Supporting Information

Unmasking Amides: Ruthenium-Catalyzed Protodecarbonylation of N Substituted Phthalimide Derivatives

Yu-Chao Yuan, ${ }^{\dagger}$ Raghu Kamaraj, ${ }^{\dagger}$ Christian Bruneau, ${ }^{\dagger}$ Thierry Labasque, ${ }^{\S}$ Thierry Roisnel," and Rafael Gramage-Doria* ${ }^{\dagger}$

*E-mail: rafael.gramage-doria@univ-rennes1.fr
${ }^{\dagger}$ Organometallics: Materials and Catalysis Laboratory, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS, Université de Rennes 1, 35042 Rennes Cedex, France
${ }^{\text {§ }}$ Observatoire des Sciences de l’Univers, UMR 6118, Géosciences Rennes, CNRS, Université de Rennes 1, France
${ }^{\text {\# }}$ X-ray Diffraction Centre, Institut des Sciences Chimiques de Rennes, UMR 6226, CNRS, Université de Rennes 1, 35042 Rennes Cedex, France

Contents

1. General information S3
2. Preparation of substrates 1 S4
3. Characterization data of substrates 1 S5
4. Reaction optimization:
4.1. General procedure. S18
4.2. Screening of reaction conditions (Table S1) S19
5. Scale-up experiment (Fig. S1) S20
6. Mechanistic investigations:
6.1. GC-Gas analysis of the reaction mixture (Fig. S2-S4) S21
6.2. Deuteration experiments (Fig. S4-S6) S23
6.3. Hydrogenation experiments S24
6.4. TEMPO experiments (Fig. S7-S9) S25
6.5. Mercury tests S28
6.6. Study on a plausible intermediate (Fig. S10) S29
6.7. Study of the size of the phthalimide ring S30
6.8. Indirect evidence of hydrogen formation in the catalysis (Fig. S11) S31
7. Characterization data of products 2-3 S33
8. References S48
9. X-ray crystallographic data for $2 x$ (CCDC-1577926) S51
10. NMR spectra of products $\mathbf{2 - 3}$ S58

1. General Information.

All reagents were obtained from commercial sources and used as supplied. All reactions were carried out in flame-dried glassware under argon atmosphere unless otherwise noted. Catalytic experiments were performed in Schlenk-type flasks under argon atmosphere unless otherwise noted. Organic solutions were concentrated under reduced pressure using a rotary evaporator. Thin-layer chromatography (TLC) were carried out on 0.25 mm Merck silica gel (60-F254). Flash column chromatography was performed using silica gel Silica $60 \mathrm{M}, 0.04-0.063 \mathrm{~mm}$. N-methyl-2-pyrrolidone (NMP) was distilled under reduced pressure and stored under molecular sieves and argon atmosphere. Technical grade petroleum ether (40-60) and ethyl acetate were used for column chromatography. CDCl_{3} was stored under nitrogen over molecular sieves. NMR spectra were recorded on an AVANCE III 400 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to residual protiated solvent ($\delta=7.26 \mathrm{ppm}$ for $\mathrm{CDCl}_{3}, \delta=2.50 \mathrm{ppm}$ for DMSO- d_{6} and δ $=2.05 \mathrm{ppm}$ for acetone- d_{6}) and ${ }^{13} \mathrm{C}$ chemical shifts are reported relative to deuterated solvents ($\delta=77.0 \mathrm{ppm}$ for $\mathrm{CDCl}_{3}, \delta=39.5 \mathrm{ppm}$ for DMSO- d_{6} and $\delta=29.8 \mathrm{ppm}$ for acetone- d_{6}. The peak patterns are indicated as follows: s, singlet; d , doublet; t , triplet; q , quartet; m, multiplet, and br. for broad. GC-MS analyses were performed with a GCMSQP2010S (Shimadzu) instrument with a GC-2010 equipped with a 30 m capillary column (Supelco, SLBTM-5ms, fused silica capillary column, $30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mathrm{~mm}$ film thickness), which was used with helium as the vector gas. The following GC conditions were used: initial temperature $80^{\circ} \mathrm{C}$ for 2 minutes, then rate $20^{\circ} \mathrm{C} / \mathrm{min}$ until $280^{\circ} \mathrm{C}$ and $280^{\circ} \mathrm{C}$ for 28 minutes. HRMS were recorded on a Waters Q-Tof 2 mass spectrometer at the corresponding facilities of the CRMPO, Centre Régional de Mesures Physiques de l'Ouest, Université de Rennes 1.

2. Preparation of substrates 1.

2.1. Method A: Phthalic anhydride ($5 \mathrm{mmol}, 0.74 \mathrm{~g}, 1 \mathrm{eq}$.) and the corresponding aniline ($5 \mathrm{mmol}, 1 \mathrm{eq}$.) were refluxed in acetic acid (30 mL) for 2-5 hours. Once at room temperature, water was added and the solid recovered by filtration. After drying under vacuum the desired phthalimide $\mathbf{1}$ was obtained.

2.2. Method B: Phthalimide ($7 \mathrm{mmol}, 1.03 \mathrm{~g}, 1 \mathrm{eq}$.), potassium carbonate ($14 \mathrm{mmol}, 2.59$ $\mathrm{g}, 2 \mathrm{eq}$) and the corresponding alkyl or benzyl halide ($14 \mathrm{mmol}, 2 \mathrm{eq}$.) were heated at $40^{\circ} \mathrm{C}$ in N, N-dimethylformamide (6 mL) for 18 hours. After solvents evaporation under vacuum, water was added to the reaction mixture followed by extraction with DCM. The combined organic phases were dried over MgSO_{4}, filtered, and concentrated in vacuo. The desired phthalimide $\mathbf{1}$ was purified by silica gel column chromatography with a mixture of petroleum ether and ethyl acetate as eluent.

2.3. Method C: Phthalic anhydride ($10 \mathrm{mmol}, 1.48 \mathrm{~g}, 1 \mathrm{eq}$.) and 1,3-diaminopropane (5 $\mathrm{mmol}, 0.5 \mathrm{eq}$.) were refluxed in acetic acid (15 mL) for 8 hours. Once at room temperature, water was added and the solid recovered by filtration. After drying under vacuum the desired phthalimide $\mathbf{1}$ was obtained.

2.4. Method D: Hexahydrophthalic anhydride ($10 \mathrm{mmol}, 1.54 \mathrm{~g}, 1 \mathrm{eq}$.) and aniline (10 mmol, 1 eq.) and THF (15 mL) were added to a 100 mL round bottom flask. The solution was stirred for 30 min at $40^{\circ} \mathrm{C}$. Removal of the solvent using a rotary evaporator gave the corresponding carboxylic acid-amide as a white solid. The white solid was then heated
at $190{ }^{\circ} \mathrm{C}$ under Ar for 4 h . The desired phthalimide was purified by silica gel column chromatography with a mixture of petroleum ether and ethyl acetate as eluent.

3. Characterization data of substrates 1.

N-Methylphthalimide (1a): Prepared according to Method B starting from iodomethane in 88% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78$ (dd, $J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.66(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{1}$

N-Butylphthalimide (1b): Prepared according to Method B starting from 1bromobutane in 98% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82$ (dd, $J=5.6$ $\mathrm{Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.40-$ $1.31(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{2}$

N -isopropylphthalimide (1c): Prepared according to Method B starting from 2bromopropane in 78% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79$ (dd, $J=5.6$ $\mathrm{Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (dd, $J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.57-4.47 (m, 1H), 1.48 (d, $J=7.2$ $\mathrm{Hz}, 6 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{3}$

\boldsymbol{N}-(1-Adamantyl)phthalimide (1d): Prepared according to Method A starting from amantadine in 35% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.75$ (dd, $J=5.2 \mathrm{~Hz}$, $3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$, 1.81-1.70 (m, 6H) ppm. The spectral data match those previously reported. ${ }^{4}$

5-Phthalimidovaleronitrile (1e): Prepared according to Method B starting from 5bromovaleronitrile in 87% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83$ (dd, $J=$ $5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{3}$

N-[2-Methoxyethyl]phthalimide (1f): Prepared according to Method A starting from 2methoxyethanamine in 75% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84$ (dd, J $=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{5}$

N-Acetonylphthalimide (1g): Prepared according to Method B starting from chloroacetone in 50% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86$ (dd, $J=5.2$
$\mathrm{Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ (dd, $J=5.2 \mathrm{HZ}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 2.26$ (s, 3H) ppm. The spectral data match those previously reported. ${ }^{6}$

Methyl phthalimidoacetate (1h): Prepared according to Method B starting from ethyl bromoacetate in 75% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87$ (dd, $J=5.6$ $\mathrm{Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{7}$

N-Phenylphthalimide (1i): Prepared according to Method A starting from aniline in 80% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (dd, $J=5.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.52 (dd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34-7.27 (m, 3H) ppm . The spectral data match those previously reported. ${ }^{2}$

\boldsymbol{N}-(\boldsymbol{p}-Tolyl)phthalimide (1j): Prepared according to Method A starting from p-toluidine in 72% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.94(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.78(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{2}$

\boldsymbol{N}-p-Anisylphthalimide (1k): Prepared according to Method A starting from p-anisidine in 80% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.94(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.78 (dd, $J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.85$ $(\mathrm{s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{2}$

11
\boldsymbol{N}-(\boldsymbol{p}-Fluorophenyl)phthalimide (11): Prepared according to Method A starting from \boldsymbol{p} fluoroaniline in 82% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86$ (dd, $J=5.2$ $\mathrm{Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.71 (dd, $J=5.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (dd, $J=9.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11 (dd, $J=8.8 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-113.8 \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{8}$

\boldsymbol{p}-Phthalimidoacetophenone (1m): Prepared according to Method A starting from \boldsymbol{p} aminoacetophenone in 79% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10(\mathrm{dd}, J$ $=6.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{2}$

\boldsymbol{N}-(p-Ethoxycarbonylphenyl)phthalimide (1n): Prepared according to Method A starting from benzocaine in 50% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.19$
(dd, $J=6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.97$ (dd, $J=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 2.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{9}$

\boldsymbol{N}-(p-Nitrophenyl)phthalimide (10): Prepared according to Method A starting from p nitroaniline in 63% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta}=8.38$ (dd, $J=7.2 \mathrm{~Hz}$, $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ (dd, $J=7.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{2}$

\boldsymbol{N} - \boldsymbol{p}-Bromophenylphthalimide (1p): Prepared according to Method A starting from \boldsymbol{p} bromoaniline in 88% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96$ (dd, $J=5.2$ $\mathrm{Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80$ (dd, $J=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{10}$

