# **Supplementary Information**

# High pressure behavior of silver fluorides up to 40 GPa

Adam Grzelak<sup>a, b</sup>, Jakub Gawraczyński<sup>a, b</sup>, Tomasz Jaroń<sup>b</sup>, Dominik Kurzydłowski<sup>b</sup>, Armand Budzianowski<sup>b</sup>, Zoran Mazej<sup>c</sup>, Piotr J. Leszczyński<sup>b</sup>, Vitali B. Prakapenka,<sup>d</sup> Mariana Derzsi<sup>b</sup>\*, Viktor V. Struzhkin<sup>e</sup>\*, and Wojciech Grochala<sup>b</sup>\*

 <sup>a</sup>Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland.
 <sup>b</sup>Center of New Technologies, University of Warsaw, ul. Banacha 2C, 02-097 Warsaw, Poland.
 <sup>c</sup>Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.

<sup>d</sup> Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, United States.
<sup>e</sup>Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW,
Washington, DC 20015, United States.

# Contents.

- S1. Equation of state of AgF.
- S2. Rietveld fits to the collected XRDPs for characteristic pressure points.
- S3. Lattice constants of AgF<sub>2</sub> at different pressures obtained from XRD experiments.
- S4. Theoretical enthalpies of the relevant structures.
- S5. The closest F...F contacts in the observed crystal structures.
- S6. Raman spectroscopy of AgF and AgF<sub>2</sub>.
- S7. Electronic band gap at the Fermi level (theoretical DFT+U data).
- S8. Analysis of phonons of HP-II phase at 20 GPa and 200 GPa.
- S9. The .cif file of the HP-II structure at 250 GPa (theoretical DFT+U data).

#### S1. Equation of state of AgF.

AgF has been previously studied under high pressure and is known to undergo a phase transition at pressure ca. 2.7 GPa from rocksalt structure to the more closely packed CsCl-type structure.<sup>1</sup> In one of our XRD experiments, we compressed a sample that turned out to consist mostly of AgF – a product of *in situ* decomposition of AgF<sub>2</sub>. We studied its XRD pattern up to ca. 39 GPa and determined equation of state (EoS) parameters of the CsCl-type structure. Pressure dependence of volume of CsCl-type unit cell of AgF is shown in SI. The data was fitted with Birch-Murnaghan (B-M)  $EoS^2$  – its parameters are given in table 1.

| V <sub>0</sub> [ų] | B <sub>0</sub> [GPa] | B <sub>0</sub> ′ | $B_0$ [GPa] (Ref. <sup>1</sup> ) |
|--------------------|----------------------|------------------|----------------------------------|
| 26.673(9)          | 87.1(2)              | 5.26(3)          | 110                              |

Table S1. Birch-Murnaghan equation of state parameters for CsCl-type AgF.  $V_0$  – reference volume,  $B_0$  – bulk modulus,  $B_0'$  – pressure derivative of bulk modulus.

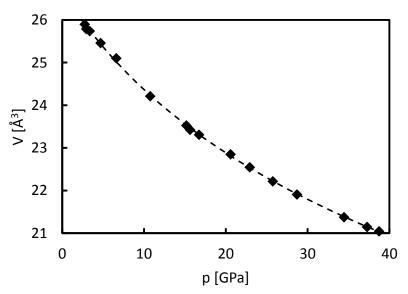
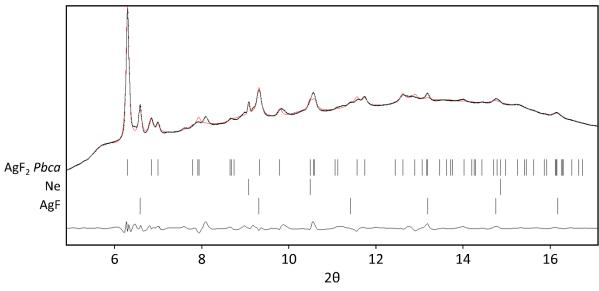
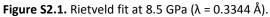



Fig. S1. Pressure dependence of volume of AgF unit cell (CsCl-type structure). Dashed line – B-M EoS fit.

