A Cascade Dehydrogenative Cross-Coupling / Annulation Reaction of Benzamides with $\boldsymbol{\beta}$-Keto Esters for Synthesis of Isoquinolinone Derivatives
 Guo-Dong Xu ${ }^{\text {a }}$, Zhi-Zhen Huang ${ }^{*, \mathrm{a}}$
 ${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China

Supporting Information

Contents

1. General Information...S2
2. Optimization of the Reaction Conditions ...S2
3. Experimental Procedure... S 3
4. Characterization of Isoquinolones Derivatives 3.......................................S3
5. Preparation of 3ca at One mmol scale...S9
6. Primary Mechanistic Study...S9
7. References..S13
8. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HR-MS Spectra of Isoquinolone Derivatives $\mathbf{3}$....S14

1. General Information

Unless otherwise indicated, all reagents were purchased from commercial distributors and used without further purification. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded at 400 MHz and 100 MHz respectively, using tetramethylsilane as an internal reference. Mass spectroscopy data were collected on HRMS-EI instrument. Column chromatography was performed over silica gel 200-300. N-Alkoxybenzamides $\mathbf{1}$ were prepared according to previous literatures. ${ }^{1}$

2. Optimization of the DCC Reaction Conditions

Table S1. Screening of Reaction Conditions. ${ }^{[a]}$

entry	[M]	oxidant	solvent	yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	43
2	$\mathrm{Pd}(\mathrm{TFA})_{2}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	56
3	PdCl_{2}	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	trace
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	0
5	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	0
6	$\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	0
7	-	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	0
8	$\mathrm{Pd}(\mathrm{TFA})_{2}$	-	AcOH	0
9	$\mathrm{Pd}(\mathrm{TFA})_{2}$	TBHP	AcOH	50
10	$\mathrm{Pd}(\mathrm{TFA})_{2}$	DTBP	AcOH	trace
11	$\mathrm{Pd}(\mathrm{TFA})_{2}$	DDQ	AcOH	trace
12	$\mathrm{Pd}(\mathrm{TFA})_{2}$	$\mathrm{Ag}_{2} \mathrm{O}$	AcOH	0
13	$\operatorname{Pd}(\text { TFA })_{2}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	THF	42

14	$\operatorname{Pd}(\mathrm{TFA})_{2}$	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	GDE	30
15	$\operatorname{Pd}(\mathrm{TFA})_{2}$	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	DCE	19
16	$\operatorname{Pd}(\mathrm{TFA})_{2}$	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	toluene	8.3
17	$\operatorname{Pd}(\mathrm{TFA})_{2}$	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	DMF	0
18^{c}	$\mathrm{Pd}(\mathrm{TFA})_{2}$	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	68
19^{cd}	$\operatorname{Pd}(\mathrm{TFA})_{2}$	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	61
20^{ce}	$\operatorname{Pd}(\mathrm{TFA})_{2}$	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	41
21^{cf}	$\operatorname{Pd}(\mathrm{TFA})_{2}$	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	76
$22^{\text {cfg }}$	$\operatorname{Pd}(\mathrm{TFA})_{2}$	$\mathrm{~K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	AcOH	84

a) Reaction conditions: 1a 0.2 mmol), $\mathbf{2 a}(0.4 \mathrm{mmol}),[\mathrm{M}](5 \mathrm{~mol} \%)$, oxidant (2.0 equiv), solvent (2.5 mL), $80^{\circ} \mathrm{C}$, for 12 h. b) Isolated yields. c) 24 h. d) $40^{\circ} \mathrm{C}$. e) $100^{\circ} \mathrm{C}$. f) $60^{\circ} \mathrm{C} . \mathrm{g}$) air.

3. Experimental Procedure

General procedure for the cascade DCC / annulation reaction of N-alkoxybenzamides 1 with β-keto esters 2 for isoquinolone derivatives 3: The mixture of N-methoxybenzamides $\mathbf{1}(0.20 \mathrm{mmol}), \beta$-keto esters $2(0.40 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{TFA})_{2}(3.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(108.1 \mathrm{mg}, 0.40 \mathrm{mmol})$ in AcOH $(2.5 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 24 h . Then, the mixture was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether $=1 / 2$ as eluent) to give desired isoquinolone derivatives 3.

