A Cascade Dehydrogenative Cross-Coupling / Annulation Reaction of

Benzamides with β -Keto Esters for Synthesis of Isoquinolinone

Derivatives

Guo-Dong Xu^a, Zhi-Zhen Huang*,^a

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China

Supporting Information

Contents

1.	General Information	S2
2.	Optimization of the Reaction Conditions	.S2
3.	Experimental Procedure	S3
4.	Characterization of Isoquinolones Derivatives 3	.S3
5.	Preparation of 3ca at One mmol scale	.S9
6.	Primary Mechanistic Study	.S9
7.	References	.S13
8.	¹ H NMR, ¹³ C NMR, HR-MS Spectra of Isoquinolone Derivatives 3 S	\$14

1. General Information

Unless otherwise indicated, all reagents were purchased from commercial distributors and used without further purification. ¹H NMR and ¹³C NMR were recorded at 400 MHz and 100 MHz respectively, using tetramethylsilane as an internal reference. Mass spectroscopy data were collected on HRMS-EI instrument. Column chromatography was performed over silica gel 200-300. *N*-Alkoxybenzamides **1** were prepared according to previous literatures.¹

2. Optimization of the DCC Reaction Conditions

 Table S1. Screening of Reaction Conditions.

entry	[M]	oxidant	solvent	yield (%) ^b
1	Pd(OAc) ₂	$K_2S_2O_8$	AcOH	43
2	Pd(TFA) ₂	$K_2S_2O_8$	AcOH	56
3	PdCl ₂	$K_2S_2O_8$	AcOH	trace
4	Pd(PPh ₃) ₄	$K_2S_2O_8$	AcOH	0
5	$[Cp^*RhCl_2]_2$	$K_2S_2O_8$	AcOH	0
6	[Cp [*] IrCl ₂] ₂	$K_2S_2O_8$	AcOH	0
7	-	$K_2S_2O_8$	AcOH	0
8	Pd(TFA) ₂	-	AcOH	0
9	Pd(TFA) ₂	TBHP	AcOH	50
10	Pd(TFA) ₂	DTBP	AcOH	trace
11	Pd(TFA) ₂	DDQ	AcOH	trace
12	Pd(TFA) ₂	Ag ₂ O	AcOH	0
13	Pd(TFA) ₂	$K_2S_2O_8$	THF	42

14	Pd(TFA) ₂	$K_2S_2O_8$	GDE	30
15	Pd(TFA) ₂	$K_2S_2O_8$	DCE	19
16	Pd(TFA) ₂	$K_2S_2O_8$	toluene	8.3
17	Pd(TFA) ₂	$K_2S_2O_8$	DMF	0
18 ^c	Pd(TFA) ₂	$K_2S_2O_8$	AcOH	68
19 ^{cd}	Pd(TFA) ₂	$K_2S_2O_8$	AcOH	61
20 ^{ce}	Pd(TFA) ₂	$K_2S_2O_8$	AcOH	41
21^{cf}	Pd(TFA) ₂	$K_2S_2O_8$	AcOH	76
22 ^{cfg}	Pd(TFA) ₂	$K_2S_2O_8$	AcOH	84

a) Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), [M] (5 mol %), oxidant (2.0 equiv),

solvent (2.5 mL), 80 °C, for 12 h. b) Isolated yields. c) 24 h. d) 40 °C. e) 100 °C. f) 60 °C. g) air.

3. Experimental Procedure

General procedure for the cascade DCC / annulation reaction of *N*-alkoxybenzamides **1** with β -keto esters **2** for isoquinolone derivatives **3**: The mixture of *N*-methoxybenzamides **1** (0.20 mmol), β -keto esters **2** (0.40 mmol), Pd(TFA)₂ (3.3 mg, 0.01 mmol, 5 mol %), K₂S₂O₈ (108.1mg, 0.40 mmol) in AcOH (2.5 mL) was stirred at 60 °C for 24 h. Then, the mixture was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether = 1/2 as eluent) to give desired isoquinolone derivatives **3**.