#### S2. Rietveld fits to the collected XRDPs for characteristic pressure points.


Rietveld fits were performed using "Jana2006" software.<sup>3</sup>

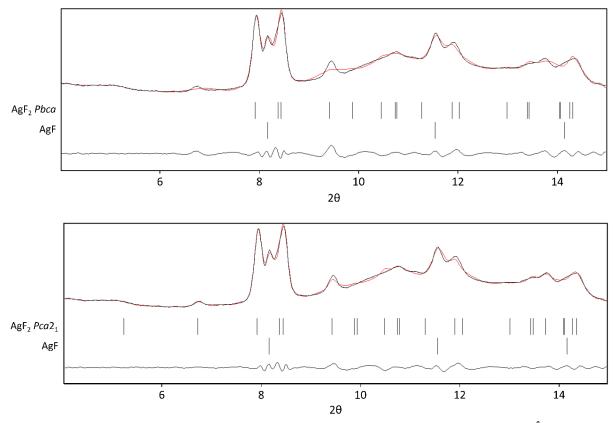

#### S2.1. Rietveld fit for LP structure at 8.5 GPa.

Fit parameters and appearance is presented in Table S2.1 and Fig. S2.1.

|           | GOF  | R <sub>p</sub> | R <sub>wp</sub> |
|-----------|------|----------------|-----------------|
| Pbca (LP) | 0.53 | 0.81%          | 1.24%           |

Table S2.1. Fit parameters for Pbca (LP) structure of AgF<sub>2</sub> at 8.5 GPa.






# S2.2 Comparison of Rietveld fits for LP and HP-I structure at 11.7 GPa.

Fit parameters and appearance are compared in Table S2.2 and Fig. S2.2.

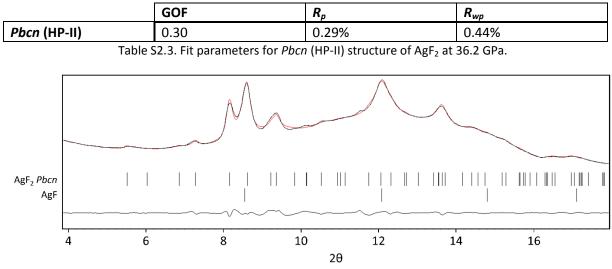
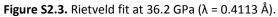

|                                  | GOF  | R <sub>p</sub> | R <sub>wp</sub> |
|----------------------------------|------|----------------|-----------------|
| Pbca (LP)                        | 0.18 | 0.68%          | 0.96%           |
| <i>Pca</i> 2 <sub>1</sub> (HP-I) | 0.13 | 0.51%          | 0.70%           |

Table S2.2. Fit parameters for *Pbca* (LP) and  $Pca2_1$  (HP-I) structure of AgF<sub>2</sub> at 11.7 GPa.




**Figure S2.2.** Rietveld fits at 11.7 GPa. Top: LP (*Pbca*); bottom: HP-I (*Pca2*<sub>1</sub>) ( $\lambda$  = 0.4113 Å).

## S2.3. Rietveld fit for HP-II structure at 36.2 GPa.



Fit parameters and appearance is presented in Table S2 and Fig. S2.



# S3. Lattice constants of $\mathsf{AgF}_2$ at different pressures obtained from XRD experiments.

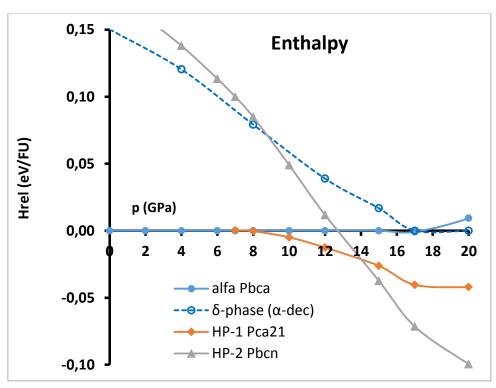
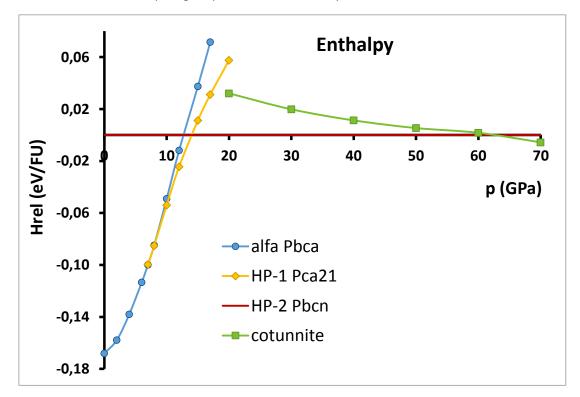