4. Characterization of Isoquinolone Derivatives 3

Ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3aa²

Yield: 84% (43.8 mg); Light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.33 (m, 1 H$), 4.36(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}$, 3 H), 1.32 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ (ppm): 166.7, 158.1, 140.7, 133.0, 132.8, 127.7, 126.5, 125.3, 123.9, 109.6, 63.8, 61.6, 14.9, 14.2.

Ethyl 2-methoxy-3,6-dimethyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ba ${ }^{2}$

Yield: 87\% (47.9 mg); Light yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}), $\delta(\mathrm{ppm}): 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.46 (q, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.08 ($\mathrm{s}, 3$ $\mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.9,158.2,139.8,136.8,134.4,130.8,127.3$, 125.3, 123.9, 109.6, 63.8, 61.6, 21.2, 14.9, 14.3.

Ethyl 2,6-dimethoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ca ${ }^{2}$
Yield: 78% (45.4 mg); White solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,

CDCl_{3}), $\delta(\mathrm{ppm}): 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.9,163.2,157.9,141.7,135.1$, 129.8, 119.0, 115.9, 109.0, 105.5, 63.9, 61.6, 55.4, 15.1, 14.3.

Ethyl 6-(tert-butyl)-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3da ${ }^{2}$

Yield: 70\% (44.4 mg); Light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2$ H), $4.00(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28$ ($\mathrm{s}, 9 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.0,157.1,155.3,139.6,131.9$, $126.5,123.8,122.0,118.9,108.8,62.8,60.5,34.3,30.0,13.9,13.3$.

Ethyl 2-methoxy-3-methyl-1-oxo-6-phenyl-1,2-dihydroisoquinoline-4-carboxylate 3ea Yield: 66% (44.5 mg); White solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 CDCl_{3}), $\delta(\mathrm{ppm}): 8.39$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79 (d, $J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.37 (m, 2 H), 7.34-7.30 (m, 1 H), 4.40 (q, $J=7.0 \mathrm{~Hz}, 2$ H), $4.02(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.8,158.1,145.6,141.3,140.1,133.5,129.0$, 128.4, 128.3, 127.5, 125.9, 124.2, 122.3, 109.7, 63.9, 61.7, 15.1, 14.4; HR-MS (EI-TOF) (M ${ }^{+}$) calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$ 337.1314, found 337.1312.

Ethyl 6-fluoro-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3fa ${ }^{2}$

Yield: 84% (51.4 mg); Yellow solid; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}), $\delta(\mathrm{ppm}): 8.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2 H), 4.05 ($\mathrm{s}, 3 \mathrm{H}$), 2.57 (s, 3 H), 1.41 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 165.7,157.0,150.5,144.6,133.9,129.9$, 128.7, 120.3, 120.1, 109.0, 64.1, 62.2, 15.3, 14.3.

Ethyl 6-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ga ${ }^{2}$

Yield: 76% (44.8 mg); White solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.35(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.09 (s, 3 H), 2.57 ($\mathrm{s}, 3 \mathrm{H}$), 1.45 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 166.2,157.6,142.7,139.6,134.3,129.51,127.2$, 123.61, 123.57, 108.5, 64.0, 61.9, 15.2, 14.3.

Ethyl 6-bromo-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ha ${ }^{2}$

Yield: 67% (45.4 mg); White solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}), $\delta(\mathrm{ppm}): 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2$ H), $4.01(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.2,157.8,142.7,134.5,130.0,129.5,128.3$, 126.7, 123.9, 108.4, 64.0, 61.9, 15.2, 14.3.

Ethyl 2-methoxy-3,7-dimethyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ia ${ }^{2}$

Yield: 80% (44.0 mg); Light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}), $\delta(\mathrm{ppm}): 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.38(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3$ H), $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.9,158.2,139.8,136.8$, $134.4,130.8,127.3,125.3,123.9,109.6,63.8,61.6,21.2,14.9,14.3$.

Ethyl 5-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ja

Yield: 64% (37.8 mg); White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ CDCl_{3}), $\delta(\mathrm{ppm}): 166.5,157.2,141.5,133.3,132.8,131.6,127.2,126.5,125.8,109.1$, 64.0, 61.9, 15.1, 14.3; HR-MS (EI-TOF) (M ${ }^{+}$) calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{4}$ 295.0611, found 295.0612 .

