Supporting Information

Rapid Quantitative Measurements of Paramagnetic Relaxation Enhancements in Cu(II)-Tagged Proteins by Proton-Detected Solid-State NMR Spectroscopy

Dwaipayan Mukhopadhyay, Philippe S. Nadaud, Matthew D. Shannon, and

Christopher P. Jaroniec*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210

* E-mail: jaroniec.1@osu.edu

Figure S1. Pulse schemes for the (A) 2D ¹⁵N-¹H and (B) 3D ¹³CO-¹⁵N-¹H experiments based on those of Barbet-Massin et al.¹ Narrow and wide black rectangles correspond to 90° and 180° pulses, and all pulses have phase x unless indicated otherwise. WALTZ-16 decoupling² at field strength of ~5 kHz was applied on the ¹H, ¹⁵N and ¹³C channels as indicated. Solvent suppression was achieved using a modified MISSISSIPI scheme,³ consisting of alternating x and y pulses at 5 kHz field strength applied for a maximum period of 80 ms and decremented with increasing t_1 and t_2 to keep the duration constant for the entire pulse scheme. (A) Parameters used to record ¹⁵N-¹H spectra at MAS rate of 60 kHz were as follows. The ¹H, ¹³C, and ¹⁵N carriers were placed at ~4.7, \sim 100 and \sim 120 ppm respectively. ¹H-¹⁵N cross-polarization⁴ was achieved using a \sim 15 kHz ¹⁵N field, a linearly ramped ¹H field centered around \sim 75 kHz field strength, and a contact time of 1.5 ms. For the ¹⁵N-¹H cross-polarization prior to ¹H signal detection a 720 µs contact time was used. The following minimal two-step phase cycle was employed: $\phi_1 = v, -v; \psi = x$; receiver = v, -v. Quadrature detection in the ¹⁵N dimension was achieved by alternating phase ψ according to the States-TPPI method.⁵ (B) Parameters used to record ¹³CO-¹⁵N-¹H spectra at MAS rate of 60 kHz were as follows. The ¹H, ¹³C, and ¹⁵N carriers were placed at ~4.7, ~175 and ~120 ppm respectively. A 15 kHz ¹³C field and a ¹H field centered around ~75 kHz field strength applied with a tangent ramp, and a contact time of 2 ms were used to achieve ¹H-¹³CO cross-polarization. 13 CO- 13 Ca J-decoupling during 13 CO chemical shift evolution (t₁) was achieved by applying a 266.67 µs r-SNOB⁶ selective ¹³CO 180° pulse (filled black shape; applied on-resonance at ~175 ppm frequency) and selective ${}^{13}C\alpha$ 180° pulses (filled grey shapes; applied off-resonance at ~55 ppm frequency) as indicated. ¹³CO-¹⁵N SPECIFIC-CP⁷ was employed with a ~ 25 kHz field on ¹³C (tangent ramp), ~ 35 kHz field on ¹⁵N, and a contact time of 9 ms. For the final ¹⁵N-¹H magnetization transfer the CP conditions were same as in panel (A). The following minimal twostep phase cycle was employed: $\phi_1 = x, -x; \psi_1 = x; \psi_2 = x$, receiver = v, -v. Quadrature in the ¹³C and ¹⁵N dimensions was achieved by alternating phases ψ_1 and ψ_2 according to the States-TPPI method.

Figure S2. (A) 2D ¹⁵N-¹H spectra and (**B**) representative slices corresponding to ¹⁵N frequencies of residues G14, C28, Q32, and D40 for ²H, ¹³C, ¹⁵N-labeled 28EDTA-Cu²⁺ back-exchanged with H₂O and diluted in a ~1:3 molar ratio in natural abundance GB1 as described in the text. The spectra were recorded using the pulse scheme in Figure S2 at 800 MHz ¹H frequency and MAS rates of 65, 60 and 55 kHz as indicated, with $t_{1,max}$ (¹⁵N) = 25 ms, $t_{2,max}$ (¹H) = 30 ms, 2 scans per row and total measurement times of ~2.5 minutes. The spectra were processed with cosine-bell window functions in both dimensions and are shown with the first contour drawn at ~30 times the rms noise level. The average signal-to-noise ratios were found to be 100, 90, and 64 for MAS rates of 65 kHz, 60 kHz, and 55 kHz, respectively, and the average linewidths in the ¹H dimension were 63, 66 and 69 Hz for MAS rates of 65 kHz, 60 k

Figure S3. (**A**, **B**) 2D ¹⁵N-¹H based pulse schemes for the site-specific measurement of backbone amide (**A**) ¹⁵N longitudinal relaxation rate constants and (**B**) ¹H transverse relaxation rate constants. The experimental parameters used were the same as those listed in Figure S1A caption. The following minimum four-step phase cycle was employed: $\phi_1 = x, -x; \psi = -y$ in (**A**) and $\psi = x$ in (**B**); $\phi_2 = 2(y), 2(-y)$; receiver = y, -y, -y, y. Quadrature in the ¹⁵N dimension was achieved by alternating phase ψ according to the States-TPPI method. (**C**, **D**) 3D ¹³CO-¹⁵N-¹H based pulse schemes for the site-specific measurement of backbone amide (**C**) ¹⁵N longitudinal relaxation rate constants and (**D**) ¹H transverse relaxation rate constants. The experimental parameters used were the same as those listed in Figure S1B caption. The following minimum four-step phase cycle was employed: $\phi_1 = x, -x; \psi_1 = x; \psi_2 = x; \phi_2 = 2(x), 2(-x);$ receiver = y, -y, -y, y. Quadrature in the ¹³C and ¹⁵N dimensions was achieved by alternating phases ψ_1 and ψ_2 according to the States-TPPI method.