4. Characterization of Isoquinolone Derivatives 3

Ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3aa**²

Yield: 84% (43.8 mg); Light yellow oil; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.31 (d, J = 8.0 Hz, 1 H), 7.58-7.52 (m, 2 H), 7.37-7.33 (m, 1 H), 4.36 (q, J = 7.0 Hz, 2 H), 3.98 (s, 3 H), 2.44 (s, 3 H), 1.32 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ

(ppm): 166.7, 158.1, 140.7, 133.0, 132.8, 127.7, 126.5, 125.3, 123.9, 109.6, 63.8, 61.6, 14.9, 14.2.

Ethyl 2-methoxy-3,6-dimethyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ba**²

Yield: 87% (47.9 mg); Light yellow solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.23 (s, 1 H), 7.59 (d, J = 8.0 Hz, 1 H), 7.48 (dd, J = 8.0, 4.0 Hz, 1 H), 4.46 (q, J = 8.0 Hz, 2 H), 4.08 (s, 3 H), 2.45 (s, 3 H), 2.47 (s, 3 H), 1.43 (t, J = 6.0 Hz, 3 H); ¹³C

NMR (100 MHz, CDCl₃), δ (ppm): 166.9, 158.2, 139.8, 136.8, 134.4, 130.8, 127.3, 125.3, 123.9, 109.6, 63.8, 61.6, 21.2, 14.9, 14.3.

Ethyl 2,6-dimethoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ca**²

Yield: 78% (45.4 mg); White solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.25 (d, J = 8.0 Hz, 1 H), 7.01 (d, J = 2.4Hz, 1 H), 6.96 (dd, J = 8.8, 2.4 Hz, 1 H), 4.39 (q, J = 7.2 Hz, 2 H), 4.00 (s, 3 H), 3.81 (s, 3 H), 2.46 (s, 3 H), 1.36 (t, J = 7.0

Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.9, 163.2, 157.9, 141.7, 135.1, 129.8, 119.0, 115.9, 109.0, 105.5, 63.9, 61.6, 55.4, 15.1, 14.3.

Ethyl 6-(*tert-butyl*)-2-*methoxy*-3-*methyl*-1-*oxo*-1,2-*dihydroisoquinoline*-4-*carboxylate* **3da**²

Yield: 70% (44.4 mg); Light yellow oil; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.27 (d, J = 8.4 Hz, 1 H), 7.56 (d, J = 2 Hz, 1 H), 7.46 (dd, J = 8.6, 1.8 Hz, 1 H), 4.40 (q, J = 7.2 Hz, 2 H), 4.00 (s, 3 H), 2.47 (s, 3 H), 1.38(t, J = 6.6 Hz, 3 H), 1.28

(s, 9 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.0, 157.1, 155.3, 139.6, 131.9, 126.5, 123.8, 122.0, 118.9, 108.8, 62.8, 60.5, 34.3, 30.0, 13.9, 13.3.

Ethyl 2-methoxy-3-methyl-1-oxo-6-phenyl-1,2-dihydroisoquinoline-4-carboxylate 3ea

Yield: 66% (44.5 mg); White solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.39 (d, J = 8.4 Hz, 1 H), 7.79 (d, J = 1.2 Hz, 1 H), 7.61 (dd, J = 8.4, 1.6 Hz, 1 H), 7.56-7.54 (m, 2 H), 7.41-7.37 (m, 2 H), 7.34-7.30 (m, 1 H), 4.40 (q, J = 7.0 Hz, 2 H), 4.02 (s, 3 H), 2.48 (s, 3 H), 1.36 (t, J = 7.2 Hz, 3 H); ¹³C

NMR (100 MHz, CDCl₃), δ (ppm): 166.8, 158.1, 145.6, 141.3, 140.1, 133.5, 129.0, 128.4, 128.3, 127.5, 125.9, 124.2, 122.3, 109.7, 63.9, 61.7, 15.1, 14.4; HR-MS (EI-TOF) (M⁺) calculated for C₂₀H₁₉NO₄ 337.1314, found 337.1312.

Ethyl 6-fluoro-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3fa**²

¹³C NMR (100 MHz, CDCl₃), δ (ppm): 165.7, 157.0, 150.5, 144.6, 133.9, 129.9, 128.7, 120.3, 120.1, 109.0, 64.1, 62.2, 15.3, 14.3.

Ethyl 6-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ga**²

(100 MHz, CDCl₃), δ (ppm): 166.2, 157.6, 142.7, 139.6, 134.3, 129.51, 127.2, 123.61, 123.57, 108.5, 64.0, 61.9, 15.2, 14.3.