\boldsymbol{N} - \boldsymbol{p}-Iodophenylphthalimide (1q): Prepared according to Method A starting from p iodoaniline in 80% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96-7.94(\mathrm{~m}, 2 \mathrm{H})$, 7.84-7.79 (m, 4H), $7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{11}$

\boldsymbol{N}-(\boldsymbol{m}-Methoxyphenyl)phthalimide (1r): Prepared according to Method A starting from m-anisidine in 76% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.95$ (dd, $J=5.2 \mathrm{~Hz}$, $3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ (dd, $J=5.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (dd, $J=8.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=2.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{12}$

\boldsymbol{N}-(o-Chlorophenyl)phthalimide (1s): Prepared according to Method A starting from o-chloroaniline in 70% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96(\mathrm{dd}, J=5.6$ $\mathrm{Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (dd, $J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59-7.55 (m, 1H), 7.46-7.38 (m, 2H), 7.37-7.35 (m, 1H) ppm. The spectral data match those previously reported. ${ }^{13}$

$1 t$
\mathbf{N}-o-Tolylphthalimide (1t): Prepared according to Method A starting from o-toluidine in 43% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (dd, $J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.31$ (m, 3H), 7.21 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (s, $3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{4}$

\mathbf{N}-o-Methoxyphenylphthalimide (1u): Prepared according to Method A starting from o-anisidine in 85% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.94$ (dd, $J=5.6 \mathrm{~Hz}$,
$3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.10-7.04 (m, 2H), $3.80(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{14}$

$\mathbf{N - 1 - N a p h t h y l p h t h a l i m i d e ~ (1 v) : ~ P r e p a r e d ~ a c c o r d i n g ~ t o ~ M e t h o d ~ A ~ s t a r t i n g ~ f r o m ~ 1 - ~}$ aminonaphthalene in 79% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.02-7.99$ (m, $3 \mathrm{H}), 7.95$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.82 (dd, $J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66-7.59 (m, 2H), 7.56$7.48(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{15}$

N-8-Quinolyl-phthalimide (1w): Prepared according to Method A starting from 8aminoquinoline in 76% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.86$ (dd, $J=4.4$ $\mathrm{Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.96(\mathrm{~m}, 3 \mathrm{H}), 7.81(\mathrm{dd}, J=5.2$ $\mathrm{Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=8.0 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{16}$

N-Benzylphthalimide (1x): Prepared according to Method B starting from benzyl bromide in 63% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84$ (dd, $J=5.6 \mathrm{~Hz}, 3.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.70 (dd, $J=5.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.43 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H})$, $4.85(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{17}$

\boldsymbol{N}-[p-(methyl)benzyl]phthalimide (1y): Prepared according to Method B starting from p-methylbenzyl bromide in 86% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83$ (dd, $J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{3}$

\boldsymbol{N}-[p-(cyano)benzyl]phthalimide (1z): Prepared according to Method B starting from p-cyanobenzyl bromide in 86% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.86$ (dd, $J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{14}$

\boldsymbol{N}-[p-(trifluoromethyl)benzyl]phthalimide (1aa): Prepared according to Method B starting from p-(triflouromethyl)benzyl bromide in 77% isolated yield. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.85(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.58-7.52 (m, 4H), $4.89(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{3}$

2-Phthalimidomethylpyridine (1ab): Prepared according to Method A starting from 2picolylamine in 73% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.53-8.51(\mathrm{~m}, 1 \mathrm{H})$, 7.88 (dd, $J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (dd, $J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.61$ (m, 1H), 7.27 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{18}$

2-Phthalimidomethylthiophene (1ac): Prepared according to Method A starting from 2-thiophenemethylamine in 47% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84$ (dd, $J=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (dd, $J=5.2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, $J=5.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (s, 2H) ppm . The spectral data match those previously reported. ${ }^{19}$

N,N-Diphthaloyl-1,3-propanediamine (1ad): Prepared according to Method C starting from 1,3-diaminopropane in 86% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83$ $7.79(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{20}$

\boldsymbol{N}-phenyl-m-fluorophthalimide (1ae): Prepared according to Method A starting from m-fluorophthalic anhydride in 91% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82$ 7.77 (m, 2H), 7.53-7.49 (m, 2H), 7.47-7.40 (m, 4H) ppm. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (376 MHz , CDCl_{3}): $\delta=-112.3 \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{21}$

\boldsymbol{N}-phenyl-m-chlorophthalimide (1af): Prepared according to Method A starting from m-chlorophthalic anhydride in 94% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87$ (dd, $J=4.8 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71-7.70 (m, 2H), 7.53-7.48 (m, 2H), 7.45-7.41 (m, 3H) ppm . The spectral data match those previously reported. ${ }^{22}$

\boldsymbol{N}-phenyl- \boldsymbol{m}-nitrophthalimide (1ag): Prepared according to Method A starting from m nitrophthalic anhydride in 78% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta}=8.21$ (dd, $J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{23}$

\boldsymbol{N}-phenyl-m-methylphthalimide (1ah): Prepared according to Method A starting from m-methylphthalic anhydride in 95% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78$
(d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 2.75$ $(\mathrm{s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{24}$

\boldsymbol{N}-phenyl-p-fluorophthalimide (1ai): Prepared according to Method A starting from \boldsymbol{p} fluorophthalic anhydride in 89% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96$ (dd, $J=8.4 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62 (dd, $J=7.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54-7.47 (m, 2H), 7.46$7.39(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-101.1 \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{21}$

1aj
\boldsymbol{N}-phenyl- \boldsymbol{p}-nitrophthalimide (1aj): Prepared according to Method A starting from \boldsymbol{p} nitrophthalic anhydride in 98% isolated yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.77$ (dd, $J=6.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.67 (dd, $J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (dd, $J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56-7.52 (m, 2H), 7.48-7.43 (m, 3H) ppm. The spectral data match those previously reported. ${ }^{15}$

\boldsymbol{N}-phenyl- \boldsymbol{p}-methylphthalimide (1ak): Prepared according to Method A starting from p-methylphthalic anhydride in 97% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=0.8 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{19}$

1al
N-Phenylphthalamic acid (1al): Prepared according to a literature report starting from phthalic anhydride and aniline in quantitative yield. ${ }^{25}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ $=9.15$ (br. s, 2H), 7.71-7.67 (m, 2H), 7.60-7.56 (m, 2H), 7.02 (dd, $J=7.3 \mathrm{~Hz}, 8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.59(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.53(\mathrm{tt}, J=7.3 \mathrm{~Hz}, 1.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{26}$

1am
2-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (1am): Prepared according to Method A starting from 1,8-naphthalic anhydride in 78% isolated yield. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.64$ (dd, $\left.J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.26$ (dd, $\left.J=8.4 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.78$ (dd, $J=8.0 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59-7.54 (m, 2H), 7.51-7.47 (m, 1H), 7.34 (dd, $J=4.0 \mathrm{~Hz}$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{15}$

\boldsymbol{N}-(\boldsymbol{p}-Vinylbenzyl)phthalimide (1an): Prepared according to Method B starting from p-vinylbenzyl chloride in 77% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta}=7.83$ (dd, $J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 6.67$ (dd, $J=17.6 \mathrm{~Hz}, 11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{27}$

I
3-Methyl-1-phenylmaleimide (I): Prepared according to Method A starting from methylmaleic anhydride in 77% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48$ $7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{q}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{28}$

II
\boldsymbol{N}-Phenylhomophthalimide (II): Prepared according to Method A starting from homophthalic anhydride in 95% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.25$ (dd, $J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{29}$

III
\boldsymbol{N}-Phenylphthalimidine (III): Prepared according to a literature report ${ }^{30}$ in 98% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.62-$ 7.58 (m, 1H), 7.53-7.49 (m, 2H), 7.43 (dd, $J=8.4 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (dd, $J=7.2 \mathrm{~Hz}$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm}$. The spectral data match those previously reported. ${ }^{31}$

Hexahydro- N-phenylphthalimide (IV): Prepared according to Method D in 86% isolated yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48-7.44$ (m, 2H), 7.39-7.35 (m, 1H), 7.30-7.27 (m, 2H), 3.06-3.00 (m, 2H), 1.95-1.85 (m, 4H), 1.53-1.50 (m, 4H) ppm. The spectral data match those previously reported. ${ }^{32}$

4. Reaction optimization.

4.1. General procedure: $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(0.004 \mathrm{mmol}, 2.5 \mathrm{mg}, 0.01 \mathrm{eq}$.$) , potassium$ carbonate ($1.2 \mathrm{mmol}, 165.8 \mathrm{mg}, 3 \mathrm{eq}$.$) , distilled water (0.6 \mathrm{mmol}, 10.8 \mathrm{mg}, 10.8 \mu \mathrm{~L}, 1.5$ eq.), substrate 1 ($0.4 \mathrm{mmol}, 1 \mathrm{eq}$.) and N-methyl-2-pyrrolidone (2.0 mL) were introduced in a flame-dried Schlenk tube under argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and diluted with water $(20 \mathrm{~mL})$. Then, $\mathrm{HCl}(1 \mathrm{M})$ was added until pH reached $c a .7$. The aqueous phase was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$ and the combined organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, the desired product 2 was purified by column chromatography with a mixture of petroleum ether and ethyl acetate as the eluent.

4.2. Screening of reaction conditions (Table S1).

[a] Reaction conditions: 1a (0.2 mmol), catalysts ($1 \mathrm{~mol} \%$), Base ($300 \mathrm{~mol} \%$) and Additive ($150 \mathrm{~mol} \%$) are stirred in 1 mL of solvents for 6 h under Ar. [b] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy against an internal standard ($1,3,5$-trimethoxybenzene). The isolated yield is shown in parentheses. [c] $\mathrm{RuCl}_{3} \bullet \mathrm{nH}_{2} \mathrm{O}$ as the catalyst. [d] $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ as the catalyst. [e] 2 equivalent $\mathrm{K}_{2} \mathrm{CO}_{3}$. [f] Reaction performed at $130^{\circ} \mathrm{C}$. [g] Undisitillted solvent. [h] Under air.

