Supporting Information

Membranes for Continuous Non-Energized Air Freshener Perfume Delivery

Gui Min Shi^a, Lin Hao^a, Kelly Anderson^b, Tai Shung Chung^{a,*}

^a Department of Chemical and Biomolecular Engineering,

National University of Singapore,

Singapore 117576

^b Corporate R&D, Singapore Branch,

The Procter and Gamble Company,

Singapore 138547

* Corresponding author. Tel.: 65 6516 6645; fax: 65 6779 1936.

E-mail address: chencts@nus.edu.sg (T.S. Chung)

Number of pages: 9

Number of tables: 5

Number of figures: 3

Chemical name	Conc. in model perfume solution (wt%)	Vapor pressure at 25 °C (torr)	Molecular weight (g/mol)	Boiling point (°C)	Liquid viscosity (Pa·s)	Surface tension (mN/m)
Ethyl-2-methyl butyrate	25	7.33	130.20	132-133	7.74E-04	25.5
Benzyl acetate	25	0.177	150.18	212	2.12E-03	36.0
Phenyl ethyl alcohol	25	0.0868	122.17	219-221	1.12E-02	39.6
Cyclamen aldehyde	25	0.00881	190.30	270	8.31E-03	32.5

Table S1. The physicochemical properties of the selected four perfume compounds

Table S2. The densities of perfume compounds, the experimental and calculated liquid sorption amounts based on the two different porosity values

Chemical name	Liquid density (g/cm ³)	g(solvent)/g(membrane) Experimental data	Ideal g(solvent)/g(membrane) 42% porosity	
Ethyl 2-methyl butyrate	0.865	0.411	0.432	
Benzyl acetate	1.05	0.535	0.524	
Phenyl ethyl alcohol	1.017	0.517	0.508	
Cyclamen aldehyde	0.95	0.480	0.474	

Chemical name	Contact angle	g(solvent	g(solvent absorbed)/g(membrane)*100			
		25 °C	35 °C	45 °C		
Water	111.9	-	-	-		
Ethyl-2-methyl butyrate	9.0	41.08	40.73	40.39		
Benzyl acetate	33.2	53.47	53.15	52.84		
Phenyl ethyl alcohol	47.1	51.73	51.30	50.91		
Cyclamen aldehyde	32.2	48.04	47.84	47.61		

Table S3. The contact angles and liquid sorption behaviours of the different perfume compounds

Table S4. The compounds absorbed by the membrane through capillary. The initial ratio is 1:1:1:1 (25 wt% each); the final weight ratios are normalized with benzyl acetate (set as 1)

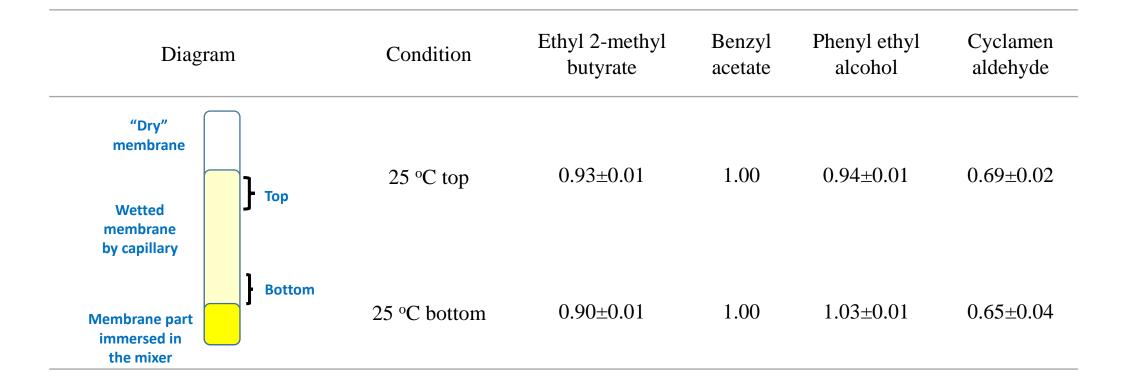


Table S5. The perfume release rates of the air freshener membrane for the pure perfume compounds and the calculated release rate that the liquid perfume spills out of the membrane (testing conditions: air velocity: 0.1 m/s, temperature: 25 °C)