Ethyl 2-methoxy-3,8-dimethyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ka ${ }^{2}$

Yield: $87 \%(47.9 \mathrm{mg})$; White solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta$ (ppm): 7.40 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.33 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3$ H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}), $\delta(\mathrm{ppm}): 166.3,157.9,141.2,138.7,133.6,130.9,128.7,122.7,120.8,108.8$, 62.7, 60.6, 22.8, 13.9, 13.2.

Ethyl 2-(benzyloxy)-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 31a

Yield: 62% (41.8 mg); White solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.49-8.46(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 2 \mathrm{H})$, 7.57-7.54 (m, 2 H), 7.53-7.48 (m, 1 H), 7.45-7.40 (m, 3 H), 5.26 (s, 2 H), 4.46 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.48 (s, 3 H), 1.43 (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.9,158.5,141.2,133.7$, 133.2, 132.9, 129.9, 129.4, 128.8, 127.8, 126.7, 125.4, 123.9, 109.5, 78.1, 61.7, 15.5, 14.3; HR-MS (EI-TOF) $\left(\mathrm{M}^{+}\right)$calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4} 337.1314$, found 337.1312.

Ethyl 2-(benzyloxy)-3,6-dimethyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ma Yield: 79% (55.5 mg); White solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 CDCl_{3}), $\delta(\mathrm{ppm}): 8.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2$ H), 7.45 (s, 1 H), 7.43-7.40 (m, 3 H), 7.32 (dd, $J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), $5.26(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}$, 3 H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm})$: $167.0,158.5,143.6,141.0,133.8,133.3,129.9,129.4,128.8,128.3,127.8,123.6$,
123.2, 109.3, 78.1, 61.6, 22.2, 15.5, 14.3; HR-MS (EI-TOF) $\left(\mathrm{M}^{+}\right)$calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4} 351.1471$, found 351.1470.

Ethyl 2-(benzyloxy)-6-bromo-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3na

Yield: 62% (51.5 mg); White solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}), $\delta(\mathrm{ppm}): 8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \quad J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54-7.52 (m, $2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, \quad 3 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.47(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$
NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.3,158.1,143.2,134.6,133.5,130.0,129.9$, 129.5, 128.8, 128.4, 126.8, 124.0, 108.3, 78.2, 61.9, 15.7, 14.3; HR-MS (EI-TOF) (M^{+}) calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrNO}_{4} 415.0419$, found 415.0419.

Ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydrobenzo[g]isoquinoline-4-carboxylate 3oa
 Yield: 46% (28.6 mg); Yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}), $\delta(\mathrm{ppm}): 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 2 \mathrm{H}), 4.46$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 167.1,158.8,139.7,135.4$, 131.2, 129.22, 129.17, 128.8, 128.5, 128.1, 126.5, 123.5, 122.7, 109.6, 64.0, 61.7, 15.2, 14.4; HR-MS (EI-TOF) $\left(\mathrm{M}^{+}\right)$calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}$ 311.1158, found 311.1155.

Methyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ab ${ }^{2}$
Yield: 83% (41.0 mg); White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ

(ppm): 8.44 ($\mathrm{d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69-7.65 (m, 2 H), 7.52-7.45 (m, 1 H), $4.09(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz} \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 167.3,158.3,141.1,133.1,132.9,127.9$, 126.7, 125.3, 124.0, 109.3, 63.9, 52.5, 15.1.

Isopropyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ac
Yield: 80% (44.0 mg); Light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,

$\left.\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.58(\mathrm{~m}, 2 \mathrm{H})$,
7.41-7.37 (m, 1 H), 5.31-5.25 (m, 1 H), 4.01 (s, 3 H), 2.46 ($\mathrm{s}, 3 \mathrm{H}$), 1.35 (d, J = 6.4 Hz , $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$), $\delta(\mathrm{ppm}): 166.3,158.2,140.2,133.1,132.8,127.8$, 126.6, 125.4, 123.7, 110.0, 69.6, 63.9, 21.9, 14.9; HR-MS (EI-TOF) (${ }^{+}$) calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} 275.1158$, found 275.1162.

Benzyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylat 3ad

Yield: 70% (45.2 mg); Light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.47-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.7,158.2,141.0,135.2$, 133.1, 132.9, 128.8, 128.72, 128.70, 127.8, 126.7, 125.3, 123.9, 109.1, 67.5, 63.9, 15.0; HR-MS (EI-TOF) $\left(\mathrm{M}^{+}\right)$calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4} 323.1158$, found 323.1159.

Ethyl 3-ethyl-2-methoxy-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ae ${ }^{2}$
Yield: 60% (33.0 mg); Light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right), \delta(\mathrm{ppm}): 8.3(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.8,158.4,145.3,133.2$, $132.8,127.8,126.6,125.5,123.9,109.4,64.3,61.7,23.2,14.3,14.0$.

Ethyl 2-methoxy-1-oxo-3-propyl-1,2-dihydroisoquinoline-4-carboxylate 3af
Yield: 59% (34.1 mg); White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$),
 $\delta(\mathrm{ppm}): 8.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48$ (m, 1 H), $4.49(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.78(\mathrm{~m}, 2$ H), 1.86-1.77 (m, 2 H), $1.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.9,158.3$, 144.0, 133.2, 132.8, 127.8, 126.6, 125.5, 124.0, 109.8, 64.2, 61.7, 31.4, 22.9, 14.3, 14.2; HR-MS (EI-TOF) $\left(\mathrm{M}^{+}\right)$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}$ 289.1314, found 289.1315 .

Ethyl 3-cyclopropyl-2-methoxy-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ag

Yield: 50% (28.7 mg); Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 8.45-8.43(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47$ (m, 1 H), $4.46(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H})$,
$1.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.86-0.81(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}), $\delta(\mathrm{ppm}): 166.9,158.4,143.7,132.83,132.78,127.9,126.9,125.7,123.5$, 111.4, 64.2, 61.7, 14.2, 11.3, 7.0; HR-MS (EI-TOF) (M^{+}) calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$ 287.1158, found 287.1157.

Ethyl 2-methoxy-1-oxo-3-phenyl-1,2-dihydroisoquinoline-4-carboxylate 3ah

Yield: 46% (29.7 mg); White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), δ (ppm): 8.56 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 5 \mathrm{H}), 4.01$ $(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 166.2,158.1,142.8,133.132 .9,131.2,129.6$, $129.5,128.05,127.4,126.1,124.5,111.48,63.7,61.4,13.5$; HR-MS (EI-TOF) (${ }^{+}$) calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{4} 323.1158$, found 323.1156.

Ethyl 3-(chloromethyl)-2-methoxy-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ai ${ }^{2}$
 Yield: 41% (24.2 mg); White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 8.39$ (dd, $J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (s, 2 H), $4.45(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta(\mathrm{ppm}): 165.6,158.1,139.0,133.1,132.4,128.1$, 127.9, 126.7, 125.1, 112.1, 65.3, 62.3, 40.0, 14.2.

5. Preparation of Isoquinolone Derivative 3ca at One mmol Scale

$N, 4$-dimethoxybenzamide 1c ($1.0 \mathrm{mmol}, 181.1 \mathrm{mg}$), ethyl acetoacetate 2a (2.0 $\mathrm{mmol}, 260.1 \mathrm{mg}), \mathrm{Pd}(\mathrm{TFA})_{2}(0.05 \mathrm{mmol}, 16.5 \mathrm{mg}, 5 \mathrm{~mol} \%)$, and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2.0 \mathrm{mmol}$, 540.5 mg) were added in 100 mL round-bottom flask, and then $\mathrm{AcOH}(10 \mathrm{~mL})$ was added as a solvent. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h under nitrogen. Then, the mixture was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether $=1 / 2$ as eluent) to give desired isoquinolone derivative 3ca in 69% (186.2 mg) yield.