5. Scale-up experiment.

Fig. S1. Reaction studied for scale-up experiments.
$\left[\mathrm{RuCl}_{2} \text { (} p \text {-cymene) }\right]_{2}(0.055 \mathrm{mmol}, 33.6 \mathrm{mg}, 0.01 \mathrm{eq}$.), potassium carbonate $(16.5 \mathrm{mmol}$, $2.28 \mathrm{~g}, 3 \mathrm{eq}$.), distilled water ($8.3 \mathrm{mmol}, 0.15 \mathrm{~g}, 0.15 \mathrm{~mL}, 1.5 \mathrm{eq}$.), substrate $\mathbf{1 i}(5.5 \mathrm{mmol}$, $1.23 \mathrm{~g}, 1 \mathrm{eq}$.$) and \mathrm{N}$-methyl-2-pyrrolidone (20 mL) were introduced in a flame-dried Schlenk tube under argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and water (200 mL) was added. Then, $\mathrm{HCl}(1 \mathrm{M})$ was added until pH reached ca. 7. The aqueous layer was extracted with ethyl acetate and the combined organic phases were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, the desired product $\mathbf{2 i}$ was obtained in 97% yield (1.05 g) by column chromatography with a mixture of petroleum ether and ethyl acetate as the eluent.

6. Mechanistic investigations.

6.1. GC-Gas analysis of the reaction mixture. $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(0.01 \mathrm{mmol}, 6.1 \mathrm{mg}$, 0.01 eq.), potassium carbonate ($3 \mathrm{mmol}, 414.6 \mathrm{mg}, 3$ eq.), distilled water ($1.5 \mathrm{mmol}, 27$ $\mathrm{mg}, 27 \mu \mathrm{~L}, 1.5 \mathrm{eq}$.), substrate $\mathbf{1 a}$ ($1 \mathrm{mmol}, 161 \mathrm{mg}, 1 \mathrm{eq}$.) and N-methyl-2-pyrrolidone (5 mL) were introduced in a flame-dried Schlenk tube under argon atmosphere. The reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and analysed by GC-gas analysis (see details below) indicating the major presence of H_{2} and CO_{2} besides traces of CH_{4} and CO . Air $\left(\mathrm{O}_{2}\right.$ and $\left.\mathrm{N}_{2}\right)$ was observed because the analysis could not be done under completely argon atmosphere. TLC and ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis of the reaction mixture indicated the full conversion of 1a into 2a.

The same study was performed in a reaction lacking the substrate 1a.

Analysis method: Gas phase chromatography apparatus $\mu \mathrm{GC} 3000$ SRA.
Column chromatography: Molecular sieves 5A-30m.
Oven temperature: $100^{\circ} \mathrm{C}$.
Vector gas: Helium.
Detector: Cathetometer.

Sample S - PoraplotQ-H2:2830; CH4 :192; CO2 : 4201

Sample S - Molecularsieve5A - H2: 2939; O2: 23321; N2:160013; CO: 227
Fig. S2. GC-Gas spectrum (using two columns) of the reaction mixture.

Sample NOS-PoraplotQ-H2 : 3864; CH4: 98; CO2: 73

Fig. S3. GC-Gas spectrum (using two columns) of a reaction performed without substrate $1 a$.

Atmospheric air - PoraplotQ column - CO2 400ppm - CO2 : 39,42

Atmospheric air - MolecularSieve 5A column -

HE : 5,61; Ne : 9,82; O2:55638; N2: 174998
Fig. S4. GC-Gas spectrum (using two columns) of a blank analysis.
6.2. Deuteration experiments. $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(0.001 \mathrm{mmol}, 0.6 \mathrm{mg}, 0.01 \mathrm{eq}$.$) ,$ potassium carbonate ($0.3 \mathrm{mmol}, 41.5 \mathrm{mg}, 3 \mathrm{eq}$.$) , substrate 1 \mathrm{a}$ ($0.1 \mathrm{mmol}, 16 \mathrm{mg}, 1 \mathrm{eq}$.), N-methyl-2-pyrrolidone $(0.9 \mathrm{~mL})$ and $\mathrm{D}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ were introduced in a flame-dried Schlenk tube under argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and water $(10 \mathrm{~mL})$ was added. Then, $\mathrm{HCl}(1 \mathrm{M})$ was added until pH reached $c a$. 7. The aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, the reaction mixture was analysed without any further purification by ${ }^{1} \mathrm{H}$ NMR spectroscopy (using 1,3,5-trimethoxybenzene as internal standard) indicating the exclusive presence of product 2a- d in 63% yield (see spectra below).

Fig. S5. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{2 a}$ in a reaction without using $\mathrm{D}_{2} \mathrm{O}$.

Fig. S6. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{2 a}-d$ showing the disappearance of the peak at 7.77-7.74 ppm.
6.3. Hydrogenation experiments. $\left[\mathrm{RuCl}_{2} \text { (} p \text {-cymene) }\right]_{2}(0.002 \mathrm{mmol}, 1.2 \mathrm{mg}, 0.01 \mathrm{eq}$.$) ,$ potassium carbonate ($0.6 \mathrm{mmol}, 83 \mathrm{mg}, 3 \mathrm{eq}$.), distilled water ($0.3 \mathrm{mmol}, 5.4 \mathrm{mg}, 5.4 \mu \mathrm{~L}$, 1.5 eq.), substrate $\mathbf{1 a}(0.2 \mathrm{mmol}, 32 \mathrm{mg}, 1 \mathrm{eq}$.) and N-methyl-2-pyrrolidone (1 mL) were introduced in a flame-dried Schlenk tube under argon atmosphere. Then, the reaction mixture was flushed with vaccum $/ \mathrm{H}_{2}$ over 3 cycles. The Schlenk tube was connected to a balloon filled with H_{2} and the reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and water (10 mL) was added. Then $\mathrm{HCl}(1 \mathrm{M})$ was added until pH reached $c a$. 7. The aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic phases were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis (using 1,3,5-trimethoxybenzene as internal standard) indicated $<10 \%$ formation of 2a and $>90 \%$ presence of $\mathbf{1 a}$.
6.4. TEMPO experiments. $\left[\operatorname{RuCl}_{2}(p-c y m e n e)\right]_{2}(0.002 \mathrm{mmol}, 1.2 \mathrm{mg}, 0.01 \mathrm{eq}$.$) ,$ potassium carbonate ($0.6 \mathrm{mmol}, 83 \mathrm{mg}, 3 \mathrm{eq}$.), distilled water ($0.3 \mathrm{mmol}, 5.4 \mathrm{mg}, 5.4 \mu \mathrm{~L}$, 1.5 eq.), substrate $\mathbf{1 a}(0.2 \mathrm{mmol}, 32 \mathrm{mg}, 1 \mathrm{eq}$.$) , TEMPO (0.2 \mathrm{mmol}, 31 \mathrm{mg}, 1 \mathrm{eq}$.$) and N$ -methyl-2-pyrrolidone (1 mL) were introduced in a flame-dried Schlenk tube under argon atmosphere and the reaction mixture was stirred at $150{ }^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and analysed by GC-MS indicating the presence of $[\mathbf{1 a}+(2 \times$ TEMPO $)]$ at $m / z=474$ besides the main presence of 1a (see spectra below). The reaction mixture was further diluted with water $(10 \mathrm{~mL})$ and $\mathrm{HCl}(1 \mathrm{M})$ was added until pH reached $c a .7$. Then, the aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic phases were dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, the desired product $\mathbf{2 a}$ (24% isolated yield) was purified by column chromatography with a mixture of petroleum ether and ethyl acetate as the eluent.

GC-MS results:
Sample Infommation
Analyzed
Sample Type
Level \#
Sample Name
Sample ID
$:$

Data File
Org Data File
Method File
Org Method File
Report File
Tuning File
Modified by
Modified

17/08/2017 12:00:52
: Unlnown
$\therefore 1$
YYC-2-10-WUP
YYC-2-10-WUP

Data File	: D: laarafalRGyyelYYC-2-10-WUP.ogd
Org Data File	: D: laarafaRGyyel YYC-2-10-WUP.ogd
Method File	: D:Methode-STd-40min qgm
Org Method File	: D:Methode-STd-40minggm
Report File	
Tuning File	: C:IGCMSsolution'Systeml Tunel 12016-09-22.qgt
Modified by	: Admin
Modified	: 17/08/2017 12-40:52

Line\#:1 R Time:9.1(Scan\#:617)
MassPeaks:816
RawMode:Single 9.1(617) BasePeak:161(157774)
BGMode:None Group 1 - Event 1

Fig. S7. GC-MS peak belonging to starting material 1a.

Line\#: 2 R.Time:18.4(Scan\#\#2004)
MassPeaks: 830
RawMode:Single 18.4(2004) BasePeak:474(28842)
BGMode:None Group 1 - Event 1

Fig. S8. GC-MS peak belonging to [1a $+(2 \times$ TEMPO $)]$.
Line\#3 R Time:23.1(Scan\#:2718)
MassPeaks:795
RawMode:Single 23.1(2718) BacePe
k:474(25700)

Fig. S9. GC-MS peak belonging to [1a $+(2 \times$ TEMPO $)]$.

6.5. Mercury tests.

Test A: $\left[\operatorname{RuCl}_{2}(p \text {-cymene })\right]_{2}(0.002 \mathrm{mmol}, 1.2 \mathrm{mg}, 0.01 \mathrm{eq}$.), potassium carbonate (0.6 mmol, 83 mg , 3 eq.), distilled water ($0.3 \mathrm{mmol}, 5.4 \mathrm{mg}, 5.4 \mu \mathrm{~L}, 1.5 \mathrm{eq}$.), substrate $\mathbf{1 a}(0.2$ mmol, $32 \mathrm{mg}, 1 \mathrm{eq}$.), 1 drop of mercury and N-methyl-2-pyrrolidone (1 mL) were introduced in a flame-dried Schlenk tube under argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and water (10 mL) was added. Then $\mathrm{HCl}(1 \mathrm{M})$ was added to the mixture until pH reached $c a$. 7. The aqueous phase was extracted with ethyl acetate (3 x 10 mL) and the combined organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, the desired product 2a was obtained in 92% isolated yield by column chromatography with a mixture of petroleum ether and ethyl acetate as the eluent.

Test B: $\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(0.002 \mathrm{mmol}, 1.2 \mathrm{mg}, 0.01 \mathrm{eq}$.), potassium carbonate (0.6 $\mathrm{mmol}, 83 \mathrm{mg}, 3 \mathrm{eq}$.), distilled water ($0.3 \mathrm{mmol}, 5.4 \mathrm{mg}, 5.4 \mu \mathrm{~L}, 1.5 \mathrm{eq}$.$) , substrate \mathbf{1 a}(0.2$ mmol, $32 \mathrm{mg}, 1 \mathrm{eq}$.), and N-methyl-2-pyrrolidone (1 mL) were introduced in a flamedried Schlenk tube under argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ during during one hour. Then, at $150^{\circ} \mathrm{C}$ and under argon atmosphere, a drop of mercury was added to the reaction mixture, which was further stirred at $150^{\circ} \mathrm{C}$ during five hours (total reaction time was six hours). Then, the reaction mixture was cooled down to room temperature and water (10 mL) was added. Then $\mathrm{HCl}(1 \mathrm{M})$ was added to the mixture until pH reached $c a$. 7 . The aqueous phase was extracted with ethyl acetate (3 x 10 mL) and the combined organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, the desired product 2a was obtained in 88% isolated yield by column chromatography with a mixture of petroleum ether and ethyl acetate as the eluent.

