Phosphorylation versus O-GlcNAcylation:
 Computational Insights into the Differential Influences of the Two Competitive PostTranslational Modifications

Lata Rani and Sairam S. Mallajosyula*
Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India - 382355
E-mail: msairam@iitgn.ac.in
Phone: +91-79-2395 2459

SUPPORTING INFORMATION

Table S1: Dimensions of the water boxes used in the dipeptide simulations.

Dipeptide	Water box size $\mathbf{(\AA}^{\mathbf{3}} \mathbf{)}$
Ser	$37 \times 37 \times 37$
Thr	$37 \times 37 \times 37$
SEP	$37 \times 37 \times 37$
TPO	$37 \times 37 \times 37$
β-O-GlcNAc (S)	$31 \times 31 \times 31$
$\beta-$ O-GlcNAc (T)	$31 \times 31 \times 31$

Table S2: Dihedral values (ϕ) for the central two residues calculated from the NMR Jcoupling data.

	$\phi(\mathbf{C}-\mathbf{N}-\mathbf{C o}-\mathbf{C})$		
Residue	KSPP	KS $_{\mathbf{P}} \mathbf{P P}$	$\mathbf{K S}_{\mathbf{O G}} \mathbf{P P}$
\mathbf{S}	-82°	-83°	-83°
\mathbf{P}	-80°	-71°	-77°
Residue	KTPP	$\mathbf{K T}_{\mathbf{P}} \mathbf{P P}$	$\mathbf{K T}_{\mathbf{O G}} \mathbf{P P}$
\mathbf{T}	-80°	-82°	-82°
\mathbf{P}	-87°	-51°	-77°

Table S3: Dimensions of the water boxes used in the model peptide simulations. All sizes are in \AA^{3}.

	Unmodified	Phosphorylated	O-GlcNAcylated
AKAAAAKAAAAKAA	$56 \times 56 \times 56$	---	---
AKAASAKAAAAKAA	$55 \times 55 \times 55$	$55 \times 55 \times 55$	$110 \times 110 \times 110$
AKAATAKAAAAKAA	$55 \times 55 \times 55$	$55 \times 55 \times 55$	$109 \times 109 \times 109$
KSPP	$47 \times 47 \times 47$	$44 \times 44 \times 44$	$48 \times 48 \times 48$
KTPP	$59 \times 59 \times 59$	$39 \times 39 \times 39$	$53 \times 53 \times 53$

Table S4: ${ }^{3} \mathrm{~J}_{\mathrm{eN}}$ coupling constants obtained from dipeptide MD simulations.

${ }^{\mathbf{3}} \mathbf{J}_{\mathrm{a} \mathbf{N}}$	Experimental	Theoretical $^{\mathrm{d}}$
Ser	$7.0 \mathrm{~Hz}^{\mathrm{a}}$	$7.7 \pm 1.7 \mathrm{~Hz}$
Thr	$7.4 \mathrm{~Hz}^{\mathrm{a}}$	$7.5 \pm 1.7 \mathrm{~Hz}$
SEP	$5.9 \mathrm{~Hz}^{\mathrm{b}}$	$6.7 \pm 1.8 \mathrm{~Hz}$
TPO	$5.0 \mathrm{~Hz}^{\mathrm{b}}$	$7.2 \pm 1.7 \mathrm{~Hz}$
O-GlcNAc (S)	$6.8 \mathrm{~Hz}^{\mathrm{c}}$	$7.2 \pm 3.1 \mathrm{~Hz}$
O-GlcNAc (T)	$7.5 \mathrm{~Hz}^{\mathrm{c}}$	$7.5 \pm 2.8 \mathrm{~Hz}$

${ }^{\text {a }}$ Experimental ${ }^{3} \mathrm{~J}_{\mathrm{N}}$ coupling constants obtained from Ref 68.
${ }^{\mathrm{b}}$ Experimental ${ }^{3} \mathrm{~J}_{\mathrm{aN}}$ coupling constants evaluated at a pH of 8.0 obtained from Ref 58.
${ }^{\mathrm{c}}$ Experimental ${ }^{3} \mathrm{~J}_{\mathrm{aN}}$ coupling constants obtained from Ref 14.
${ }^{d}$ Theoretical coupling constants calculated using the Karplus equations (1) and (2).

Table S5: Percentage populations of the β-sheet and PPII conformations.

Peptide	Percentage population	
	β-sheet	PPII
KSPP	29.26	65.34
$\mathrm{KS}_{\mathrm{P}} \mathrm{PP}$	2.96	84.47
$\mathrm{KS}_{\mathrm{OG}} \mathrm{PP}$	23.13	71.48
KTPP	25.92	69.87
$\mathrm{KT}_{\mathrm{P}} \mathrm{PP}$	2.96	84.47
$\mathrm{KT}_{\mathrm{OG}} \mathrm{PP}$	23.13	71.48

Table S6: Distribution of the χ dihedral ($\mathrm{N}-\mathrm{C} \alpha-\mathrm{C} \beta-\mathrm{OG}$) in the three conformational bins, $\mathrm{g}+$, g - and anti for KTPP, $\mathrm{KT}_{\mathrm{P}} \mathrm{PP}$ and $\mathrm{KT}_{\mathrm{OG}} \mathrm{PP}$ peptides. The average value of the dihedral in the conformational bins and the associated value of the $\mathrm{J}_{\mathrm{H} \in \mathrm{H}}$ coupling constant are also presented.

