Rapid Quantitative Measurements of Paramagnetic

Relaxation Enhancements in $\mathrm{Cu}(\mathrm{II})$-Tagged Proteins
by Proton-Detected Solid-State NMR Spectroscopy

Dwaipayan Mukhopadhyay, Philippe S. Nadaud, Matthew D. Shannon, and
Christopher P.Jaroniec*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210

* E-mail: jaroniec. 1 @osu.edu

Figure S1. Pulse schemes for the (A) $2 \mathrm{D}{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ and (B) $3 \mathrm{D}{ }^{13} \mathrm{CO}-{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ experiments based on those of Barbet-Massin et al. ${ }^{1}$ Narrow and wide black rectangles correspond to 90° and 180° pulses, and all pulses have phase x unless indicated otherwise. WALTZ-16 decoupling ${ }^{2}$ at field strength of $\sim 5 \mathrm{kHz}$ was applied on the ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ channels as indicated. Solvent suppression was achieved using a modified MISSISSIPI scheme, ${ }^{3}$ consisting of alternating x and y pulses at 5 kHz field strength applied for a maximum period of 80 ms and decremented with increasing t_{1} and t_{2} to keep the duration constant for the entire pulse scheme. (A) Parameters used to record ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra at MAS rate of 60 kHz were as follows. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$ carriers were placed at ~ 4.7, ~ 100 and $\sim 120 \mathrm{ppm}$ respectively. ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ cross-polarization ${ }^{4}$ was achieved using a $\sim 15 \mathrm{kHz}{ }^{15} \mathrm{~N}$ field, a linearly ramped ${ }^{1} \mathrm{H}$ field centered around $\sim 75 \mathrm{kHz}$ field strength, and a contact time of 1.5 ms. For the ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ cross-polarization prior to ${ }^{1} \mathrm{H}$ signal detection a $720 \mu \mathrm{~s}$ contact time was used. The following minimal two-step phase cycle was employed: $\phi_{1}=y,-y ; \psi=x$; receiver $=y,-y$. Quadrature detection in the ${ }^{15} \mathrm{~N}$ dimension was achieved by alternating phase ψ according to the States-TPPI method..5 (B) Parameters used to record ${ }^{13} \mathrm{CO}-{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra at MAS rate of 60 kHz were as follows. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$ carriers were placed at $\sim 4.7, \sim 175$ and $\sim 120 \mathrm{ppm}$ respectively. A $15 \mathrm{kHz}{ }^{13} \mathrm{C}$ field and a ${ }^{1} \mathrm{H}$ field centered around $\sim 75 \mathrm{kHz}$ field strength applied with a tangent ramp, and a contact time of 2 ms were used to achieve ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{CO}$ cross-polarization. ${ }^{13} \mathrm{CO}-{ }^{13} \mathrm{C} \alpha$ J-decoupling during ${ }^{13} \mathrm{CO}$ chemical shift evolution (t_{1}) was achieved by applying a $266.67 \mu \mathrm{~s}$ r-SNOB ${ }^{6}$ selective ${ }^{13} \mathrm{CO} 180^{\circ}$ pulse (filled black shape; applied on-resonance at ~ 175 ppm frequency) and selective ${ }^{13} \mathrm{C} \alpha 180^{\circ}$ pulses (filled grey shapes; applied off-resonance at ~ 55 ppm frequency) as indicated. ${ }^{13} \mathrm{CO}-{ }^{15} \mathrm{~N}$ SPECIFIC-CP ${ }^{7}$ was employed with a $\sim 25 \mathrm{kHz}$ field on ${ }^{13} \mathrm{C}$ (tangent ramp), $\sim 35 \mathrm{kHz}$ field on ${ }^{15} \mathrm{~N}$, and a contact time of 9 ms . For the final ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ magnetization transfer the CP conditions were same as in panel (A). The following minimal twostep phase cycle was employed: $\phi_{1}=x,-x ; \psi_{1}=x ; \psi_{2}=x$, receiver $=y,-y$. Quadrature in the ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ dimensions was achieved by alternating phases ψ_{1} and ψ_{2} according to the States-TPPI method.