6.6. Study on a plausible intermediate (1al).

$\left[\operatorname{RuCl}_{2} \text { (} p \text {-cymene) }\right]_{2}(0.002 \mathrm{mmol}, 1.2 \mathrm{mg}, 0.01 \mathrm{eq}$.), potassium carbonate $(0.6 \mathrm{mmol}, 83$ $\mathrm{mg}, 3 \mathrm{eq}$.$) , distilled water (0.3 \mathrm{mmol}, 5.4 \mathrm{mg}, 5.4 \mu \mathrm{~L}, 1.5 \mathrm{eq}$.$) , substrate \mathbf{1 a l}(0.2 \mathrm{mmol}$, $48.2 \mathrm{mg}, 1 \mathrm{eq}$.$) and N$-methyl-2-pyrrolidone (1.0 mL) were introduced in a flame-dried Schlenk tube under argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and diluted with water $(10 \mathrm{~mL})$. Then, $\mathrm{HCl}(1 \mathrm{M})$ was added until pH reached $c a$. 7. The aqueous phase was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$) and the combined organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, the crude mixture was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicating the exclusive formation of benzoic acid together with aniline (see spectrum below).

Fig. S10. 1H NMR spectrum of the reaction mixture after catalysis using substrate 1al.

6.7. Study of the size of the phthalimide ring (1am).

$\left[\operatorname{RuCl}_{2} \text { (} p \text {-cymene) }\right]_{2}(0.004 \mathrm{mmol}, 2.5 \mathrm{mg}, 0.01 \mathrm{eq}$.$) , potassium carbonate (1.2 \mathrm{mmol}$, $165.8 \mathrm{mg}, 3$ eq.), distilled water ($0.6 \mathrm{mmol}, 10.8 \mathrm{mg}, 10.8 \mu \mathrm{~L}, 1.5 \mathrm{eq}$.), substrate 1 am ($0.4 \mathrm{mmol}, 109.3 \mathrm{mg}, 1 \mathrm{eq}$.) and N -methyl-2-pyrrolidone (2.0 mL) were introduced in a flame-dried Schlenk tube under argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and diluted with water $(20 \mathrm{~mL})$. Then, $\mathrm{HCl}(1 \mathrm{M})$ was added until pH reached $c a .7$. The aqueous phase was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$) and the combined organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, the crude mixture was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicating the exclusive presence of starting material 1am.

6.8. Indirect evidence of hydrogen formation in the catalysis.

$\left[\operatorname{RuCl}_{2}(p \text {-cymene })\right]_{2}(0.004 \mathrm{mmol}, 2.5 \mathrm{mg}, 0.01 \mathrm{eq}$.$) , potassium carbonate (1.2 \mathrm{mmol}$, $165.8 \mathrm{mg}, 3$ eq.), distilled water ($0.6 \mathrm{mmol}, 10.8 \mathrm{mg}, 10.8 \mu \mathrm{~L}, 1.5 \mathrm{eq}$.), substrate $1 \mathrm{an}(0.4$ mmol, $105.3 \mathrm{mg}, 1 \mathrm{eq}$.) and N-methyl-2-pyrrolidone (2.0 mL) were introduced in a flamedried Schlenk tube under argon atmosphere. The reaction mixture was stirred at $150^{\circ} \mathrm{C}$ during six hours. Then, the reaction mixture was cooled down to room temperature and diluted with water (20 mL). Then, $\mathrm{HCl}(1 \mathrm{M})$ was added until pH reached $c a .7$. The aqueous phase was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$) and the combined organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. After solvents evaporation, the crude mixture was analysed by GC-MS indicating the presence of the starting material 1am and its hydrogenated version at $m / z=265$ (see GC-MS spectrum below).

Data File	:D:laarafalRGyyclYYC-2-28-RE-2.qgd
Org Data File	:D:larafaRGyyclYYC-2-28-RE-2.qgd
Method File	:D:Methode-STd-40minggm
Org Method File	:D:Methode-STd-40min.qgm
Report File	:C:GCMSsolutionSystemTune12016-09-22.qgt
Tuning File	:Admin
Modified by	:14/09/2017 19:14:42
Modified	

Fig. S11. GC-MS peak belonging to the hydrogenated starting material.

7. Characterization data of products 2-3.

2a
N-Methylbenzamide (2a): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $5: 1$ to $2: 1, v / v$) in 93% yield $(50.3 \mathrm{mg})$ as a colourless solid using petroleum ether. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H})$, 7.42-7.38 (m, 2H), 6.42 (br. s, 1H), 2.98 (d, $J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.3,134.5,131.2,128.3,126.8,26.7 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=8.7 \mathrm{~min} ; \mathrm{MS}$ $(E I): m / z=134\left(\mathrm{M}^{+}, 48\right), 105(100), 77(91), 51(34)$. The spectral data match those previously reported. ${ }^{33}$

N-Butylbenzamide (2b): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 88% yield (62.4 mg) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.76$ (d, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.46(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (dd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.36$ (br. s, 1H), 3.43 (td, $J=6.8 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.62-1.54 (m, 2 H), 1.43-1.34 (m, 2H), $0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=167.5,134.7,131.0,128.2,126.8,39.7,31.6,20.0,13.6 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=9.9 \mathrm{~min} ; \mathrm{MS}$ $(E I): m / z=177\left(\mathrm{M}^{+}, 8\right), 105(100), 77(41)$. The spectral data match those previously reported. ${ }^{34}$

N-Isopropylbenzamide (2c): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 87% yield (56.8 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.76-7.73$ (m, 2H), 7.50-7.46 (m, 1H), 7.44-7.39 (m, 2H), 5.94
(br. s, 1H), 4.33-4.25(m, 1H), $1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , CDCl_{3}): $\delta=166.7,135.0,131.2,128.5,126.8,41.9,22.8 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=8.7 \mathrm{~min} ; \mathrm{MS}$ $(E I): m / z=163\left(\mathrm{M}^{+}, 25\right), 105(100), 77(39)$. The spectral data match those previously reported. ${ }^{35}$

N-(p-Cyanobutyl)benzamide (2e): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to $2: 1, v / v$) in 91% yield (73.6 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta}=7.75$ (dd, $J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.48-7.43 (m, 1H), 7.39-7.35 (m, 2H), 6.80 (br. s, 1H), 3.45-3.40 (m, 2H), 2.35 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.76$1.63(\mathrm{~m}, 4 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.7,134.2,131.4,128.4$, 126.8, 119.5, 38.6, 28.6, 22.6, 16.6 ppm. HRMS (ESI) calcd. for [M+Na] ${ }^{+} \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{ONa}$ 225.09983 , found $225.0996(1 \mathrm{ppm})$. The spectral data match those previously reported. ${ }^{36}$

N-(2-Methoxyethyl)benzamide (2f): Isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 10:1 to $2: 1, v / v$) in 98% yield (70.3 mg) as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.76-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}$, 2 H), 6.76 (br. s, 1H), 3.62-3.58 (m, 2H), 3.52-3.50 (m, 2H), 3.33 (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.4,134.4,131.2,128.3,126.8,71.0,58.6,39.5 \mathrm{ppm}$. HRMS (ESI) calcd. for [M+Na] ${ }^{+} \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na} 202.08385$, found 202.0837 (1 ppm). The spectral data match those previously reported. ${ }^{37}$

2g
\boldsymbol{N}-(2-Oxopropyl)benzamide (2g): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 73% yield (51.2 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.6 \mathrm{~Hz}$, $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.04 (br. s, 1H), 4.31 (d, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.23 (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}): $\delta=203.0,167.2,133.6,131.7,128.5,127.0,50.2,27.3 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}$ $=11.2 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=177\left(\mathrm{M}^{+}, 10\right), 135(45), 105(100), 77(55)$. The spectral data match those previously reported. ${ }^{38}$

Ethyl benzamidoacetate (2h): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 50% yield $(41.4 \mathrm{mg})$ as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 6.69$ (br. s, 1H), 4.29-4.23 (m, 4H), $1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=170.1,167.4,133.7,131.8,128.6,127.0,61.6,41.9,14.1 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=10.9$ $\mathrm{min} ; \mathrm{MS}(\mathrm{EI}): m / z=207\left(\mathrm{M}^{+}, 7\right), 105(100), 77(35)$. The spectral data match those previously reported. ${ }^{39}$

2i
N-Phenylbenzamide (2i): Isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 98% yield (77.1 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.89-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H})$, 7.49-7.45 (m, 2H), 7.37 (dd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18-7.13 (m, 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.8,137.9,135.0,131.8,129.1,128.8,127.0,124.6$, $120.2 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.0 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=197\left(\mathrm{M}^{+}, 28\right), 105(100), 77$ (55). The spectral data match those previously reported. ${ }^{40}$

2j
\boldsymbol{N}-(p-Tolyl)benzamide (2j): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 96% yield (81.4 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 7.52 (d, $J=8.4 \mathrm{~Hz}, 3 \mathrm{H}$), 7.48-7.44 (m, 2 H), 7.16 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $165.6,135.3,135.1,134.2,131.7,129.5,128.7,127.0,120.3,20.9 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.7$ $\min ; \mathrm{MS}(\mathrm{EI}): m / z=211\left(\mathrm{M}^{+}, 20\right), 105(100), 77(79)$. The spectral data match those previously reported. ${ }^{41}$

\boldsymbol{N}-(\boldsymbol{p}-Methoxyphenyl)benzamide (2k): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 96% yield (87.1 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.80 (br. s, 1H), 7.557.52 (m, 3H), 7.47 (dd, $J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81$ (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.6,156.6,135.0,131.7,131.0$, $128.7,127.0,122.1,114.2,55.5 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=13.6 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=227\left(\mathrm{M}^{+}, 21\right)$, 105 (100), 77 (59). The spectral data match those previously reported. ${ }^{41}$