6. Primary Mechanistic Study.

(1) Two parallel reactions for KIE value
N-Methoxybenzamide 1a ($0.1 \mathrm{mmol}, 15.1 \mathrm{mg})$ or deuterated
N-methoxybenzamide 1a- $D_{5}(0.1 \mathrm{mmol}, 15.6 \mathrm{mg})$, ethyl acetoacetate 2a $(0.2 \mathrm{mmol}$, $26.0 \mathrm{mg}), \mathrm{Pd}(\mathrm{TFA})_{2}(0.01 \mathrm{mmol}, 1.7 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2 \mathrm{mmol}, 54.1 \mathrm{mg})$ and $\mathrm{AcOH}(2.5 \mathrm{~mL})$ were added in two separated tubes. The reaction mixtures were stirred at $60^{\circ} \mathrm{C}$ for 12 h independently. Then the two mixtures were combined and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether $=1 / 2$ as eluent) to afford the mixture of isoquinolone derivative 3aa and deuterated isoquinolone derivative 3aa- D_{4}. The ratio of 3aa to $\mathbf{3 a a}-\mathrm{D}_{4}$ was determined to be $2.23: 1$ by ${ }^{1} \mathrm{H}$ NMR.

 $k_{\mathrm{H}} / k_{\mathrm{D}}=2.23$

(2) An intermolecular competition reaction for KIE value

The mixture of N-methoxybenzamide $1 \mathbf{1 a}(0.1 \mathrm{mmol}, 15.1 \mathrm{mg})$ and deuterated N-methoxybenzamide 1a-D ${ }_{5}(0.1 \mathrm{mmol}, 15.6 \mathrm{mg})$, ethyl acetoacetate 2a (0.2 mmol , $26.0 \mathrm{mg}), \mathrm{Pd}(\mathrm{TFA})_{2}(0.01 \mathrm{mmol}, 1.7 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2 \mathrm{mmol}, 54.1 \mathrm{mg})$ and $\mathrm{AcOH}(2.5 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 12 h . Then, the mixture was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether $=1 / 2$ as eluent) to afford isoquinolone derivative 3aa and deuterated isoquinolone derivative $\mathbf{3 a a}-\mathrm{D}_{4}$. The ratio of $\mathbf{3 a a}$ to $\mathbf{3 a a}-\mathrm{D}_{4}$ was determined to be 2.03:1 by ${ }^{1} \mathrm{H}$ NMR.

$\mathbf{1 a}: \mathbf{1 a}-\mathrm{D}_{5}=1.0: 1.0 \quad \mathbf{k}_{\mathbf{H}} / \mathbf{k}_{\mathbf{D}}=2.03$

З3a: Зas-D $=0.67$: 0.33
$K_{\mathbb{W}} / K_{D}=2.03$

(2) H/D exchange experiment

The mixture of N-methoxybenzamide $1 \mathbf{1 a}(0.1 \mathrm{mmol}, 15.1 \mathrm{mg}), \operatorname{Pd}(\mathrm{TFA})_{2}(0.01$ $\mathrm{mmol}, 1.7 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.2 \mathrm{mmol}, 54.1 \mathrm{mg})$ and deuterated $\mathrm{AcOH}(2.5 \mathrm{~mL})$ was stirred at $60^{\circ} \mathrm{C}$ for 2 h . Then, the mixture was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether $=1 / 2$ as eluent) to recover N-methoxybenzamide 1a without a significant amount of deuterated N-methoxybenzamide 1a-D found by ${ }^{1} \mathrm{HNMR}$ analysis.

7. References

[1] Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
[2] Shi, L.-L.; Yu, K.; Wang, B.-Q. Chem. Commun. 2015, 51, 17277.
8. ${ }^{1} \mathbf{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HR-MS Spectra of Isoquinolone Derivatives 3 ${ }^{1}$ H NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate 3aa

${ }^{13}$ C NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate 3aa

${ }^{1} \mathrm{H}$ NMR Spectrum of ethyl 2-methoxy-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ba

${ }^{13}$ C NMR Spectrum of ethyl 2-methoxy-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxy late 3ba

${ }^{1} \mathrm{H}$ NMR of Spectrum ethyl 2,6-dimethoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxy late 3ca

${ }^{13}$ C NMR Spectrum of ethyl 2,6-dimethoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxy late 3ca

${ }^{1} \mathrm{H}$ NMR of Spectrum ethyl 6-(tert-butyl)-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3da

${ }^{13}$ C NMR Spectrum of ethyl 6-(tert-butyl)-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3da