Ethyl 6-*bromo-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate* **3ha**²

Yield: 67% (45.4 mg); White solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.20 (d, J = 8.4 Hz, 1 H), 7.82 (d, J = 6.4 Hz, 1 H), 7.49 (dd, J = 8.6, 1.8 Hz, 1 H), 4.40 (q, J = 7.2 Hz, 2 H), 4.01 (s, 3 H), 2.49 (s, 3 H), 1.37 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.2, 157.8, 142.7, 134.5, 130.0, 129.5, 128.3, 126.7, 123.9, 108.4, 64.0, 61.9, 15.2, 14.3.

Ethyl 2-methoxy-3,7-dimethyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ia**²

Yield: 80% (44.0 mg); Light yellow oil; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.14 (s, 1 H), 7.05 (d, J = 8.4 Hz, 1 H), 7.40 (dd, J = 8.4, 2.0 Hz, 1 H), 4.38 (q, J = 7.1 Hz, 2 H), 4.00 (s, 3 H), 2.46 (s, 3 H), 2.39 (s, 3 H), 1.35 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.9, 158.2, 139.8, 136.8,

134.4, 130.8, 127.3, 125.3, 123.9, 109.6, 63.8, 61.6, 21.2, 14.9, 14.3.

Ethyl 5-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ja

Yield: 64% (37.8 mg); White solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.40 (d, J = 2.4 Hz, 1 H), 7.67 (d, J = 8.8 Hz, 1 H), 7.60 (dd, J = 8.8, 2.4 Hz, 1 H), 4.47 (q, J = 7.2 Hz, 2 H), 4.09 (s, 3 H), Cl COOEt 2.56 (s, 3 H), 1.44 (t, J = 7.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.5, 157.2, 141.5, 133.3, 132.8, 131.6, 127.2, 126.5, 125.8, 109.1, 64.0, 61.9, 15.1, 14.3; HR-MS (EI-TOF) (M⁺) calculated for C₁₄H₁₄ClNO₄ 295.0611, found 295.0612.

Ethyl 2-methoxy-3,8-dimethyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ka**²

Yield: 87% (47.9 mg); White solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.40 (t, J = 7.8 Hz, 1 H), 7.33 (d, J = 8.0 Hz, 1 H), 7.14 (d, J = 7.2 Hz, 1 H), 4.37 (q, J = 7.2 Hz, 2 H), 3.98 (s, 3 H), 2.85 (s, 3 H), 2.41 (s, 3 H), 1.35 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz,

CDCl₃), δ (ppm): 166.3, 157.9, 141.2, 138.7, 133.6, 130.9, 128.7, 122.7, 120.8, 108.8, 62.7, 60.6, 22.8, 13.9, 13.2.

Ethyl 2-(benzyloxy)-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3la

Yield: 62% (41.8 mg); White solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.49-8.46 (m, 1 H), 7.71-7.66 (m, 2 H), 7.57-7.54 (m, 2 H), 7.53-7.48 (m, 1 H), 7.45-7.40 (m, 3 H), 5.26 (s, 2 H), 4.46 (q, J = 7.2 Hz, 2 H), 2.48 (s, 3 H), 1.43 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.9, 158.5, 141.2, 133.7, 133.2, 132.9, 129.9, 129.4, 128.8, 127.8, 126.7, 125.4, 123.9, 109.5, 78.1, 61.7, 15.5, 14.3; HR-MS (EI-TOF) (M⁺) calculated for C₂₀H₁₉NO₄ 337.1314, found 337.1312.

Ethyl 2-(benzyloxy)-3,6-dimethyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ma

ĊOOEt

Yield: 79% (55.5 mg); White solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.36 (d, J = 8.0 Hz, 1 H), 7.56-7.54 (m, 2 H), 7.45 (s, 1 H), 7.43-7.40 (m, 3 H), 7.32 (dd, J = 8.0, 1.6 Hz, 1 H), 5.26 (s, 2 H), 4.46 (q, J = 7.2 Hz, 2 H), 2.48 (s,

3 H), 2.45 (s, 3 H), 1.43 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 167.0, 158.5, 143.6, 141.0, 133.8, 133.3, 129.9, 129.4, 128.8, 128.3, 127.8, 123.6,

123.2, 109.3, 78.1, 61.6, 22.2, 15.5, 14.3; HR-MS (EI-TOF) (M^+) calculated for $C_{21}H_{21}NO_4$ 351.1471, found 351.1470.