|               | p AgF | Δр  | а     | Δa    | b     | Δb    | С     | Δc    | v      | ΔV   |
|---------------|-------|-----|-------|-------|-------|-------|-------|-------|--------|------|
| LP            | 4.9   | 0.1 | 5.485 | 0.001 | 5.656 | 0.001 | 4.965 | 0.002 | 154.03 | 0.10 |
| LP            | 8.5   | 0.2 | 5.477 | 0.003 | 5.592 | 0.003 | 4.831 | 0.003 | 147.93 | 0.03 |
| HP-I          | 10.0  | 0.5 | 5.475 | 0.007 | 4.704 | 0.006 | 5.564 | 0.006 | 143.32 | 0.10 |
| п <b>г-</b> і | 13.5  | 0.6 | 5.572 | 0.008 | 4.513 | 0.007 | 5.523 | 0.007 | 138.88 | 0.09 |
|               | 16.9  | 0.6 | 5.475 | 0.013 | 8.350 | 0.022 | 5.693 | 0.015 | 260.2  | 1.3  |
| HP-II         | 21.8  | 1.0 | 5.300 | 0.016 | 8.234 | 0.018 | 5.714 | 0.017 | 249.4  | 1.7  |
|               | 25.9  | 1.8 | 5.198 | 0.023 | 8.137 | 0.031 | 5.716 | 0.017 | 241.8  | 2.4  |

Table S3.1. XRD-A data (compression only).


Table S3.2. XRD-B (compression and decompression).

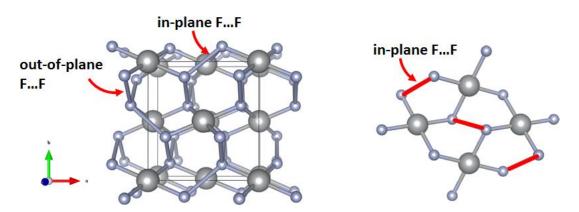
|        | p AgF | Δр  | а     | Δa    | b     | Δb    | С     | Δc    | v      | ΔV   |
|--------|-------|-----|-------|-------|-------|-------|-------|-------|--------|------|
| HP-I   | 11.7  | 0.5 | 5.585 | 0.007 | 4.500 | 0.008 | 5.634 | 0.007 | 141.58 | 0.08 |
| HP-II  | 14.8  | 0.6 | 5.475 | 0.010 | 8.331 | 0.015 | 5.787 | 0.007 | 264.0  | 1.1  |
| comp   | 25.3  | 0.8 | 5.301 | 0.010 | 8.100 | 0.016 | 5.777 | 0.009 | 248.1  | 1.2  |
|        | 32.7  | 1.2 | 5.197 | 0.017 | 7.947 | 0.019 | 5.821 | 0.010 | 240.4  | 1.4  |
|        | 36.2  | 0.8 | 5.129 | 0.010 | 7.849 | 0.011 | 5.803 | 0.007 | 233.6  | 0.8  |
| HP-II  | 34.4  | 0.6 | 5.141 | 0.007 | 7.905 | 0.011 | 5.802 | 0.006 | 235.8  | 0.8  |
| decomp | 32.8  | 1.1 | 5.173 | 0.015 | 7.920 | 0.020 | 5.810 | 0.010 | 238.1  | 1.4  |
|        | 28.5  | 0.7 | 5.198 | 0.010 | 7.951 | 0.013 | 5.833 | 0.007 | 241.1  | 0.9  |
|        | 24.6  | 0.9 | 5.250 | 0.015 | 8.011 | 0.020 | 5.858 | 0.010 | 246.4  | 1.5  |
|        | 20.1  | 0.4 | 5.322 | 0.012 | 8.128 | 0.015 | 5.851 | 0.005 | 253.1  | 0.4  |
|        | 16.5  | 0.3 | 5.355 | 0.009 | 8.305 | 0.013 | 5.836 | 0.010 | 259.5  | 0.4  |

S4. Theoretical enthalpies of the relevant structures.



**Figure S4.1.** Pressure dependence of relative enthalpies of  $AgF_2$  structures (compared to LP-*Pbca* structure) in a narrower p range.  $\delta$  phase stands for flat layer form theorized in Ref.6.

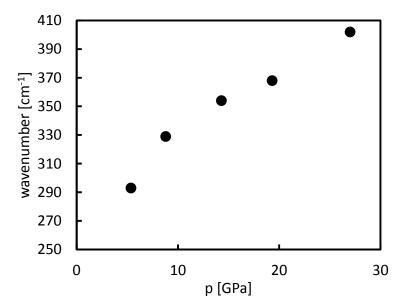



**Figure S4.2.** Pressure dependence of relative enthalpies of AgF<sub>2</sub> structures (compared to HP-II structure) in a broader p range.