\boldsymbol{N}-(\boldsymbol{p}-Fluorophenyl)benzamide (21): Isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 96% yield (82.3 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (br. s, 1H), 7.557.51 (m, 2H), 7.48 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 8.4 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- d_{6}): $\delta=165.5,158.3$ (d, $J_{C-F}=239.0 \mathrm{~Hz}$), $135.5\left(\mathrm{~d}, J_{C-F}=2.3 \mathrm{~Hz}\right), 134.8,131.6,128.4,127.6,122.2\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 115.2\left(\mathrm{~d}, J_{C-}\right.$
$\left.{ }_{F}=22.2 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-117.6 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.0 \mathrm{~min}$; MS (EI): $m / z=215\left(\mathrm{M}^{+}, 12\right), 105(100), 77(80), 51(28)$. The spectral data match those previously reported. ${ }^{42}$

4-Benzamidoacetophenone ($\mathbf{2 m}$): Isolated by column chromatography (SiO_{2}, petroleum ether/dichloromethane, $4: 1$ to $1: 2, v / v$) in 98% yield $(93.4 \mathrm{mg})$ as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta}=8.00(\mathrm{dd}, J=6.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.77$ (dd, $J=6.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 2.60$ (s, 3 H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.9,165.7,142.2,134.5,133.2$, $132.3,129.8,128.9,127.1,119.2,26.4 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=15.6 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=239\left(\mathrm{M}^{+}\right.$, 8), 105 (100), 77 (69). The spectral data match those previously reported. ${ }^{43}$

2n
Ethyl \boldsymbol{p}-[(phenylcarbonyl)amino]benzoate (2n): Isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, $10: 1$ to $\left.2: 1, v / v\right)$ in 94% yield $(100.9 \mathrm{mg})$ as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.37$ (br. s, 1 H), 8.01 (dd, $J=6.8 \mathrm{~Hz}$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75$ (dd, $J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ (dd, $J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (dd, $J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.2,166.0,142.2$, $134.5,132.1,130.7,128.7,127.1,126.0,119.2,60.9,14.3 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=15.8 \mathrm{~min} ; \mathrm{MS}$ $(E I): m / z=269\left(\mathrm{M}^{+}, 19\right), 105(100), 77(38)$. The spectral data match those previously reported. ${ }^{44}$

\boldsymbol{N}-(p-Nitrophenyl)benzamide (20): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 80% yield (77.5 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.27$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.05 (br. s, 1H), 7.87 $(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6$ $\mathrm{Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , acetone- d_{6}): $\delta=167.0,146.4,144.1,135.5$, $133.0,129.4,128.6,125.5,120.6 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=16.3 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=242\left(\mathrm{M}^{+}, 10\right)$, 105 (100), 77 (53). The spectral data match those previously reported. ${ }^{45}$

2p
\boldsymbol{N}-(\boldsymbol{p}-Bromophenyl)benzamide (2p): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) as a mixture of $\mathbf{2 p}: 2 \mathbf{2 i}$ in a ratio $74: 26$ according to ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis. GC: $\mathrm{t}_{\mathrm{R}}=14.6 \mathrm{~min}$; MS (EI): $m / z=275\left(\mathrm{M}^{+}\right.$, 10), 105 (100), 77 (45), 51 (10). The spectral data of $\mathbf{2 p}$ match those previously reported. ${ }^{46}$

2q
N-(p-Iodophenyl)benzamide (2q): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) as a mixture of $\mathbf{2 q}: 2 \mathbf{i}$ in a ratio $24: 76$ according to ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis. GC: $\mathrm{t}_{\mathrm{R}}=14.6 \mathrm{~min}$; MS (EI): $m / z=323\left(\mathrm{M}^{+}\right.$, 30), 105 (100), 77 (50), 51 (10). The spectral data of $\mathbf{2 q}$ match those previously reported. ${ }^{47}$

\boldsymbol{N}-(\boldsymbol{m}-Methoxyphenyl)benzamide (2r): Isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 97% yield (88.5 mg) as a brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta}=8.22$ (br. s, 1H), 7.83 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (dd, $J=$ $7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.0,160.1,139.2,134.8,131.7,129.6,128.6,127.0,112.5,110.4$, $105.9,55.2 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=13.4 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}=227\left(\mathrm{M}^{+}, 19\right), 105(100), 77(66)$. The spectral data match those previously reported. ${ }^{48}$

2 s
N-(o-Chlorophenyl)benzamide (2s): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 63% yield (58.3 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta}=8.48$ (dd, $J=8.4 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.37 (br. s, 1H), 7.84 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ (dd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.41$ (m, 2H), 7.33 (dd, $J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.2,134.6,134.5,132.1,128.9,128.8,127.8$, $127.0,124.7,123.0,121.5 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=231\left(\mathrm{M}^{+}, 5\right), 196(27)$, 105 (100), 77 (77), 51 (27). The spectral data match those previously reported. ${ }^{49}$

N -o-Tolylbenzamide (2t): Isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 89% yield (75.1 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.93-7.87$ (m, 3H), 7.74 (br. s, 1 H), 7.58-7.54 (m, 1H), 7.51-7.47 (m, 2H), 7.27-7.22 (m, 2H), 7.14-7.10(m, 1H), $2.33(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.7,135.7,134.8,131.7,130.5,129.7,128.7,127.0,126.7,125.4$, $123.4,17.7 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=211\left(\mathrm{M}^{+}, 28\right), 105(100), 77(50)$. The spectral data match those previously reported. ${ }^{50}$

2u
\boldsymbol{N}-(o-Methoxyphenyl)benzamide (2u): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 78% yield (70.9 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.55$ (dd, $\left.J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.90(\mathrm{dd}, J=$ $6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93$ (s, 3 H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.2,148.1,135.3,131.6$, 128.7, 127.8, 127.0, 123.8, 121.2, 119.8, 109.9, $55.8 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.8 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}):$ $m / z=227\left(\mathrm{M}^{+}, 29\right), 105(100), 77(46)$. The spectral data match those previously reported. ${ }^{48}$

\boldsymbol{N}-(1-Naphthalenyl)benzamide (2v): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, $v / v)$ in 92% yield (90.7 mg) as a pink solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.33$ (br. s, 1H), 7.96-7.93 (m, 3 H), 7.89-7.87 (m, 2 H), 7.73 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.3,134.7,134.1,132.4,131.8,128.73,128.70$, $127.6,127.2,126.3,126.1,126.0,125.6,121.4,120.8 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=16.0 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}):$ $m / z=247\left(\mathrm{M}^{+}, 8\right), 105(100), 77(62)$. The spectral data match those previously reported. ${ }^{35}$

2w
$N-8$-Quinolinylbenzamide (2w): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 33% yield (32.7 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.75$ (br. s, 1H), 8.95 (dd, $J=7.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.85 (dd, $J=$ $4.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.62-7.53 (m, 5H), 7.47 (dd, $J=8.4 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , CDCl_{3}): $\delta=165.4,148.2,138.8,136.4,135.1,134.6,131.8,128.8$ (x 2), 128.0, 127.4, $127.3,121.6,116.5 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=15.6 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=248\left(\mathrm{M}^{+}, 15\right), 105(100), 77$ (72). The spectral data match those previously reported. ${ }^{18}$

2x
N-Benzylbenzamide (2x): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v/v) in 90\% yield (76.2 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.81-7.78$ (m, 2H), 7.52-7.48 (m, 1H), 7.44-7.40 (m, 2H), 7.57$7.46(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.52$ (br. s, 1H), $4.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.4,138.3,134.2,131.2,128.4,128.2,127.5,127.1$, 126.9, $43.7 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.5 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=211\left(\mathrm{M}^{+}, 47\right), 105(100), 77(57)$. The spectral data match those previously reported. ${ }^{51}$ Crystals suitable for X-ray diffraction studies were grown by slow diffusion of n-heptane into a concentrated solution of $\mathbf{2 x}$ in dichloromethane at room temperature.

\boldsymbol{N} - \boldsymbol{p}-Methylbenzylbenzamide (2y): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 98% yield (88.4 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (dd, $J=7.2 \mathrm{~Hz}, 7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28$ (dd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2 H), 6.65 (br. s, 1H), 4.45 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.3,137.1,135.2,134.4,131.3,129.3,128.4,127.8,126.9,43.7$, $21.0 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.9 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=225\left(\mathrm{M}^{+}, 24\right)$, 105 (100), 77 (60). The spectral data match those previously reported. ${ }^{52}$

$2 z$
N-[(p-Cyanophenyl)methyl]benzamide (2z): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 90% yield $(58.2 \mathrm{mg}$) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (dd, $J=$ $6.8 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54-7.49 (m, 1H), 7.44-7.40 (m, 4H), 6.89 (br. s, 1H), 4.66 (d, $J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.6,143.9$, 133.7, 132.4, $131.9,128.6,128.1,127.0,118.7,111.2,43.4 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=15.2 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}=$ $236\left(\mathrm{M}^{+}, 18\right), 105$ (100), 77 (72), 51 (30). The spectral data match those previously reported. ${ }^{53}$

N-[[p-(Trifluoromethyl)phenyl]methyl]benzamide (3a): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 99% yield (110.9 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 4 \mathrm{H}), 6.84$ (br. s, 1H), $4.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.6,142.4,134.0,131.7,129.7\left(\mathrm{q}, J_{C}\right.$. $\left.{ }_{F}=32.9 \mathrm{~Hz}\right), 128.6,127.8,127.0,125.6\left(\mathrm{q}, J_{C-F}=3.8 \mathrm{~Hz}\right), 124.0\left(\mathrm{q}, J_{C-F}=270.4 \mathrm{~Hz}\right)$, $43.4 \mathrm{ppm} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.5 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.3 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}):$ $m / z=279\left(\mathrm{M}^{+}, 10\right), 105(100), 77(64)$. The spectral data match those previously reported. ${ }^{54}$

\boldsymbol{N}-o-Picolylbenzamide (3b): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 88% yield (74.7 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.54(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H})$, $7.51-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.2$ $\mathrm{Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $167.3,156.2,148.9,136.8,134.3,131.4,128.5,127.0,122.4,122.1,44.7 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=$ $12.7 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=212\left(\mathrm{M}^{+}, 4\right), 107(100), 77(76), 51(44)$. The spectral data match those previously reported. ${ }^{55}$

\boldsymbol{N}-(2-Thienylmethyl)benzamide (3c): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $10: 1$ to $2: 1, v / v$) in 60% yield (52.3 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79-7.77$ (m, 2H), 7.51-7.47 (m, 1H), 7.41 (dd, $J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (dd, $J=5.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.62 (br. s, 1H), 4.80 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.1,140.8,134.1,131.6,128.5,127.0,126.9,126.2$, $125.3,38.8 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.6 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=217\left(\mathrm{M}^{+}, 42\right), 105(100), 77(44)$. The spectral data match those previously reported. ${ }^{56}$