Figure S2. (A) $2 \mathrm{D}{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra and (B) representative slices corresponding to ${ }^{15} \mathrm{~N}$ frequencies of residues G14, C28, Q32, and D40 for ${ }^{2} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-labeled 28EDTA-Cu ${ }^{2+}$ back-exchanged with $\mathrm{H}_{2} \mathrm{O}$ and diluted in a $\sim 1: 3$ molar ratio in natural abundance GB1 as described in the text. The spectra were recorded using the pulse scheme in Figure S 2 at $800 \mathrm{MHz}{ }^{1} \mathrm{H}$ frequency and MAS rates of 65,60 and 55 kHz as indicated, with $\mathrm{t}_{1, \max }\left({ }^{(5} \mathrm{N}\right)=25 \mathrm{~ms}, \mathrm{t}_{2, \max }\left({ }^{1} \mathrm{H}\right)=30 \mathrm{~ms}, 2$ scans per row and total measurement times of ~ 2.5 minutes. The spectra were processed with cosine-bell window functions in both dimensions and are shown with the first contour drawn at ~ 30 times the rms noise level. The average signal-to-noise ratios were found to be 100,90 , and 64 for MAS rates of $65 \mathrm{kHz}, 60 \mathrm{kHz}$, and 55 kHz , respectively, and the average linewidths in the ${ }^{1} \mathrm{H}$ dimension were 63,66 and 69 Hz for MAS rates of $65 \mathrm{kHz}, 60 \mathrm{kHz}$, and 55 kHz , respectively.

Figure S3. (A, B) $2 \mathrm{D}^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ based pulse schemes for the site-specific measurement of backbone amide (A) ${ }^{15} \mathrm{~N}$ longitudinal relaxation rate constants and (B) ${ }^{1} \mathrm{H}$ transverse relaxation rate constants. The experimental parameters used were the same as those listed in Figure S1A caption. The following minimum four-step phase cycle was employed: $\phi_{1}=x,-x ; \psi=-y$ in (A) and $\psi=x$ in $(\mathbf{B}) ; \phi_{2}=2(y), 2(-y)$; receiver $=y,-y,-y, y$. Quadrature in the ${ }^{15} \mathrm{~N}$ dimension was achieved by alternating phase ψ according to the States-TPPI method. (C, D) $3 \mathrm{D}{ }^{13} \mathrm{CO}-{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ based pulse schemes for the site-specific measurement of backbone amide (C) ${ }^{15} \mathrm{~N}$ longitudinal relaxation rate constants and (D) ${ }^{1} \mathrm{H}$ transverse relaxation rate constants. The experimental parameters used were the same as those listed in Figure S1B caption. The following minimum four-step phase cycle was employed: $\phi_{1}=x,-x ; \psi_{1}=x ; \psi_{2}=x ; \phi_{2}=2(x), 2(-x)$; receiver $=y,-y,-y, y$. Quadrature in the ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ dimensions was achieved by alternating phases ψ_{1} and ψ_{2} according to the States-TPPI method.

Figure S4. Residue-specific amide ${ }^{15} \mathrm{~N}$ longitudinal relaxation trajectories measured from a series of $2 \mathrm{D}{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra recorded with different values of the delay τ_{N} (c.f., Figure S3A) for 28EDTAZn^{2+} (blue circles) and 28EDTA-Cu ${ }^{2+}$ (red circles). Best fits of the relaxation trajectories to decaying single exponentials are shown as lines of the corresponding color.

Figure S5. Residue-specific amide ${ }^{1} \mathrm{H}$ transverse relaxation trajectories measured from a series of $2 \mathrm{D}{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra recorded with different values of the delay τ_{H} (c.f., Figure S3B) for 28EDTAZn^{2+} (blue open circles) and 28EDTA- Cu^{2+} (red open circles). Best fits of the relaxation trajectories to decaying single exponentials are shown as lines of the corresponding color.

Figure S6. Representative amide ${ }^{15} \mathrm{~N} \mathrm{R}_{1}(\mathbf{A})$ and ${ }^{1} \mathrm{H} \mathrm{R}_{2}(\mathbf{B})$ trajectories for residues K 10 and C 28 in 28EDTA-Cu ${ }^{2+}$ recorded using experiments based on a series of $2 \mathrm{D}^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra (red filled and open circles; c.f., pulse schemes in Figure S3A and S3B) and $3 D^{13} \mathrm{CO}-{ }^{-15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra (green filled and open circles; c.f., pulse schemes in Figure S3C and S3D). Best fits of the relaxation trajectories to decaying single exponentials are shown as lines of the corresponding color. (C, D) Correlation plots for the experimental ${ }^{15} \mathrm{~N} \mathrm{R}_{1}(\mathbf{C})$ and ${ }^{1} \mathrm{H} \mathrm{R}_{2}(\mathbf{D})$ rates determined via series of 2D ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra versus series of $3 \mathrm{D}{ }^{13} \mathrm{CO}-{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra.