### S5. The closest F...F contacts in the observed crystal structures.

**Table S5.** Selected F...F contacts and torsional AgFFAg angle in the **HP-I** structure as calculated with DFT+U. See **Figure S5** below for geometry of the F...F contacts and the in-plain Ag-F...F-Ag angle. Within the pressure range 0-6 GPa the **HP-I** converges to the higher-symmetry **LP** phase. Note, twice the vdW radius of F is 2.96 Å at 1 atm.

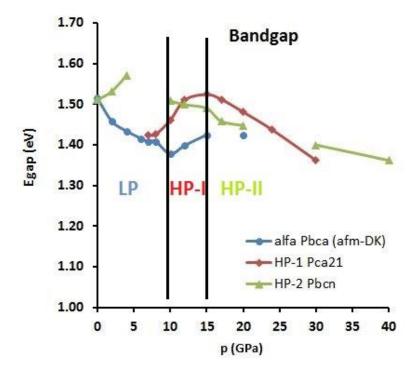
|     | н        | P-I                    | L        | P                      |       | F <sub>2</sub> †              |  |
|-----|----------|------------------------|----------|------------------------|-------|-------------------------------|--|
| GPa | FF       | FF <sup>shortest</sup> | FF       | FF <sup>shortest</sup> | FF    | F-F <sup>intramolecular</sup> |  |
|     | in-plain | out-plain              | in-plain | out-plain              | ГГ    | F-F                           |  |
| 0   | -        | -                      | -        | -                      | 3.014 | 1.388                         |  |
| 2   | -        | -                      | -        | -                      |       |                               |  |
| 4   | -        | -                      | -        | -                      |       |                               |  |
| 6   | -        | -                      | -        | -                      |       |                               |  |
| 7   | 2.891    | 2.914                  | 2.891    | 2.914                  |       |                               |  |
| 8   | 2.852    | 2.718                  | 2.852    | 2.718                  |       |                               |  |
| 10  | 2.766    | 2.664                  | 2.766    | 2.664                  | 2.394 | 1.383                         |  |
| 12  | 2.679    | 2.605                  | 2.679    | 2.605                  |       |                               |  |
| 15  | 2.602    | 2.553                  | 2.602    | 2.553                  |       |                               |  |
| 17  | 2.570    | 2.534                  | 2.570    | 2.534                  |       |                               |  |
| 20  | 2.535    | 2.519                  | 2.535    | 2.519                  | 2.275 | 1.379                         |  |


<sup>+</sup>Values for solid F<sub>2</sub> under high pressure were calculated by Kurzydłowski and Zaleski-Ejgierd.<sup>4</sup>

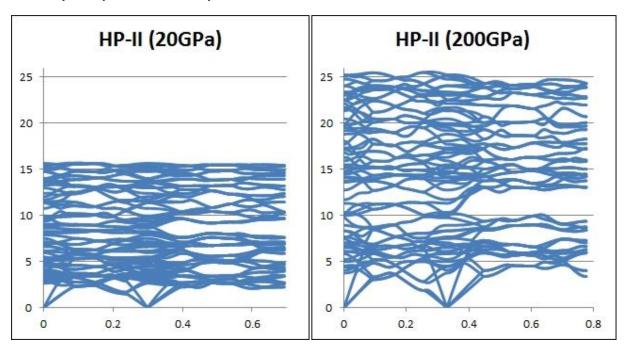


**Fig. S5.** Illustration of the in-plane and the shortest out-of-plain F...F contact between F atoms belonging to different  $AgF_4$  squares in the HP-I structure: 3D structure showing one unit cell (left) and single  $AgF_2$  layer (right). The in-plain F...F contact corresponds to the chalcogenide bond in cobaltite CoAsS. The in-plain Ag-F...F-Ag torsional angle is also highlighted (right). This figure should be read together with **Table S4**.

#### S6. Raman spectroscopy of AgF and AgF<sub>2</sub>


To our knowledge, high-pressure Raman spectra of AgF have not been previously reported. Raman spectra of the high-pressure (CsCl-type) phase of AgF have been collected up to 27 GPa (see ESI). The most prominent feature of these spectra is the first overtone of the band assigned to infrared-active  $T_{1u}$  mode. Pressure dependence of this band is plotted in fig. S6.