3d
N, N^{\prime}-Trimethylenebis(benzamide) (3d): Isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to $2: 1, v / v$) in 93% yield (106.2 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.88-7.86$ (m, 4H), 7.52-7.48 (m, 2H), 7.45-7.41 (m, 4H), 7.29 (br. s, 2H), 3.58-3.53 (m, 4H), 1.84-1.78 (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- d_{6}): $\delta=166.2,134.6,131.0,128.2,127.1,37.0,29.3 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=19.3$ $\min ; \mathrm{MS}(\mathrm{EI}): m / z=282\left(\mathrm{M}^{+}, 8\right), 134(27), 105(100), 77(46)$. The spectral data match those previously reported. ${ }^{57}$

\boldsymbol{m}-Fluoro- \boldsymbol{N}-phenylbenzamide (3e): Starting from 1ae and isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 93\% yield (80.1 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.88$ (br. s, 1 H), 7.64-7.56 $(\mathrm{m}, 4 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.2\left(\mathrm{~d}, J_{C-F}=36.8 \mathrm{~Hz}\right), 161.6,137.6$, $137.2\left(\mathrm{~d}, J_{C-F}=6.9 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 129.1,124.8,122.4\left(\mathrm{~d}, J_{C-F}=3.0 \mathrm{~Hz}\right)$, $120.3,118.8\left(\mathrm{~d}, J_{C-F}=21.4 \mathrm{~Hz}\right), 114.5\left(\mathrm{~d}, J_{C-F}=23.0 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(376 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=-111.3 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=12.6 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=215\left(\mathrm{M}^{+}, 30\right), 123(100), 95$ (52), 75 (15). The spectral data match those previously reported. ${ }^{58}$

\boldsymbol{m}-Chloro- \boldsymbol{N}-phenylbenzamide (3f): Starting from 1af and isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 65\% yield (59.9 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.93$ (br. s, 1 H), $7.83(\mathrm{~s}, 1 \mathrm{H})$, 7.72 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34$ (m, 3 H), 7.16 (dd, $J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.5$, 137.6, 136.7, 134.9, 131.8, 130.0, 129.1, 127.4, 125.1, 124.9, $120.4 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=13.6$ $\min ; \mathrm{MS}(\mathrm{EI}): m / z=231\left(\mathrm{M}^{+}, 15\right), 139(100), 111(48), 75(27)$. The spectral data match those previously reported. ${ }^{59}$

\boldsymbol{m}-Nitro- N-phenylbenzamide (3g): Starting from $\mathbf{1 a g}$ and isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 87% yield (87.1 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.69(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (br. s, 1H), 7.71-7.64 (m, 3H), 7.39 (dd, $J=7.6$ $\mathrm{Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , CDCl_{3}): $\delta=163.3,148.2,137.2,136.6,133.4,130.1,129.2,126.4,125.3,121.8,120.5$ ppm. GC: $\mathrm{t}_{\mathrm{R}}=15.2 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=242\left(\mathrm{M}^{+}, 43\right), 212(26), 150(100), 120(79), 104$ (45), 92 (51), 65 (30). The spectral data match those previously reported. ${ }^{60}$

\boldsymbol{o} - and \boldsymbol{m}-methyl- \boldsymbol{N}-phenylbenzamide (3h): Starting from 1ah and isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 92\% yield (77.8 mg) as a mixture of isomers in a $38: 62$ ratio of $\boldsymbol{o} \mathbf{- 3 h}: \boldsymbol{m} \mathbf{- 3 h}$ according to ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis. GC: $\mathrm{t}_{\mathrm{R}}=12.9 \mathrm{~min}$ (both isomers appear together); $\mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}=$ $211\left(\mathrm{M}^{+}, 10\right), 119(100), 91(50), 65(30)$. The spectral data match those previously reported. ${ }^{61}$

\boldsymbol{m} - and \boldsymbol{p}-Fluoro- \boldsymbol{N}-phenylbenzamide (3i): Starting from 1ai and isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 82% yield (70.9 mg) as a mixture of isomers in a $59: 41$ ratio of $\boldsymbol{m}-\mathbf{3 i} \mathbf{i} \boldsymbol{p}$-3i according to ${ }^{19} \mathrm{~F}$ NMR spectroscopy analysis. GC: $\mathrm{t}_{\mathrm{R}}=12.1 \mathrm{~min}$ (both isomers appear together); $\mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}=$ $215\left(\mathrm{M}^{+}, 25\right), 123$ (100), 95 (40), 75 (10). The spectral data match those previously reported. ${ }^{47,62}$

m-3j
\boldsymbol{m}-Nitro- \boldsymbol{N}-phenylbenzamide ($\boldsymbol{m}-\mathbf{3 j}$): Starting from 1aj and isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 22\% yield (21.3 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.69(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (br. s, 1H), 7.71-7.64 (m, 3H), $7.39(\mathrm{dd}, J=7.6$
$\mathrm{Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20 (dd, $J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , CDCl_{3}): $\delta=163.3,148.2,137.2,136.6,133.4,130.1,129.2,126.4,125.3,121.8,120.5$ ppm. GC: $\mathrm{t}_{\mathrm{R}}=15.2 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=242\left(\mathrm{M}^{+}, 43\right), 212(26), 150(100), 120(79), 104$ (45), 92 (51), 65 (30). The spectral data match those previously reported. ${ }^{60}$

$p-3 \mathrm{j}$
\boldsymbol{p}-Nitro- N -phenylbenzamide ($\boldsymbol{p}-\mathbf{3 j}$): Starting from 1aj and isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 27\% yield (25.7 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta=9.82$ (br. s, 1H), 8.37 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.0 \mathrm{~Hz}$, $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, acetone$\left.d_{6}\right): \delta=164.7,150.6,142.0,139.9,129.8,129.6,125.1,124.4,121.2 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=15.2$ min; MS (EI): $m / z=242\left(\mathrm{M}^{+}, 42\right), 212(27), 150(100), 120(78), 104$ (45), $92(51), 65$ (30). The spectral data match those previously reported. ${ }^{61}$

\boldsymbol{m} - and \boldsymbol{p}-methyl- \boldsymbol{N}-phenylbenzamide (3k): Starting from 1ak and isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, 10:1 to 2:1, v / v) in 98\% yield (89.0 mg) as a mixture of isomers in a 57:43 ratio of $\boldsymbol{m} \mathbf{- 3 k}: \boldsymbol{p}-\mathbf{3 k}$ according to ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis. GC: $\mathrm{t}_{\mathrm{R}}=12.9 \mathrm{~min}$ (both isomers appear together); $\mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}=$ $211\left(\mathrm{M}^{+}, 10\right), 119(100), 91(50), 65(30)$. The spectral data match those previously reported. ${ }^{61,63}$

Benzamide: Starting from phthalimide and isolated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate, 5:1 to $1: 1, v / v$) in 17% yield (8.3 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.83-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}$,

2H), 6.26 (br. s, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7$, 133.4, 131.9, $128.6,127.3 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=8.8 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=121\left(\mathrm{M}^{+}, 46\right), 105(62), 77(100), 51$ (51). The spectral data match those previously reported. ${ }^{64}$

Benzoic acid: Starting from phthalic anhydride and isolated by column chromatography (SiO_{2}, petroleum ether/ethyl acetate, $4: 1$ to $1: 2, v / v$) in 51% yield (25.1 mg) as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.08$ (br. s, 1 H), $8.16-8.13$ (m, 2 H), 7.65-7.61 $(\mathrm{m}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5,133.8$, $130.2,129.3,128.5 \mathrm{ppm} . \mathrm{GC}: \mathrm{t}_{\mathrm{R}}=7.0 \mathrm{~min} ; \mathrm{MS}(\mathrm{EI}): m / z=122\left(\mathrm{M}^{+}, 71\right), 105(94), 77$ (100), 51 (76). The spectral data match those previously reported. ${ }^{65}$