$88 \cdot \mathrm{gI}$
$\mathrm{IK} \cdot \mathrm{gi}$

00'08-
peps-
$\mathrm{pg} \cdot 09-$
$\mathrm{t} 8 \cdot 29-$
$\left.\begin{array}{l}2 \cdot 9 \\ 90 \cdot a 4 \\ 98 \cdot 9\end{array}\right\rangle$
$88 \cdot 80 t-$

.6.tet -
15.681-
$08 \cdot 9 \mathrm{gI}$ -
$10 \% \mathrm{st}$
10.981 -

${ }^{1}$ H NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-6-phenyl-1,2-dihydro isoquinoline-4-carboxylate 3ea

${ }^{13}$ C NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-6-phenyl-1,2-dihydro isoquinoline-4-carboxylate 3ea

HR-MS Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-6-phenyl-1,2-dihydroiso quinoline-4-carboxylate 3ea
Monoisotopic Mass, Odd and Even Electron Ions
108 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass)
Elements Used:
C: 0-60 H: 0-100 N: 0-3 O: 0-5
GCT Premier ZJU
xgd-1 664 (3.381)
$5.49 \mathrm{e}+002$
5.49e+002
${ }^{1}$ H NMR Spectrum of ethyl 2-methoxy-3-methyl-6-nitro-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3fa

${ }^{13}$ C NMR Spectrum of ethyl 2-methoxy-3-methyl-6-nitro-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3fa

${ }^{1}$ H NMR Spectrum of ethyl 6-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate 3ga

${ }^{13}$ C NMR Spectrum of ethyl 6-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate 3ga

${ }^{1}$ H NMR Spectrum of ethyl 6-bromo-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate 3ha

${ }^{13}$ C NMR Spectrum of ethyl 6-bromo-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate 3ha

${ }^{1} \mathrm{H}$ NMR Spectrum of ethyl 2-methoxy-3,7-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ia

${ }^{13}$ C NMR Spectrum of ethyl 2-methoxy-3,7-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ia

${ }^{1}$ H NMR Spectrum of ethyl 5-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate $\mathbf{3 j a}$

$00 \cdot 0-$
\qquad
94. \qquad

\square
\qquad
五
${ }^{13}$ C NMR Spectrum of ethyl 5-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate $\mathbf{3 j a}$

HR-MS Spectrum of ethyl 5-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate $\mathbf{3 j a}$
Monoisotopic Mass, Odd and Even Electron lons
149 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-100 & \text { H: } 0-200 & \text { N: } 0-5 & \text { O: } 0-7 & \text { Cl: 1-1 }\end{array}$
$\begin{array}{llll}\text { GCT Premier ZJU } & & & \\ \text { TOF MS El+ } & \end{array}$
Monoisotopic Mass, Odd and Even Electron lons
149 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-100 & \text { H: } 0-200 & \text { N: } 0-5 & \text { O: } 0-7 & \text { Cl: 1-1 }\end{array}$
$\begin{array}{llll}\text { GCT Premier ZJU } & & & \\ \text { TOF MS El+ } & \end{array}$
Monoisotopic Mass, Odd and Even Electron lons
149 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-100 & \text { H: } 0-200 & \text { N: } 0-5 & \text { O: } 0-7 & \text { Cl: 1-1 }\end{array}$
$\begin{array}{llll}\text { GCT Premier ZJU } & & & \\ \text { TOF MS El+ } & \end{array}$
Monoisotopic Mass, Odd and Even Electron lons
149 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-100 & \text { H: } 0-200 & \text { N: } 0-5 & \text { O: } 0-7 & \text { Cl: 1-1 }\end{array}$
$\begin{array}{llll}\text { GCT Premier ZJU } & & & \\ \text { TOF MS El+ } & \end{array}$
Monoisotopic Mass, Odd and Even Electron lons
149 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-100 & \text { H: } 0-200 & \text { N: } 0-5 & \text { O: } 0-7 & \text { Cl: 1-1 }\end{array}$
$\begin{array}{llll}\text { GCT Premier ZJU } & & & \\ \text { TOF MS El+ } & \end{array}$
Monoisotopic Mass, Odd and Even Electron lons
149 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-100 & \text { H: } 0-200 & \text { N: } 0-5 & \text { O: } 0-7 & \text { Cl: 1-1 }\end{array}$
$\begin{array}{llll}\text { GCT Premier ZJU } & & & \\ \text { TOF MS El+ } & \end{array}$

z/W 1. .., 1. TOF MS EI+
Z190'96Z

을
1.0
mDa
0.1

$\stackrel{\rightharpoonup}{\circ}$
肉
Minimum:
Maximum:
Mass
295.0612
${ }^{1} \mathrm{H}$ NMR Spectrum of ethyl 2-methoxy-3,8-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ka