**Fig. S6.** Pressure dependence of the wavenumber of the Raman-active first overtone of the IR-active T<sub>1u</sub> mode of CsCl-type AgF phase.

Raman spectra obtained from compressed  $AgF_2$  were collected using 514.5 nm laser line. The spectra are dominated by a band which appears at 420 cm<sup>-1</sup> at ambient pressure. The frequency of this band increases with compression up to 540 cm<sup>-1</sup> at 40 GPa. Interestingly, this band does not normally feature in Raman spectra of  $AgF_2$ , but it has been reported in spectra of fluoroargentates such as KAgF<sub>3</sub> and K<sub>2</sub>AgF<sub>4</sub>, which contain complex  $[AgF_3]^-$  or  $[AgF_4]^{2-}$  anions.<sup>5</sup> It is possible that the sample compressed in this experiment decomposed as a result of irradiation with 514.5 nm laser, yielding a fluoroargentate product. More detailed studies of irradiated samples of  $AgF_2$  are needed in order to elucidate the structure of this yet-unknown species.

S7. Electronic band gap at the Fermi level (theoretical DFT+U data).



**Fig. S7.** The calculated band gap (DFT+U) for three experimentally observed forms of AgF<sub>2</sub>; the vertical lines mark the approximate stability ranges.



S8. Analysis of phonons of HP-II phase at 20 GPa and 200 GPa.

No imaginary modes have been detected for the HP-II phase at 200 GPa.

#### S9. The .cif file of the HP-II structure at 250 GPa (theoretical DFT+U data).

\_pd\_phase\_name 'HP-II 250 GPa DFT' \_cell\_length\_a 5.37061 \_cell\_length\_b 6.69718 \_cell\_length\_c 4.17178 \_cell\_angle\_alpha 90 \_cell\_angle\_beta 90 90 cell angle gamma \_symmetry\_space\_group\_name\_H-M 'Pbcn' \_symmetry\_Int\_Tables\_number 60

| loop_                   |          |          |                  |
|-------------------------|----------|----------|------------------|
| _atom_site_label        |          |          |                  |
| _atom_site_occupancy    |          |          |                  |
| _atom_site_fract_x      |          |          |                  |
| _atom_site_fract_y      |          |          |                  |
| _atom_site_fract_z      |          |          |                  |
| _atom_site_adp_type     |          |          |                  |
| _atom_site_B_iso_or_equ | uiv      |          |                  |
| _atom_site_type_symbol  |          |          |                  |
| Ag1 1.0 0.572494        | 0.381317 | 0.015398 | Biso 1.000000 Ag |
| F1 1.0 0.250000         | 0.385745 | 0.821412 | Biso 1.000000 F  |
| F2 1.0 0.404499         | 0.151591 | 0.141401 | Biso 1.000000 F  |

#### **References:**

- (1) Hull, S.; Berastegui, P. High-Pressure Structural Behaviour of silver(I) Fluoride. J. Phys. Condens. Matter **1998**, 10, 7945–7955.
- (2) Birch, F. Finite Elastic Strain of Cubic Crystals. *Phys. Rev.* **1947**, *71*, 809–824.
- (3) Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic Computing System JANA2006: General Features. *Zeitschrift für Krist. Cryst. Mater.* **2014**, *229*, 345–352.
- (4) Kurzydłowski, D.; Zaleski-Ejgierd, P. Hexacoordinated nitrogen(V) Stabilized by High Pressure. *Sci. Rep.* **2016**, *6*, 36049.
- (5) Mazej, Z.; Goreshnik, E.; Jagličić, Z.; Gaweł, B.; Łasocha, W.; Grzybowska, D.; Jaroń, T.; Kurzydłowski, D.; Malinowski, P.; Koźminski, W.; et al. KAgF<sub>3</sub>, K<sub>2</sub>AgF<sub>4</sub> and K<sub>3</sub>Ag<sub>2</sub>F<sub>7</sub>: Important Steps towards a Layered Antiferromagnetic fluoroargentate(II). *CrystEngComm* **2009**, *11*, 1702–1710.
- (6) Romiszewski, J.; Grochala, W.; Stolarczyk, L. Z. Pressure-Induced Transformations of Ag<sup>II</sup>F<sub>2</sub> towards an "infinite Layer" d<sup>9</sup> Material. *J. Phys. Condens. Matter* **2007**, *19*, 116206.