8. References.

[1] S. Takebayashi, J. M. John, S. H. Bergens, J. Am. Chem. Soc. 2010, 132, 1283212834.
[2] J.-C. Hsieh, C.-H. Cheng, Chem. Commun. 2005, 36, 4554-4556.
[3] G. Ding, C. Li, Y. Shen, B. Lu, Z. Zhang, X. Xie, Adv. Synth. Catal. 2016, 358, 12411250.
[4] S. Liu, Q. Deng, W. Fang, J.-F. Gong, M.-P. Song, M. Xua, T. Tu, Org. Chem. Front. 2014, $1,1261-1265$.
[5] L. Zhang, Y. Li, L.-Y. Jin, F. Liang, RSC Adv. 2015, 5, 65600-65603.
[6] P. Gupta, B. A. Shah, R. Parshad, G. N. Qazi, S. C. Taneja, Green Chem. 2007, 9, 1120-1125.
[7] P. Dawar, M. B. Raju, R. A. Ramakrishna, Tetrahedron Lett. 2011, 52, 4262-4265.
[8] L. K. Rasmussen, M. Begtrup, T. Ruhland, J. Org. Chem. 2004, 69, 6890-6893.
[9] V. Kumar, G. S. Banker, Int. J. Pharm. 1992, 79, 61-65.
[10] R. Shrestha, P. Mukherjee, Y. Tan, Z. C. Litman, J. F. Hartwig, J. Am. Chem. Soc. 2013, 135, 8480-8483.
[11] S. A. Worlikar, R. C. Larock, J. Org. Chem. 2008, 73, 7175-7180.
[12] B. Nammalwar, N. P. Muddala, F. M. Watts, R. A. Bunce, Tetrahedron 2015, 71, 9101-9111.
[13] C. D. Chu, Y. H. Qi, W. Hao, Catal. Commun. 2007, 8, 1527-1530.
[14] S. L. Yedage, D. S. D'silva, B. M. Bhanage, RSC Adv. 2015, 5, 80441-80449.
[15] H. J. Kim, J. Kim, S. H. Cho, S. Chang, J. Am. Chem. Soc. 2011, 133, 16382-16385.
[16] B. Khan, A. A. Khan, R. Kant, D. Koley, Adv. Synth. Catal. 2016, 358, 3753-3758.
[17] M. A. Ali, S. K. Moromi, A. S. Touchy, K. Shimizu, ChemCatChem 2016, 8, 891894.
[18] S. Inoue, H. Shiota, Y. Fukumoto, N. Chatani, J. Am. Chem. Soc. 2009, 131, 68986899.
[19] M. Wang, J. Lu, J. Ma, Z. Zhang, F. Wang, Angew. Chem. Int. Ed. 2015, 54, 1406114065.
[20] M. V. de Almeida, F. M. Teixeira, M. V. N. de Souza, G. W. Amarante, C. C. de S. Alves, S. H. Cardoso, A. M. Mattos, A. P. Ferreira, H. C. Teixeira, Chem. Pharm. Bull. 2007, 55, 223-226.
[21] S. D. Sarkar, L. Ackermann, Chem. Eur. J. 2014, 20, 13932-13936.
[22] F. J. Williams, P. E. Donahue, J. Org. Chem. 1977, 42, 3414-3419.
[23] Y. Shibata, K. Sasaki, Y. Hashimoto, S. Iwasaki, Chem. Pharm. Bull. 1996, 44, 156162.
[24] X.-F. Dong, J. Fan, X.-Y. Shi, K.-Y. Liu, P.-M. Wang, J.-F. Wei, J. Organomet. Chem. 2015, 779, 55-61.
[25] A. M. Al-Azzawi, M. S. A. Al-Razzak, Int. J. Res. Pharm. Chem. 2013, 3, 682-690.
[26] W. S. Sun, Y. S. Park, J. Yoo, K. D. Park, S. H. Kim, J.-H. Kim, H.-J. Park, J. Med. Chem. 2003, 46, 5619-5627.
[27] X. Sun, X. Li, S. Song, Y. Zhu, Y.-F. Liang, N. Jiao, J. Am. Chem. Soc. 2015, 137, 6059-6066.
[28] N. Matuszak, G. G. Muccioli, G. Labar, D. M. Lambert, J. Med. Chem. 2009, 52, 7410-7420.
[29] C.-Y. Cheng, H.-B. Tsai, M.-S. Lin, J. Heterocyclic Chem. 1995, 32, 73-77.
[30] S. Wang, H. Huang, C. Bruneau, C. Fischmeister, ChemSusChem DOI: 10.1002/cssc. 201701299.
[31] V. Kumar, S. Sharma, U. Sharma, B. Singh, N. Kumar, Green Chem. 2012, 14, 34103414.
[32] K. Kaminski, B. Wiklik, J. Obniska, Arch. Pharm. Chem. Life Sci. 2014, 347, 840852.
[33] A. B. Charette, M. Grenon, A. Lemire, M. Pourashraf, J. Martel, J. Am. Chem. Soc. 2001, 123, 11829-11833.
[34] L. Ackermann, A. V. Lygin, N. Hofmann, Angew. Chem. Int. Ed. 2011, 50, 63796382.
[35] L. Zhang, S. Su, H. Wu, S. Wang, Tetrahedron, 2009, 65, 10022-10024.
[36] F. Foubelo, F. Lloret, M. Yus, Anal. Quimica 1995, 91, 260-266.
[37] T. Higuchi, R. Tagawa, A. Iimuro, S. Akiyama, H. Nagae, K. Mashima, Chem. Eur. J. 2017, 23, 12795-12804.
[38] (a) U. Bratusek, S. Recnik, J. Svete, L. Golic, B. Stanovnik Heterocycles 2002, 57, 2045-2064. (b) O. A. Egorova, H. Seo, Y. Kim, D. Moon, Y. M. Rhee, K. H. Ahn, Angew. Chem. Int. Ed. 2011, 50, 11446-11450.
[39] W.-J. Yoo, C.-J. Li, J. Am. Chem. Soc. 2006, 128, 13064-13065.
[40] T. B. Halima, J. K. Vandavasi, M. Shkoor, S. G. Newman, ACS Catal. 2017, 7, 21762180.
[41] C. K. Lee, J. S. Yu, Y. R. Ji, J. Heterocyclic Chem. 2002, 39, 1219-1223.
[42] S. Ueda, H. Nagasawa, J. Org. Chem. 2009, 74, 4272-4277.
[43] W.-T. Xu, B. Huang, J.-J. Dai, J. Xu, H.-J. Xu, Org. Lett. 2016, 18, 3114-3117.
[44] K. Inamoto, M. Shiraishi, K. Hiroya, T. Doi, Synthesis 2010, 18, 3087-3090.
[45] P. Wójcik, V. Rosar, A. Gniewek, B. Milani, A. M. Trzeciak, J. Mol. Catal. A: Chemical 2016, 425, 322-331.
[46] K. Sasaki, D. Crich, Org. Lett. 2011, 13, 2256-2259.
[47] Z. Wang, W. Fan, G.-J. Deng, W. Zhou, Tetrahedron Lett. 2015, 56, 5449-5452.
[48] H. Xu, C. Wolf, Chem. Commun. 2009, 1715-1717.
[49] G. Evindar, R. A. Batey, J. Org. Chem. 2006, 71, 1802-1808.
[50] T. Miura, Y. Takahashi, M. Murakami, Chem. Commun. 2007, 3577-3579.
[51] L. U. Nordstrøm, H. Vogt, R. Madsen, J. Am. Chem. Soc. 2008, 130, 17672-17673.
[52] X. Cui, Y. Zhang, F. Shi, Y. Deng, Chem. Eur. J. 2011, 17, 1021-1028.
[53] G. A. Molander, M.-A. Hiebel, Org. Lett. 2010, 12, 4876-4879.
[54] P. Biallas, A. P. Häring, S. F. Kirsch, Org. Biomol. Chem. 2017, 15, 3184-3187.
[55] H. Sheng, R. Zeng, W. Wang, S. Luo, Y. Feng, J. Liu, W. Chen, M. Zhu, Q. Guo, Adv. Synth. Catal. 2017, 359, 302-313.
[56] V. Rajkumar, Naveen, S. A. Babu, ChemistrySelect 2016, 6, 1207-1219.
[57] Y. Zhu, C. Li, A. O. Biying, M. Sudarmadji, A. Chen, D. T. Tuan, A. M. Seayad, Dalton Trans. 2011, 40, 9320-9325.
[58] R. Sharma, R. A. Vishwakarma, S. B. Bharate, Adv. Synth. Catal. 2016, 358, 30273033.
[59] J. R. Martinelli, D. A. Watson, D. M. M. Freckmann, T. E. Barder, S. L. Buchwald, J. Org. Chem. 2008, 73, 7102-7107.
[60] M. A. Ali, P. Saha, T. Punniyamurthy, Synthesis 2010, 6, 908-910.
[61] Y. Wang, D. Zhu, L. Tang, S. Wang, Z. Wang, Angew. Chem. Int. Ed. 2011, 50, 8917-8921.
[62] G. Hong, D. Mao, X. Zhu, S. Wu, L. Wang, Org. Chem. Front. 2015, 2, 985-989.
[63] G. Meng, P. Lei, M. Szostak, Org. Lett. 2017, 19, 2158-2161.
[64] C. Wu, X. Xin, Z.-M. Fu, L.-Y. Xie, K.-J. Liu, Z. Wang, W. Li, Z.-H. Yuan, W.-M. He, Green Chem. 2017, 19, 1983-1989.
[65] T. Hattori, H. Okami, T. Ichikawa, S. Mori, Y. Sawama, Y. Monguchi, H. Sajiki, Adv. Synth. Catal. DOI: 10.1002/adsc. 201700774.

9. X-ray crystallographic data for $2 x$ (CCDC-1577926).

$\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}\right) ; M=211.25$. APEXII, Bruker-AXS diffractometer, Mo-K α radiation $(\lambda=$ $0.71073 \AA$) , $T=150 \mathrm{~K}$; monoclinic $P 2{ }_{1} / n$ (I.T.\#14), $\mathrm{a}=7.9741(8), \mathrm{b}=24.748(3), \mathrm{c}=$

${ }^{1}$. The structure was solved by dual-space algorithm using the SHELXT program [1], and then refined with full-matrix least-square methods based on F^{2} (SHELXL) [2]. All nonhydrogen atoms were refined with anisotropic atomic displacement parameters. Except nitrogen linked hydrogen atoms that were introduced in the structural model through Fourier difference maps analysis, H atoms were finally included in their calculated positions. A final refinement on F^{2} with 2544 unique intensities and 149 parameters converged at $\omega R\left(F^{2}\right)=0.1120(R(F)=0.0439)$ for 2221 observed reflections with $I>$ $2 \sigma(I)$.
[1] G. M. Sheldrick, Acta Cryst. A71 (2015) 3-8.
[2] Sheldrick G.M., Acta Cryst. C71 (2015) 3-8.

9.1. Structural data for 2 x .

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Crystal color
Theta range for data collection
h_min, h_max
k_min, k_max
1_min, 1_max
Reflections collected / unique
Reflections [$\mathrm{I}>2 \sigma$]
Completeness to theta_max
Absorption correction type
Max. and min. transmission
Refinement method
Data / restraints / parameters
${ }^{\mathrm{b}} \mathrm{S}$ (Goodness-of-fit)
Final R indices [$[>2 \sigma$]
R indices (all data)
Largest diff. peak and hole
${ }^{b} S=\left\{\sum\left[w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(n-p)\right\}^{1 / 2}$
${ }^{c} R 1=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|$
${ }^{d} w R 2=\left\{\sum\left[w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2}\right] / \sum\left[w\left(F_{o}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$
$w=1 /\left[\sigma\left(F_{0}{ }^{2}\right)+\mathrm{a} P^{2}+\mathrm{b} P\right]$ where $P=\left[2 F_{\mathrm{c}}{ }^{2}+\operatorname{MAX}\left(F_{0}^{2}, 0\right)\right] / 3$
9.2. Atomic coordinates, site occupancy (\%) and equivalent isotropic displacement parameters $(\AA 2) . U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	x	y	z	occ.	$\mathrm{U}(\mathrm{eq})$
C1	$0.3255(2)$	$0.34549(6)$	$0.3349(3)$	1	$0.0285(4)$
H1	0.391412	0.327271	0.222448	1	0.034
C2	$0.2761(2)$	$0.39830(7)$	$0.2968(3)$	1	$0.0336(4)$
H2	0.308436	0.416411	0.158844	1	0.040
C3	$0.1793(2)$	$0.42470(7)$	$0.4605(3)$	1	$0.0341(4)$
H3	0.146982	0.461188	0.435725	1	0.041
C4	$0.1295(2)$	$0.39827(7)$	$0.6599(3)$	1	$0.0311(4)$
H4	0.061139	0.416355	0.769875	1	0.037
C5	$0.1794(2)$	$0.34538(6)$	$0.6992(3)$	1	$0.0255(4)$
H5	0.145689	0.327260	0.836479	1	0.031
C6	$0.27898(19)$	$0.31889(6)$	$0.5372(3)$	1	$0.0226(4)$
C7	$0.3465(2)$	$0.26299(6)$	$0.5745(3)$	1	$0.0259(4)$
O8	$0.47488(17)$	$0.24814(5)$	$0.4742(3)$	1	$0.0487(4)$
N9	$0.26593(18)$	$0.23075(5)$	$0.7208(2)$	1	$0.0242(3)$
H9	$0.169(3)$	$0.2412(9)$	$0.790(4)$	1	0.050
C10	$0.3270(2)$	$0.17662(6)$	$0.7724(3)$	1	$0.0266(4)$
H10A	0.298256	0.167825	0.934790	1	0.032
H10B	0.450836	0.176616	0.759846	1	0.032
C11	$0.25799(19)$	$0.13267(6)$	$0.6173(3)$	1	$0.0236(4)$
C12	$0.2780(2)$	$0.07900(7)$	$0.6840(3)$	1	$0.0308(4)$
H12	0.332086	0.070949	0.826492	1	0.037
C13	$0.2205(2)$	$0.03725(7)$	$0.5463(3)$	1	$0.0371(5)$
H13	0.235951	0.000845	0.593934	1	0.044
C14	$0.1402(2)$	$0.04842(7)$	$0.3390(3)$	1	$0.0352(4)$
H14	0.101047	0.019839	0.243381	1	0.042
C15	$0.1178(2)$	$0.10152(7)$	$0.2726(3)$	1	$0.0309(4)$
H15	0.061415	0.109434	0.131743	1	0.037
C16	$0.1768(2)$	$0.14343(6)$	$0.4097(3)$	1	$0.0273(4)$
H16	0.161586	0.179772	0.361142	1	0.033