${ }^{13}$ C NMR Spectrum of ethyl 2-methoxy-3,8-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ka

${ }^{1} \mathrm{H}$ NMR Spectrum of ethyl 2-(benzyloxy)-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 31a

${ }^{13}$ C NMR Spectrum of ethyl 2-(benzyloxy)-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3la

HR-MS Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-6-phenyl-1,2-dihydroiso quinoline-4-carboxylate 3la
Monoisotopic Mass, Odd and Even Electron lons
105 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) Elements Used:
Elements Used:
C: $0-100$ H: $0-200$
N: 0-1
GCT Premier ZJU
O: 0-5
TOF MS El+
xgd0911-1 $738(3.659)$
$1.21 \mathrm{e}+002$

5546073.5 C20 H19 \quad N 0
12.0
-0. 6
$\stackrel{N}{\text { ल }}$

${ }^{1}$ H NMR Spectrum of ethyl 2-(benzyloxy)-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ma

${ }^{13}$ C NMR Spectrum of ethyl 2-(benzyloxy)-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ma

HR-MS Spectrum of ethyl 2-(benzyloxy)-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ma
Monoisotopic Mass, Odd and Even Electron Ions
109 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) Elements Used:
$\begin{array}{llll}\text { C: } 0-100 & \text { H: } 0-200 & \text { N: } 0-1 & \text { O: 0-5 } \\ \text { GCT Premier ZJU } & & \text { S: 0-1 }\end{array}$
TOF GCT Premier ZJU
TOF MS El+

[^0]${ }^{1} \mathrm{H}$ NMR Spectrum of ethyl 2-(benzyloxy)-6-bromo-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3na

${ }^{13}$ C NMR Spectrum of ethyl 2－（benzyloxy）－6－bromo－3－methyl－1－oxo－1，2－ dihydroisoquinoline－4－carboxylate 3na

$66^{\circ} \cdot \mathrm{tr}=$

98＇19－
$66 \cdot 80 t-$

榢官阴—
$90 \cdot 85 t-$
98.981 －

HR-MS Spectrum of ethyl 2-(benzyloxy)-6-bromo-3-methyl-1-oxo-1,2-dihydro isoquinoline-4 -carboxylate 3na
Monoisotopic Mass, Odd and Even Electron Ions
177 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) Elements Used:
C: $0-100 \quad \mathrm{H}: 0-5$
xgd0911-3 $786(3.835)$
$3.34 \mathrm{e}+002$
 $\begin{array}{lllll}\text { C: } 0-100 & \text { H: 0-50 } & \mathrm{N}: 0-2 & \mathrm{O}: 1-5 & \mathrm{Br}: 0-2\end{array}$ GCT Premier ZJU TOF MS El+
415.0419

${ }^{1} \mathrm{H}$ NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydrobenzo[g] isoquinoline-4-carboxylate 30a

${ }^{13}$ C NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydrobenzo $[\mathrm{g}]$ isoquinoline-4-carboxylate 3oa

HR-MS Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydrobenzo[g]iso quinoline-4-carboxylate 30a
Monoisotopic Mass, Odd and Even Electron Ions 100 formula(e) evaluated with 1 results within limits Elements Used:
$\begin{array}{llll}C: & 0-60 & H: ~ 0-100 & N\end{array} 0-3 \quad 0: 0-5$ GCT Premier ZJU
TOF MS El+

${ }^{1} \mathrm{H}$ NMR of methyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4carboxylate 3ab

${ }^{13} \mathrm{C}$ NMR of methyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4carboxylate 3ab

${ }^{1} \mathrm{H}$ NMR Spectrum of isopropyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ac

${ }^{13}$ C NMR Spectrum of isopropyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ac