Ethyl 2-(*benzyloxy*)-6-*bromo-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate* **3na**

NMR (100 MHz, CDCl₃), δ (ppm): 166.3, 158.1, 143.2, 134.6, 133.5, 130.0, 129.9, 129.5, 128.8, 128.4, 126.8, 124.0, 108.3, 78.2, 61.9, 15.7, 14.3; HR-MS (EI-TOF) (M⁺) calculated for C₂₀H₁₈BrNO₄ 415.0419, found 415.0419.

Ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydrobenzo[g]isoquinoline-4-carboxylate **30a**

Yield: 46% (28.6 mg); Yellow solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.95 (s, 1 H), 8.05 (s, 1 H), 7.95 (d, J = 8.4 Hz, 1 H), 7.83 (d, J = 8.4 Hz, 1 H), 7.53-7.42 (m, 2 H), 4.46 (q, J = 7.2 Hz, 2 H), 4.0 3(s, 3 H), 2.49 (s, 3 H), 1.40 (t, J =

7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 167.1, 158.8, 139.7, 135.4, 131.2, 129.22, 129.17, 128.8, 128.5, 128.1, 126.5, 123.5, 122.7, 109.6, 64.0, 61.7, 15.2, 14.4; HR-MS (EI-TOF) (M⁺) calculated for C₁₈H₁₇NO₄ 311.1158, found 311.1155.

Methyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ab**²

ĊOOiPr

Yield: 83% (41.0 mg); White solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.44 (d, J = 8.0 Hz, 1 H), 7.69-7.65 (m, 2 H), 7.52-7.45 (m, 1 H), 4.09 (s, 3 H), 3.99 (s, 3 H), 2.55 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ (ppm) 167.3, 158.3, 141.1, 133.1, 132.9, 127.9, 126.7, 125.3, 124.0, 109.3, 63.9, 52.5, 15.1.

Isopropyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ac

Yield: 80% (44.0 mg); Light yellow oil; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.35 (d, J = 8.0 Hz, 1 H), 7.59-7.58 (m, 2 H),

7.41-7.37 (m, 1 H), 5.31-5.25 (m, 1 H), 4.01 (s, 3 H), 2.46 (s, 3 H), 1.35 (d, J = 6.4 Hz, 6 H); ¹³C NMR (100 MHz, CDCl3), δ (ppm): 166.3, 158.2, 140.2, 133.1, 132.8, 127.8, 126.6, 125.4, 123.7, 110.0, 69.6, 63.9, 21.9, 14.9; HR-MS (EI-TOF) (M⁺) calculated for C₁₅H₁₇NO₄ 275.1158, found 275.1162.

Benzyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylat 3ad

Yield: 70% (45.2 mg); Light yellow oil; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.41 (d, J = 8.0 Hz, 1 H), 7.64-7.59 (m, 2 H), 7.47-7.36 (m, 6 H), 5.43 (s, 2 H), 4.06 (s, 3 H), 2.49 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.7, 158.2, 141.0, 135.2, 133.1, 132.9, 128.8, 128.72, 128.70, 127.8, 126.7, 125.3, 123.9, 109.1, 67.5, 63.9, 15.0; HR-MS (EI-TOF) (M⁺) calculated for C₁₉H₁₇NO₄ 323.1158, found 323.1159.

Ethyl 3-ethyl-2-methoxy-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ae**²

Yield: 60% (33.0 mg); Light yellow oil; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.3 (d, J = 8.0 Hz, 1 H), 7.69-7.64 (m, 2 H), 7.50-7.46 (m, 1 H), 4.47 (q, J = 7.2 Hz, 2 H), 4.12 (s, 3 H), 2.83 (q, J = 7.3 Hz, 2 H), 1.44 (t, J = 7.2 Hz, 3 H), 1.37 (t, J = 7.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.8, 158.4, 145.3, 133.2,

132.8, 127.8, 126.6, 125.5, 123.9, 109.4, 64.3, 61.7, 23.2, 14.3, 14.0.

