	1.372284	1.315236
H	5.905882	-0.336544	1.601938
H	5.906090	-2.379151	0.193887
H	4.131136	-2.690907	-1.518171
H	2.383829	-0.977812	-1.814977
H	-6.496607	-1.544587	-1.632651
H	-4.763426	-1.654978	-2.066011
H	-5.346231	-2.299409	-0.488717

Energies $(0 \mathrm{~K})=-981.699051027$

Energies (0K) + ZPE =-981.283257
Enthalpies (298K) $=-981.259864$
Free Energies $(298 \mathrm{~K})=-981.335212$

7. References

(1) Zhu, L.; Xiong, P.; Mao, Z.-Y.; Wang, Y.-H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226-2229.
(2) Hartsel, J. A.; Craft, D. T.; Chen, Q.-H.; Ma, M.; Carlier, P. R. J. Org. Chem. 2012, 77, 3127-3133.
(3) Schneider, C.; Broda, E.; Snieckus, V. Org. Lett. 2011, 13, 3588-3591.
(4) Eno, M. S.; Lu, A.; Morken, J. P. J. Am. Chem. Soc. 2016, 138, 7824-7827.
(5) Tagad, H. D.; Hamada, Y.; Nguyen, J.-T.; Hidaka, K.; Hamada, T.; Sohma, Y.; Kimura, T.; Kiso, Y. Bioorg. Med. Chem. 2011, 19, 5238-5246.
(6) Korenaga, T.; Ko, A.; Uotani, K.; Tanaka, Y.; Sakai, T. Angew. Chem., Int. Ed. 2011, 50, 10703-10707.
(7) Johnson, Michael R.; US 4285867 A 1981 CAPLUS.
(8) Mistryukov, E. A. Mendeleev Commun. 2006, 16, 258-259.
(9) J. A. Hartsel, D. T. Craft, Q.-H. Chen, M. Ma, P. R. Carlier, J. Org. Chem. 2012, 77, 3127-3133.
(10) M. Michel; PCT Int. Appl., 20040240812004.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

8. NMR Spectra for New Compounds

Compound 2

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(major)

(minor)

Compound 3

Compound 4

Compound 5

Compound 6

Compound 7

Compound 8

Compound 9

Compound 10

Compound 11

Compound 12

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 13

Compound 14

Compound 15

Compound 16

Compound 17

Compound 18

Compound 20

Compound 22

Compound 23

Compound 24

Compound S1

(

Compound S2

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound S3

Compound 1

Compound S4

Compound S5

Compound S6

Compound S7

Compound S8

Compound S9

Compound S10

Compound S11

Compound S12

Compound S13

Compound S14

Compound S15

Compound S16

Compound S17

(400 MHz, CDCle

Compound S18

Compound S19

Compound S20

(

Compound S21

Compound S22

Compound S23

Compound S24

Compound S26

Compound S27

Compound S34

Compound S35

Compound S47

Compound S48

Compound S49

Compound S50

Compound S51

Compound S52

Compound S53

(400 MHz, CDCl_{3} (

Compound S54

Compound S55

Compound S56

Compound S57

Compound S58

Compound 26