9.3. Anisotropic displacement parameters $\left(\AA^{2}\right)$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$.

| Atom | U11 | U22 | U33 | U 23 | U 13 | U 12 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| C1 | $0.0312(9)$ | $0.0295(9)$ | $0.0248(9)$ | $0.0005(7)$ | $0.0045(8)$ | $-0.0074(7)$ |
| C2 | $0.0381(10)$ | $0.0357(9)$ | $0.0271(9)$ | $0.0081(8)$ | $-0.0022(8)$ | $-0.0105(8)$ |
| C3 | $0.0338(9)$ | $0.0232(8)$ | $0.0453(11)$ | $0.0027(8)$ | $-0.0055(9)$ | $-0.0024(7)$ |
| C4 | $0.0298(9)$ | $0.0266(8)$ | $0.0369(10)$ | $-0.0065(8)$ | $0.0029(8)$ | $-0.0001(7)$ |
| C5 | $0.0249(8)$ | $0.0243(8)$ | $0.0274(8)$ | $-0.0017(7)$ | $0.0046(8)$ | $-0.0046(7)$ |
| C6 | $0.0205(8)$ | $0.0238(7)$ | $0.0236(8)$ | $-0.0016(6)$ | $0.0040(7)$ | $-0.0055(6)$ |
| C7 | $0.0224(8)$ | $0.0277(8)$ | $0.0276(9)$ | $-0.0013(7)$ | $0.0113(7)$ | $-0.0022(6)$ |
| O8 | $0.0417(8)$ | $0.0381(7)$ | $0.0664(10)$ | $0.0105(7)$ | $0.0407(8)$ | $0.0091(6)$ |
| N9 | $0.0231(7)$ | $0.0216(6)$ | $0.0280(8)$ | $0.0008(5)$ | $0.0119(6)$ | $0.0003(5)$ |
| C10 | $0.0280(8)$ | $0.0245(8)$ | $0.0273(9)$ | $0.0031(7)$ | $0.0038(7)$ | $0.0011(7)$ |
| C11 | $0.0199(7)$ | $0.0248(8)$ | $0.0261(8)$ | $0.0028(6)$ | $0.0077(7)$ | $0.0013(6)$ |
| C12 | $0.0338(9)$ | $0.0259(8)$ | $0.0327(9)$ | $0.0049(7)$ | $-0.0035(8)$ | $0.0044(7)$ |
| C13 | $0.0436(11)$ | $0.0227(8)$ | $0.0449(11)$ | $0.0010(8)$ | $-0.0025(10)$ | $0.0039(8)$ |
| C14 | $0.0370(10)$ | $0.0296(9)$ | $0.0389(11)$ | $-0.0051(8)$ | $0.0000(9)$ | $0.0003(7)$ |
| C15 | $0.0306(9)$ | $0.0341(9)$ | $0.0280(9)$ | $-0.0014(8)$ | $0.0009(8)$ | $0.0039(7)$ |
| C16 | $0.0292(8)$ | $0.0252(8)$ | $0.0275(9)$ | $0.0035(7)$ | $0.0071(8)$ | $0.0045(7)$ |

9.4. Bond lengths $[\AA]$.

C1	- C2	$=1.383(2)$	C1	- C6	= $1.392(2)$
C1	- H1	$=0.9500$	C2	- C3	$=1.385(3)$
C2	- H2	$=0.9500$	C3	- C4	$=1.383(3)$
C3	- H3	$=0.9500$	C4	- C5	$=1.387(2)$
C4	- H4	$=0.9500$	C5	- C6	$=1.392(2)$
C5	- H5	$=0.9500$	C6	- C7	$=1.500(2)$
C7	- O8	$=1.233(2)$	C7	- N9	$=1.328(2)$
N9	- C10	$=1.456(2)$	N9	- H9	$=0.91(2)$
C10	- C11	$=1.513(2)$	C10	- H10A	$=0.9900$
C10	- H10B	$=0.9900$	C11	- C16	$=1.388(3)$
C11	- C12	$=1.392(2)$	C12	- C13	= 1.382(3)
C12	- H12	$=0.9500$	C13	- C14	$=1.385(3)$
C13	- H13	$=0.9500$	C14	- C15	$=1.380(2)$
C14	- H14	$=0.9500$	C15	- C16	$=1.387(2)$
C15	- H15	$=0.9500$	C16	- H16	$=0.9500$

9.5. Angles [${ }^{\circ}$].

C2	- C1	- $\mathrm{C} 6=120.33(16)$
C2	- C1	- H1 $=119.80$
C6	- C1	- H1 $=119.80$
C1	- C2	$-\mathrm{C} 3=119.72(17)$
C1	- C2	$-\mathrm{H} 2=120.10$
C3	- C2	- $\mathrm{H} 2=120.10$
C4	- C3	$-\mathrm{C} 2=120.41$ (16)
C4	- C3	- H3 = 119.80
C2	- C3	- H3 $=119.80$
C3	- C4	- $\mathrm{C} 5=120.03(17)$
C3	- C4	$-\mathrm{H} 4=120.00$
C5	- C4	$-\mathrm{H} 4=120.00$
C4	- C5	- C6 = 119.86(16)
C4	- C5	- H5 $=120.10$
C6	- C5	- H5 = 120.10
C1	- C6	- $\mathrm{C} 5=119.62(15)$
C1	- C6	$-\mathrm{C} 7=117.47$ (14)
C5	- C6	$-\mathrm{C} 7=122.85(15)$
O8	- C7	- $\mathrm{N} 9=121.47$ (16)
O8	- C7	- $\mathrm{C} 6=120.37(15)$
N9	- C7	- $\mathrm{C} 6=118.15$ (14)
C7	- N9	$-\mathrm{C} 10=121.40(14)$
C7	- N9	- H9 = 121.60(14)
C10	- N9	- $\mathrm{H} 9=117.00(14)$
N9	- C10	- $\mathrm{C} 11=114.75$ (14)
N9	- C10	- $\mathrm{H} 10 \mathrm{~A}=108.60$
C11	- C10	- $\mathrm{H} 10 \mathrm{~A}=108.60$
N9	- C10	- $\mathrm{H} 10 \mathrm{~B}=108.60$
C11	- C10	- $\mathrm{H} 10 \mathrm{~B}=108.60$
H10A	- C10	- $\mathrm{H} 10 \mathrm{~B}=107.60$
C16	- C11	$-\mathrm{C} 12=118.40$ (16)
C16	- C11	$-\mathrm{C} 10=122.89(14)$
C12	- C11	$-\mathrm{C} 10=118.71(15)$
C13	- C12	$-\mathrm{C} 11=121.06(17)$
C13	- C12	- $\mathrm{H} 12=119.50$
C11	- C12	$-\mathrm{H} 12=119.50$
C12	- C13	$-\mathrm{C} 14=120.07(16)$
C12	- C13	- $\mathrm{H} 13=120.00$
C14	- C13	- $\mathrm{H} 13=120.00$
C15	- C14	$-\mathrm{C} 13=119.31(17)$
C15	- C14	- $\mathrm{H} 14=120.30$
C13	- C14	- $\mathrm{H} 14=120.30$
C14	- C15	$-\mathrm{C} 16=120.65(17)$
C14	- C15	- $\mathrm{H} 15=119.70$
C16	- C15	- $\mathrm{H} 15=119.70$
C15	- C16	$-\mathrm{C} 11=120.49(15)$
C15	- C16	- H16 $=119.80$
C11	- C16	- $\mathrm{H} 16=119.80$

9.6. Torsion angles $\left[{ }^{\circ}\right]$.

C6	- C1	- C2	- C3	$=-0.30(3)$
C1	- C2	- C3	- C4	$=-1.10$ (3)
C2	- C3	- C4	- C5	$=1.40$ (3)
C3	- C4	- C5	- C6	$=-0.30(3)$
C2	- C1	- C6	- C5	$=1.30$ (3)
C2	- C1	- C6	- C7	$=-175.97$ (16)
C4	- C5	- C6	- C1	$=-1.00$ (3)
C4	- C5	- C6	- C7	$=176.11(16)$
C1	- C6	- C7	- O 8	$=22.30(2)$
C5	- C6	- C7	- O 8	$=-154.94(18)$
C1	- C6	- C7	- N9	$=-158.93$ (15)
C5	- C6	- C7	- N9	$=23.90$ (2)
O8	- C7	- N9	- C10	$=1.00(3)$
C6	- C7	- N9	- C10	$=-177.80(14)$
C7	- N9	- C10	- C11	$=-90.94(19)$
N9	- C10	- C11	- C16	$=15.00$ (2)
N9	- C10	- C11	- C12	$=-165.61(15)$
C16	- C11	- C12	- C13	$=0.80$ (3)
C10	- C11	- C12	- C13	$=-178.63$ (16)
C11	- C12	- C13	- C14	$=-0.50(3)$
C12	- C13	- C14	- C15	$=-0.40(3)$
C13	- C14	- C15	- C16	$=0.90$ (3)
C14	- C15	- C16	- C11	$=-0.70(3)$
C12	- C11	- C16	- C15	$=-0.20(2)$
C10	- C11	- C16	- C15	$=179.18(15)$

10. NMR spectra of products 2-3.

促 Thnifl

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{2 s}$ ．

1717

성N M

A. 28

(1)

