Phosphorylation versus O-GlcNAcylation: Computational Insights into the Differential Influences of the Two Competitive Post-Translational Modifications

Lata Rani and Sairam S. Mallajosyula*

Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India - 382355

E-mail: msairam@iitgn.ac.in

Phone: +91 - 79 - 2395 2459

SUPPORTING INFORMATION

Dipeptide	Water box size (Å ³)				
Ser	37×37×37				
Thr	37×37×37				
SEP	37×37×37				
ТРО	37×37×37				
β-O-GlcNAc (S)	31×31×31				
β-O-GlcNAc (T)	31×31×31				

Table S1: Dimensions of the water boxes used in the dipeptide simulations.

Table S2: Dihedral values (ϕ) for the central two residues calculated from the NMR J-coupling data.

	φ (C-N-Cα-C)				
Residue	KSPP	KS _P PP	KS _{OG} PP		
S	-82°	-83°	-83°		
Р	-80°	-71°	-77°		
Residue	КТРР	KT _P PP	KT _{OG} PP		
Τ	-80°	-82°	-82°		
Р	-87°	-51°	-77°		

	Unmodified	Phosphorylated	O-GlcNAcylated		
AKAAAAAKAA	56×56×56				
AKAASAKAAAAKAA	55×55×55	55×55×55	110×110×110		
AKAATAKAAAAKAA	55×55×55	55×55×55	109×109×109		
KSPP	47×47×47	44×44×44	48×48×48		
КТРР	59×59×59	39×39×39	53×53×53		

Table S3: Dimensions of the water boxes used in the model peptide simulations. All sizes are in $Å^3$.

Table S4: ${}^{3}J_{aN}$ coupling constants obtained from dipeptide MD simulations.

³ J _{aN}	Experimental	Theoretical ^d
Ser	7.0 Hz ^a	7.7± 1.7 Hz
Thr	7.4 Hz ^a	7.5± 1.7 Hz
SEP	5.9 Hz ^b	6.7± 1.8 Hz
ТРО	5.0 Hz ^b	7.2± 1.7 Hz
O-GlcNAc (S)	6.8 Hz ^c	7.2± 3.1 Hz
O-GlcNAc (T)	7.5 Hz ^c	7.5± 2.8 Hz

^a Experimental ${}^{3}J_{aN}$ coupling constants obtained from Ref 68.

^bExperimental ³J₄ coupling constants evaluated at a pH of 8.0 obtained from Ref 58.

^c Experimental ${}^{3}J_{aN}$ coupling constants obtained from Ref 14.

^d Theoretical coupling constants calculated using the Karplus equations (1) and (2).

Peptide	Percentage population				
	β-sheet	PPII			
KSPP	29.26	65.34			
KS _P PP	2.96	84.47			
KS _{OG} PP	23.13	71.48			
КТРР	25.92	69.87			
KT _P PP	2.96	84.47			
KT _{og} PP	23.13	71.48			

Table S5: Percentage populations of the β -sheet and PPII conformations.

Table S6: Distribution of the χ dihedral (N-C α -C β -OG) in the three conformational bins, g⁺, g⁻ and anti for KTPP, KT_PPP and KT_{OG}PP peptides. The average value of the dihedral in the conformational bins and the associated value of the J_{HeHP} coupling constant are also presented.

	$g+(60^{0})^{a}$			g- (-60 ⁰) ^a			anti (180 ⁰) ^a		
Pepti de	Avera ge	Populat ion (%)	J _{H¤H}	Avera ge	Populat ion (%)	J _{H¤H} β	Avera ge	Populat ion (%)	J _{H¤H} β
KTPP	46.2	45	4.5	-54.8	36	10.0	165.0	19	4.7
KT _P P P	53.0	5	4.6	-47.3	95	9.9	-	-	-
KT _{og} PP	-	-	-	-61.3	83	10.0	150.6	17	5.0

^a Definition of the conformational bins: $g + (0^{0} < \chi < 120^{0})$, $g - (-120^{0} < \chi < 0^{0})$, anti (-180⁰ < $\chi < -120^{0}$ or $120^{0} < \chi < 180^{0}$)

Figure S1: 2D distribution of the OY...HNT H-bond distances as a function of ϕ/ψ dihedrals for all the dipeptides. Structures exhibiting the OY...HNT H-bond have been presented for illustration. The distances are presented in Å, with contours every 0.25 Å. Only distances between the range 1.25 Å - 3.0 Å have been plotted for the sake of clarity.

Figure S2: 2D distribution of HG1...O H-bond distances as a function of ϕ/ψ dihedrals for (a) Ser and (b) Thr dipeptides. 2D distribution of HN...OP H-bond distances as a function of ϕ/ψ dihedrals for (c) SEP and (d) TPO dipeptides. 2D distribution of HN_{carb}...O H-bond distances as a function of ϕ/ψ dihedrals for (e) O-GlcNAc (S) and (f) O-GlcNAc (T) dipeptides. Structures exhibiting the described H-bonds have been presented for illustration. The distances are presented in Å, with contours every 0.25 Å. Only distances between the range 1.25 Å - 3.0 Å have been plotted for the sake of clarity.

Figure S3: Relative population distributions in the α -helix, β -sheet and PPII-helical regions for (a) Ser/SEP/O-GlcNAc (S) and (b) Thr/TPO/O-GlcNAc (T) from dipeptide MD simulations.

Figure S4: ϕ/ψ distributions corresponding to PO₃-HN and PO₃/HNT H-bonded structures (d_{H-bond} < 3.0 Å) from SEP and TPO dipeptide simulations.

Figure S5: ϕ/ψ distributions corresponding to O_{carb} -HN and O_{carb} -HNT H-bonded structures (d_{H-bond} < 3.0 Å) from O-GlcNAc (S) and O-GlcNAc (T) dipeptide simulations.

Figure S6: $d_{i, i+4}$ backbone O...HN H-bond distances ($d_{H-bond} < 4.0$ Å) from the Baldwin peptide simulations. (a) N5 Ser, (b) N5 Thr, (c) N5 SEP, (d) N5 TPO, (e) N5 O-GlcNAc (S) and (f) N5 O-GlcNAc (T). All distances are in Å.

Figure S7: OH (N5 Thr)...O (N1 Ala) H-bond distances ($d_{H-bond} < 6.0$ Å) from the N5 Thr Baldwin peptide simulations. Distances are in Å.

Figure S8: NC_aC_pOG time series corresponding to KTPP, KT_PPP and KT_{OG}PP. Dihedral values are reported in 0 .

Figure S9: Karplus curves corresponding to the ${}^{3}J$ coupling constant as a function of dihedral values evaluated using equation (1) and (2). ${}^{3}J_{{}_{a}N}$ corresponds to the ϕ (C-N-C α -C) dihedral values while ${}^{3}J_{{}_{H_{\alpha}H_{\beta}}}$ correspond to the χ_{1} (N-C α -C β -OG) dihedral.