Ethyl 2-methoxy-1-oxo-3-propyl-1,2-dihydroisoquinoline-4-carboxylate 3af

Yield: 59% (34.1 mg); White solid; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.46 (d, J = 8.0 Hz, 1 H), 7.71-7.65 (m, 2 H), 7.52-7.48 (m, 1 H), 4.49 (q, J = 7.2 Hz, 2 H), 4.14 (s, 3 H), 2.82-2.78 (m, 2 H), 1.86-1.77 (m, 2 H), 1.46 (t, J = 7.2 Hz, 3 H), 1.06 (t, J = 7.4Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.9, 158.3,

144.0, 133.2, 132.8, 127.8, 126.6, 125.5, 124.0, 109.8, 64.2, 61.7, 31.4, 22.9, 14.3, 14.2; HR-MS (EI-TOF) (M^+) calculated for C₁₆H₁₉NO₄ 289.1314, found 289.1315.

Ethyl 3-cyclopropyl-2-methoxy-1-oxo-1,2-dihydroisoquinoline-4-carboxylate 3ag

Yield: 50% (28.7 mg); Colorless oil; ¹H NMR (400 MHz, CDCl₃), OMe δ (ppm): 8.45-8.43 (m, 1 H), 7.69-7.62 (m, 2 H), 7.51-7.47 (m, 1 H), 4.46 (q, J = 7.2 Hz, 2 H), 4.16 (s, 3 H), 2.13-2.05 (m, 1 H), 1.44 (t, J = 7.0 Hz, 3 H), 1.12-1.07 (m, 2 H), 0.86-0.81 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 166.9, 158.4, 143.7, 132.83, 132.78, 127.9, 126.9, 125.7, 123.5, 111.4, 64.2, 61.7, 14.2, 11.3, 7.0; HR-MS (EI-TOF) (M⁺) calculated for C₁₆H₁₇NO₄ 287.1158, found 287.1157.

Ethyl 2-methoxy-1-oxo-3-phenyl-1,2-dihydroisoquinoline-4-carboxylate 3ah

NMR (100 MHz, CDCl₃), δ (ppm): 166.2, 158.1, 142.8, 133.132.9, 131.2, 129.6, 129.5, 128.05, 127.4, 126.1, 124.5, 111.48, 63.7, 61.4, 13.5; HR-MS (EI-TOF) (M⁺) calculated for C₁₉H₁₇NO₄ 323.1158, found 323.1156.

Ethyl 3-(chloromethyl)-2-methoxy-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ai**²

127.9, 126.7, 125.1, 112.1, 65.3, 62.3, 40.0, 14.2.

5. Preparation of Isoquinolone Derivative 3ca at One mmol Scale

N,4-dimethoxybenzamide **1c** (1.0 mmol, 181.1 mg), ethyl acetoacetate **2a** (2.0 mmol, 260.1 mg), Pd(TFA)₂ (0.05 mmol, 16.5 mg, 5 mol %), and K₂S₂O₈ (2.0 mmol, 540.5 mg) were added in 100mL round-bottom flask, and then AcOH (10 mL) was added as a solvent. The reaction mixture was stirred at 60 °C for 24 h under nitrogen. Then, the mixture was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether = 1/2 as eluent) to give desired isoquinolone derivative **3ca** in 69% (186.2 mg) yield.

6. Primary Mechanistic Study.

Two parallel reactions for KIE value
 N-Methoxybenzamide **1a** (0.1 mmol, 15.1 mg) or deuterated

N-methoxybenzamide **1a**-D₅ (0.1 mmol, 15.6 mg), ethyl acetoacetate **2a** (0.2 mmol, 26.0 mg), Pd(TFA)₂ (0.01 mmol, 1.7 mg, 5 mol %), K₂S₂O₈ (0.2 mmol, 54.1 mg) and AcOH (2.5 mL) were added in two separated tubes. The reaction mixtures were stirred at 60 °C for 12 h independently. Then the two mixtures were combined and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether = 1/2 as eluent) to afford the mixture of isoquinolone derivative **3aa** and deuterated isoquinolone derivative **3aa**-D₄. The ratio of **3aa** to **3aa**-D₄ was determined to be 2.23:1 by ¹H NMR.