HR-MS Spectrum of isopropyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ac
Monoisotopic Mass, Odd and Even Electron Ions
88 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) $\begin{array}{llll}\text { Elements Used: } & \text { N: } 0-3 & 0: 0-5\end{array}$ $\begin{array}{lll}\text { C: } 0-60 & \text { H: } 0-100 & \mathrm{~N}: 0-3 \\ \text { GCT Premier ZJU }\end{array}$ TOF MS El+

${ }^{1} \mathrm{H}$ NMR Spectrum of benzyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate 3ad

${ }^{13}$ C NMR Spectrum of benzyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate 3ad

HR-MS Spectrum of benzyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate 3ad
Monoisotopic Mass, Odd and Even Electron Ions 104 formula(e) evaluated with 1 results within limits Elements Used:
$\begin{array}{llll}\text { C: } 0-60 & \text { H: } 0-100 & \mathrm{~N}: ~ 0-3 & \mathrm{O}: 0-5\end{array}$ GCT Premier ZJU
TOF MS El+

\section*{| N |
| :---: |
| + |
| + |
| |}

${ }^{1} \mathrm{H}$ NMR Spectrum of ethyl 3-ethyl-2-methoxy-1-oxo-1,2-dihydroisoquino line-4-carboxylate 3ae

${ }^{13}$ C NMR Spectrum of ethyl 3-ethyl-2-methoxy-1-oxo-1,2-dihydroisoquino line-4-carboxylate 3ae

${ }^{1} \mathrm{H}$ NMR of Spectrum ethyl 2-methoxy-1-oxo-3-propyl-1,2-dihydroisoquino line-4-carboxylate 3af

\qquad

皆
${ }^{13}$ C NMR Spectrum of ethyl 2-methoxy-1-oxo-3-propyl-1,2-dihydroisoquino line-4-carboxylate 3af

HR-MS Spectrum of ethyl 2-methoxy-1-oxo-3-propyl-1,2-dihydroisoquino line-4-carboxylate 3af
Monoisotopic Mass, Odd and Even Electron Ions
47 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) Elements Used:
C: 0-100 $\quad \mathrm{H}: 0-200 \quad \mathrm{~N}: 0-1 \quad \mathrm{O}: 0-5$
GCT Premier ZJU
xgd0911-6 $582(3.087)$
$3.22 \mathrm{e}+002$

${ }^{1}$ H NMR Spectrum of ethyl 3-cyclopropyl-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ag

${ }^{13}$ C NMR Spectrum of ethyl 3-cyclopropyl-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ag

HR-MS Spectrum of ethyl 3-cyclopropyl-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ag
Monoisotopic Mass, Odd and Even Electron Ions
47 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 0-100 & \text { H: } 0-200 & \mathrm{~N}: 0-1 & \mathrm{O}: 0-5\end{array}$
GCT Premier ZJU
TOF MS El+

${ }^{1.0}$
$\begin{array}{ll}\text { Calc. Mass } & \mathrm{mDa} \\ -0.1\end{array}$
Minimum:
Maximum:
Mass
287.1157
${ }^{1} \mathrm{H}$ NMR Spectrum of ethyl 2-methoxy-1-oxo-3-phenyl-1,2-dihydroisoquino line-4-carboxvlate 3ah

${ }^{13}$ C NMR Spectrum of ethyl 2-methoxy-1-oxo-3-phenyl-1,2-dihydroisoquino line-4-carboxylate 3ah
${ }^{2} \cdot \mathrm{st}$ —

48.19—
2. $98-$

HR-MS Spectrum of ethyl 2-methoxy-1-oxo-3-phenyl-1,2-dihydroisoquino line-4-carboxvlate 3ah
Monoisotopic Mass, Odd and Even Electron Ions
53 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) Elements Used:
$\begin{array}{llll}\text { C: } 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: 0-1 & \mathrm{O}: 0-5\end{array}$
GCT Premier ZJU
TOF MS EI+
xgd0911-4 $540(2.933)$
$7.67 \mathrm{e}+002$

${ }^{1}$ H NMR Spectrum of ethyl 3-(chloromethyl)-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ai

${ }^{13}$ C NMR Spectrum of ethyl 3-(chloromethyl)-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ai

[^0]: 11, 1, 1111 m/z
 351.400