Figure S4. Residue-specific amide ¹⁵N longitudinal relaxation trajectories measured from a series of 2D ¹⁵N-¹H spectra recorded with different values of the delay τ_N (c.f., Figure S3A) for 28EDTA-Zn²⁺ (blue circles) and 28EDTA-Cu²⁺ (red circles). Best fits of the relaxation trajectories to decaying single exponentials are shown as lines of the corresponding color.

Figure S5. Residue-specific amide ¹H transverse relaxation trajectories measured from a series of 2D ¹⁵N-¹H spectra recorded with different values of the delay $\tau_{\rm H}$ (c.f., Figure S3B) for 28EDTA-Zn²⁺ (blue open circles) and 28EDTA-Cu²⁺ (red open circles). Best fits of the relaxation trajectories to decaying single exponentials are shown as lines of the corresponding color.

Figure S6. Representative amide ¹⁵N R₁ (**A**) and ¹H R₂ (**B**) trajectories for residues K10 and C28 in 28EDTA-Cu²⁺ recorded using experiments based on a series of 2D ¹⁵N-¹H spectra (red filled and open circles; c.f., pulse schemes in Figure S3A and S3B) and 3D ¹³CO-¹⁵N-¹H spectra (green filled and open circles; c.f., pulse schemes in Figure S3C and S3D). Best fits of the relaxation trajectories to decaying single exponentials are shown as lines of the corresponding color. (**C**, **D**) Correlation plots for the experimental ¹⁵N R₁ (**C**) and ¹H R₂ (**D**) rates determined via series of 2D ¹⁵N-¹H spectra.

Figure S7. Correlation plots for the experimental amide ¹⁵N R₁ (top) and ¹H R₂ (bottom) rates extracted from complete relaxation trajectories determined using a series of 10 and 18 3D ¹³CO-¹⁵N-¹H spectra for ¹⁵N R₁ and ¹H R₂, respectively (c.f., Figures S4 and S5), versus the corresponding values determined from sparse trajectories consisting of four (τ_N values of 100 µs, 0.5 s, 1.5 s, and 3 s) and six (τ_H values of 66.7 µs, 633.3 µs, 2.0333 ms, 4.0333 ms, 8.0333 ms and 10.0333 ms) points in the relaxation dimension for ¹⁵N R₁ and ¹H R₂, respectively.

Figure S8. Residue-specific amide ¹H transverse relaxation trajectories measured at 800 MHz ¹H frequency and 60 kHz MAS rate from series of 2D ¹⁵N-¹H spectra for ²H,¹³C,¹⁵N-labeled diamagnetic GB1 analogs diluted in a ~1:3 molar ratio in ²H-GB1 (blue circles) or natural abundance (¹H) GB1 (red circles) and back-exchanged with 100% H₂O. Best fits of the relaxation trajectories to decaying single exponentials are shown as lines of the corresponding color.

Figure S9. (A) Residue-specific amide ¹H R₂ rate constants as a function of residue number extracted from the trajectories shown in Figure S8 for ²H, ¹³C, ¹⁵N-labeled proteins diluted in a matrix of ²H-labeled GB1 and natural abundance (¹H) GB1. The average ¹H R₂ rates were found to be 109 ± 54 and 109 ± 53 for the ²H and ¹H matrices, respectively. (**B**) Correlation plot for the amide ¹H R₂ rate constants determined for the ²H and ¹H matrices. The R² value was found to be 0.88.

Supporting Information References

- Barbet-Massin, E.; Pell, A. J.; Retel, J. S.; Andreas, L. B.; Jaudzems, K.; Franks, W. T.; Nieuwkoop, A. J.; Hiller, M.; Higman, V.; Guerry, P.; Bertarello, A.; Knight, M. J.; Felletti, M.; Le Marchand, T.; Kotelovica, S.; Akopjana, I.; Tars, K.; Stoppini, M.; Bellotti, V.; Bolognesi, M.; Ricagno, S.; Chou, J. J.; Griffin, R. G.; Oschkinat, H.; Lesage, A.; Emsley, L.; Herrmann, T.; Pintacuda, G., Rapid protondetected NMR assignment for proteins with fast magic angle spinning. *J. Am. Chem. Soc.* 2014, *136*, 12489-12497.
- (2) Shaka, A. J.; Keeler, J.; Freeman, R., Evaluation of a new broadband decoupling sequence: WALTZ-16. J. Magn. Reson. 1983, 53, 313-340.
- (3) Zhou, D. H.; Rienstra, C. M., High-performance solvent suppression for proton detected solid-state NMR. J. Magn. Reson. 2008, 192, 167-172.
- (4) Pines, A.; Gibby, M. G.; Waugh, J. S., Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 1973, 59, 569-590.
- (5) Marion, D.; Ikura, M.; Tschudin, R.; Bax, A., Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J. Magn. Reson. 1989, 85, 393-399.
- (6) Kupce, E.; Boyd, J.; Campbell, I. D., Short selective pulses for biochemical applications. J. Magn. Reson. B 1995, 106, 300-303.
- (7) Baldus, M.; Petkova, A. T.; Herzfeld, J.; Griffin, R. G., Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. *Mol. Phys.* **1998**, *95*, 1197-1207.