(2) An intermolecular competition reaction for KIE value

The mixture of *N*-methoxybenzamide **1a** (0.1 mmol, 15.1 mg) and deuterated *N*-methoxybenzamide **1a**-D₅ (0.1 mmol, 15.6 mg), ethyl acetoacetate **2a** (0.2 mmol, 26.0 mg), Pd(TFA)₂ (0.01 mmol, 1.7 mg, 5 mol %), K₂S₂O₈ (0.2 mmol, 54.1 mg) and AcOH (2.5 mL) was stirred at 60 °C for 12 h. Then, the mixture was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether = 1/2 as eluent) to afford isoquinolone derivative **3aa** and deuterated isoquinolone derivative **3aa**-D₄. The ratio of **3aa** to **3aa**-D₄ was determined to be 2.03:1 by ¹H NMR.

(2) H/D exchange experiment

The mixture of *N*-methoxybenzamide **1a** (0.1 mmol, 15.1 mg), $Pd(TFA)_2$ (0.01 mmol, 1.7 mg, 5 mol %), $K_2S_2O_8$ (0.2 mmol, 54.1 mg) and deuterated AcOH (2.5 mL) was stirred at 60 °C for 2 h. Then, the mixture was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, ethyl acetate/ petroleum ether = 1/2 as eluent) to recover *N*-methoxybenzamide **1a** without a significant amount of deuterated *N*-methoxybenzamide **1a**-D found by ¹HNMR analysis.

7. References

[1] Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.

[2] Shi, L.-L.; Yu, K.; Wang, B.-Q. Chem. Commun. 2015, 51, 17277.

8. ¹H NMR, ¹³C NMR and HR-MS Spectra of Isoquinolone Derivatives 3 ¹H NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate **3aa**

¹³C NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate **3aa**

¹H NMR Spectrum of ethyl 2-methoxy-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ba**

¹³C NMR Spectrum of ethyl 2-methoxy-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxy late **3ba**

¹H NMR of Spectrum ethyl 2,6-dimethoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxy late **3ca**

¹³C NMR Spectrum of ethyl 2,6-dimethoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxy late **3ca**

¹H NMR of Spectrum ethyl 6-(*tert*-butyl)-2-methoxy-3-methyl-1-oxo-1,2dihydroisoquinoline-4-carboxylate **3da**

¹³C NMR Spectrum of ethyl 6-(*tert*-butyl)-2-methoxy-3-methyl-1-oxo-1,2dihydroisoquinoline-4-carboxylate **3da**

¹H NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-6-phenyl-1,2-dihydro isoquinoline-4-carboxylate **3ea**

¹³C NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-6-phenyl-1,2-dihydro isoquinoline-4-carboxylate **3ea**

HR-MS Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-6-phenyl-1,2-dihydroiso quinoline-4-carboxylate **3ea**

¹H NMR Spectrum of ethyl 2-methoxy-3-methyl-6-nitro-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3fa**

¹³C NMR Spectrum of ethyl 2-methoxy-3-methyl-6-nitro-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3fa**

¹H NMR Spectrum of ethyl 6-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate **3ga**

¹³C NMR Spectrum of ethyl 6-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate **3ga**

¹H NMR Spectrum of ethyl 6-bromo-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate **3ha**

¹³C NMR Spectrum of ethyl 6-bromo-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate **3ha**

¹H NMR Spectrum of ethyl 2-methoxy-3,7-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ia**

¹³C NMR Spectrum of ethyl 2-methoxy-3,7-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ia**

¹H NMR Spectrum of ethyl 5-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate **3ja**

¹³C NMR Spectrum of ethyl 5-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro isoquinoline-4-carboxylate **3ja**

HR-MS Spectrum of ethyl 5-chloro-2-methoxy-3-methyl-1-oxo-1,2-dihydro

¹H NMR Spectrum of ethyl 2-methoxy-3,8-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ka**

¹³C NMR Spectrum of ethyl 2-methoxy-3,8-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ka**

¹H NMR Spectrum of ethyl 2-(benzyloxy)-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3la**

¹³C NMR Spectrum of ethyl 2-(benzyloxy)-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3la**

1.21e+002 xgd0911-1 738 (3.659) z/w ------337.400 337.300 Monoisotopic Mass, Odd and Even Electron Ions 105 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) 2 337.200 Z H19 Formula C20 11-Sep-2017 337.1312 5546073.5 337.100 i-FIT 12.0 -1.550.0 DBE S: 0-1 337.000 10.0 -0.6 PPM 0:0-5 -0.2 1.0 mDa N: 0-1 336.900 Calc. Mass C: 0-100 H: 0-200 337.1314 GCT Premier ZJU TOF MS EI+ Elements Used: 336.800 337.1312 Maximum: Minimum: Mass ę -%