	$\mathrm{g}+\left(60^{0}\right)^{\text {a }}$			g- $\left(-60^{0}\right)^{\text {a }}$			anti $(180)^{0}{ }^{\text {a }}$		
Pepti de	Avera ge	Populat ion (\%)	$\mathbf{J}_{\mathbf{H} \mathrm{H} \mathrm{H}}$	Avera ge	Populat ion (\%)	$\mathbf{J}_{\mathbf{H} \mathbf{~} \mathrm{H}}$	Avera ge	Populat ion (\%)	$\mathbf{J}_{\mathbf{H} \mathrm{H} \mathrm{H}}$
KTPP	46.2	45	4.5	-54.8	36	10.0	165.0	19	4.7
$\begin{aligned} & \hline \mathrm{KT}_{\mathrm{P}} \mathrm{P} \\ & \mathrm{P} \end{aligned}$	53.0	5	4.6	-47.3	95	9.9	-	-	-
$\begin{aligned} & \hline \mathrm{KT}_{\mathrm{OG}} \\ & \mathrm{PP} \end{aligned}$	-	-	-	-61.3	83	10.0	150.6	17	5.0

${ }^{\mathrm{a}}$ Definition of the conformational bins: g+ $\left(0^{0}<\chi<120^{\circ}\right)$, g- $\left(-120^{\circ}<\chi<0^{0}\right)$, anti (-$180^{\circ}<\chi<-120^{\circ}$ or $120^{\circ}<\chi<180^{\circ}$)

Figure S1: 2D distribution of the OY...HNT H-bond distances as a function of ϕ / ψ dihedrals for all the dipeptides. Structures exhibiting the OY...HNT H-bond have been presented for illustration. The distances are presented in \AA, with contours every $0.25 \AA$. Only distances between the range $1.25 \AA-3.0 \AA$ have been plotted for the sake of clarity.

Figure S2: 2D distribution of HG1...O H-bond distances as a function of ϕ / ψ dihedrals for (a) Ser and (b) Thr dipeptides. 2D distribution of HN...OP H-bond distances as a function of ϕ / ψ dihedrals for (c) SEP and (d) TPO dipeptides. 2D distribution of $\mathrm{HN}_{\text {carb }} \ldots \mathrm{O} \mathrm{H}$-bond distances as a function of ϕ / ψ dihedrals for (e) O GlcNAc (S) and (f) O-GlcNAc (T) dipeptides. Structures exhibiting the described Hbonds have been presented for illustration. The distances are presented in \AA, with contours every $0.25 \AA$. Only distances between the range $1.25 \AA-3.0 \AA$ have been plotted for the sake of clarity.

Figure S3: Relative population distributions in the α-helix, β-sheet and PPII-helical regions for (a) Ser/SEP/O-GlcNAc (S) and (b) Thr/TPO/O-GlcNAc (T) from dipeptide MD simulations.

Figure S4: ϕ / ψ distributions corresponding to $\mathrm{PO}_{3}-\mathrm{HN}$ and $\mathrm{PO}_{3} / \mathrm{HNT}$ H-bonded structures ($\mathrm{d}_{\mathrm{H} \text {-bond }}<3.0 \AA$) from SEP and TPO dipeptide simulations.

Figure S5: ϕ / ψ distributions corresponding to $\mathrm{O}_{\text {carb }}-\mathrm{HN}$ and $\mathrm{O}_{\text {carb }}-\mathrm{HNT} \mathrm{H}$-bonded structures $\left(\mathrm{d}_{\mathrm{H}-\mathrm{bond}}<3.0 \AA\right.$) from O-GlcNAc (S) and O-GlcNAc (T) dipeptide simulations.

Figure S6: $\mathrm{d}_{i, i+4}$ backbone O...HN H-bond distances ($\mathrm{d}_{\mathrm{H} \text {-bond }}<4.0 \AA$) from the Baldwin peptide simulations. (a) N5 Ser, (b) N5 Thr, (c) N5 SEP, (d) N5 TPO, (e) N5 O-GlcNAc (S) and (f) N5 O-GlcNAc (T). All distances are in Å.

Figure S7: OH ($\mathbf{N} 5 \mathrm{Thr}$)...O ($\mathbf{N} 1 \mathrm{Ala}$) H-bond distances ($\mathrm{d}_{\mathrm{H}-\mathrm{bond}}<6.0 \AA$) from the $\mathbf{N} 5$ Thr Baldwin peptide simulations. Distances are in \AA.

Figure $\mathrm{S} 8: \mathrm{NC}_{a} \mathrm{C}_{\mathrm{B}} \mathrm{OG}$ time series corresponding to $\mathrm{KTPP}, \mathrm{KT}_{\mathrm{P}} \mathrm{PP}$ and $\mathrm{KT}_{\mathrm{OG}} \mathrm{PP}$. Dihedral values are reported in ${ }^{0}$.

Figure S9: Karplus curves corresponding to the ${ }^{3} \mathrm{~J}$ coupling constant as a function of dihedral values evaluated using equation (1) and (2). ${ }^{3} \mathrm{~J}_{\mathrm{N}}$ corresponds to the $\phi(\mathrm{C}-\mathrm{N}-$ $\mathrm{C} \alpha-\mathrm{C})$ dihedral values while ${ }^{3} \mathrm{~J}_{\mathrm{H}+\mathrm{Hf}}$ correspond to the $\chi_{1}(\mathrm{~N}-\mathrm{C} \alpha-\mathrm{C} \beta-\mathrm{OG})$ dihedral.