Figure S7. Correlation plots for the experimental amide ${ }^{15} \mathrm{~N} \mathrm{R}_{1}$ (top) and ${ }^{1} \mathrm{H} \mathrm{R}_{2}$ (bottom) rates extracted from complete relaxation trajectories determined using a series of 10 and $183 \mathrm{D}{ }^{13} \mathrm{CO}$ ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ spectra for ${ }^{15} \mathrm{NR}_{1}$ and ${ }^{1} \mathrm{H} \mathrm{R}_{2}$, respectively (c.f., Figures S 4 and S 5), versus the corresponding values determined from sparse trajectories consisting of four (τ_{N} values of $100 \mu \mathrm{~s}, 0.5 \mathrm{~s}, 1.5 \mathrm{~s}$, and 3 s) and six (τ_{H} values of $66.7 \mu \mathrm{~s}, 633.3 \mu \mathrm{~s}, 2.0333 \mathrm{~ms}, 4.0333 \mathrm{~ms}, 8.0333 \mathrm{~ms}$ and 10.0333 ms) points in the relaxation dimension for ${ }^{15} \mathrm{NR}_{1}$ and ${ }^{1} \mathrm{H} \mathrm{R}_{2}$, respectively.

Figure S8. Residue-specific amide ${ }^{1} \mathrm{H}$ transverse relaxation trajectories measured at $800 \mathrm{MHz}{ }^{1} \mathrm{H}$ frequency and 60 kHz MAS rate from series of 2D ${ }^{15} \mathrm{~N}$ - ${ }^{1} \mathrm{H}$ spectra for ${ }^{2} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-labeled diamagnetic GB1 analogs diluted in a $\sim 1: 3$ molar ratio in ${ }^{2} \mathrm{H}-\mathrm{GB} 1$ (blue circles) or natural abundance $\left({ }^{1} \mathrm{H}\right) \mathrm{GB} 1$ (red circles) and back-exchanged with $100 \% \mathrm{H}_{2} \mathrm{O}$. Best fits of the relaxation trajectories to decaying single exponentials are shown as lines of the corresponding color.

Figure S9. (A) Residue-specific amide ${ }^{1} \mathrm{H} \mathrm{R}_{2}$ rate constants as a function of residue number extracted from the trajectories shown in Figure S 8 for ${ }^{2} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$-labeled proteins diluted in a matrix of ${ }^{2} \mathrm{H}$-labeled GB1 and natural abundance $\left({ }^{1} \mathrm{H}\right) \mathrm{GB} 1$. The average ${ }^{1} \mathrm{H} \mathrm{R}_{2}$ rates were found to be 109 ± 54 and 109 ± 53 for the ${ }^{2} \mathrm{H}$ and ${ }^{1} \mathrm{H}$ matrices, respectively. (B) Correlation plot for the amide ${ }^{1} \mathrm{H}_{2}$ rate constants determined for the ${ }^{2} \mathrm{H}$ and ${ }^{1} \mathrm{H}$ matrices. The R^{2} value was found to be 0.88 .

Supporting Information References

(1) Barbet-Massin, E.; Pell, A. J.; Retel, J. S.; Andreas, L. B.; Jaudzems, K.; Franks, W. T.; Nieuwkoop, A. J.; Hiller, M.; Higman, V.; Guerry, P.; Bertarello, A.; Knight, M. J.; Felletti, M.; Le Marchand, T.; Kotelovica, S.; Akopjana, I.; Tars, K.; Stoppini, M.; Bellotti, V.; Bolognesi, M.; Ricagno, S.; Chou, J. J.; Griffin, R. G.; Oschkinat, H.; Lesage, A.; Emsley, L.; Herrmann, T.; Pintacuda, G., Rapid protondetected NMR assignment for proteins with fast magic angle spinning. J. Am. Chem. Soc. 2014, 136, 12489-12497.
(2) Shaka, A. J.; Keeler, J.; Freeman, R., Evaluation of a new broadband decoupling sequence: WALTZ16. J. Magn. Reson. 1983, 53, 313-340.
(3) Zhou, D. H.; Rienstra, C. M., High-performance solvent suppression for proton detected solid-state NMR. J. Magn. Reson. 2008, 192, 167-172.
(4) Pines, A.; Gibby, M. G.; Waugh, J. S., Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 1973, 59, 569-590.
(5) Marion, D.; Ikura, M.; Tschudin, R.; Bax, A., Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J. Magn. Reson. 1989, 85, 393399.
(6) Kupce, E.; Boyd, J.; Campbell, I. D., Short selective pulses for biochemical applications. J. Magn. Reson. B 1995, 106, 300-303.
(7) Baldus, M.; Petkova, A. T.; Herzfeld, J.; Griffin, R. G., Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol. Phys. 1998, 95, 1197-1207.