¹H NMR Spectrum of ethyl 2-(benzyloxy)-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ma**

¹³C NMR Spectrum of ethyl 2-(benzyloxy)-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ma**

HR-MS Spectrum of ethyl 2-(benzyloxy)-3,6-dimethyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ma**

¹H NMR Spectrum of ethyl 2-(benzyloxy)-6-bromo-3-methyl-1-oxo-1,2dihydroisoquinoline-4-carboxylate **3na**

¹³C NMR Spectrum of ethyl 2-(benzyloxy)-6-bromo-3-methyl-1-oxo-1,2dihydroisoquinoline-4-carboxylate **3na**

HR-MS Spectrum of ethyl 2-(benzyloxy)-6-bromo-3-methyl-1-oxo-1,2-dihydro isoquinoline-4 -carboxylate **3na**

¹H NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydrobenzo[g] isoquinoline-4-carboxylate **30a**

¹³C NMR Spectrum of ethyl 2-methoxy-3-methyl-1-oxo-1,2-dihydrobenzo[g] isoquinoline-4-carboxylate **30a**

¹H NMR of methyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ab**

¹³C NMR of methyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquinoline-4-carboxylate **3ab**

¹H NMR Spectrum of isopropyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ac**

¹³C NMR Spectrum of isopropyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ac**

xgd-5 399 (2.416) 1.64e+003 Z/m [-275.300 Monoisotopic Mass, Odd and Even Electron Ions 88 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) 275.200 2 Ζ H17 Formula 5546821.0 C15 06-Jul-2016 275.1162 275.100 i-FIT -1.550.0 8.0 DBE 275.000 10.0 1.5 PPM 0:0-5 1.0 mDa 0.4 N: 0-3 Calc. Mass 274.900 275.1158 C: 0-60 H: 0-100 GCT Premier ZJU TOF MS EI+ Elements Used: 275.1162 Minimum: Maximum: -% Mass Ę 9

HR-MS Spectrum of isopropyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ac**

¹H NMR Spectrum of benzyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate **3ad**

¹³C NMR Spectrum of benzyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate **3ad**

HR-MS Spectrum of benzyl 2-methoxy-3-methyl-1-oxo-1,2-dihydroisoquino line-4-carboxylate **3ad**

¹H NMR Spectrum of ethyl 3-ethyl-2-methoxy-1-oxo-1,2-dihydroisoquino line-4-carboxylate **3ae**

¹³C NMR Spectrum of ethyl 3-ethyl-2-methoxy-1-oxo-1,2-dihydroisoquino line-4-carboxylate **3ae**

¹H NMR of Spectrum ethyl 2-methoxy-1-oxo-3-propyl-1,2-dihydroisoquino line-4-carboxylate **3af**

¹³C NMR Spectrum of ethyl 2-methoxy-1-oxo-3-propyl-1,2-dihydroisoquino line-4-carboxylate 3af

HR-MS Spectrum of ethyl 2-methoxy-1-oxo-3-propyl-1,2-dihydroisoquino line-4-carboxylate **3af**

¹H NMR Spectrum of ethyl 3-cyclopropyl-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ag**

¹³C NMR Spectrum of ethyl 3-cyclopropyl-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ag**

HR-MS Spectrum of ethyl 3-cyclopropyl-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ag**

¹H NMR Spectrum of ethyl 2-methoxy-1-oxo-3-phenyl-1,2-dihydroisoquino

¹³C NMR Spectrum of ethyl 2-methoxy-1-oxo-3-phenyl-1,2-dihydroisoquino line-4-carboxylate **3ah**

HR-MS Spectrum of ethyl 2-methoxy-1-oxo-3-phenyl-1,2-dihydroisoquino line-4-carboxvlate **3ah**

¹H NMR Spectrum of ethyl 3-(chloromethyl)-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate **3ai**

¹³C NMR Spectrum of ethyl 3-(chloromethyl)-2-methoxy-1-oxo-1,2-dihydroiso quinoline-4-carboxylate 3ai