Diagram	Chemical name	Ethyl-2-methyl butyrate	Benzyl acetate	Phenyl ethyl alcohol	Cyclamen aldehyde
Perfume static head	Perfume release rate, (mg/cm ² -h)	41.6	0.73	0.45	0.002
	The critical static head when the membrane starts to leak, cm	-	11	10	9
	The calculated flow rate for one pore using Darcy-Weisbach equation, (m ³ /s)	-	3.89E-24	6.46E-25	7.20E-25
	The calculated membrane flux, (mg/cm ² -h)	-	1.97	0.317	0.329

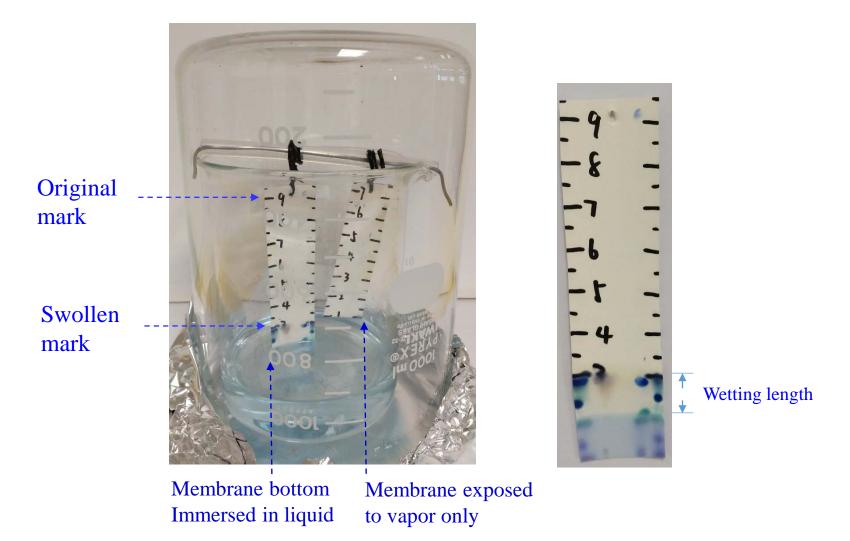


Fig. S1. The device to estimate the wetting lengths and rates in different perfume compounds.

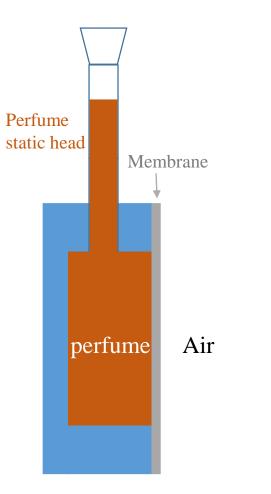


Fig. S2. The device to measure the static head in the air freshener membraneenclosed perfume reservoir.

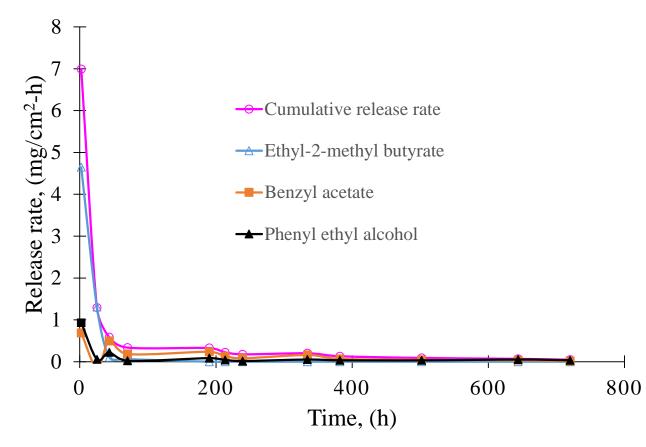


Fig. S3. Calculated individual perfume release rates of a model perfume (a mixed solvent comprising 25 wt% each) from its weight loss and perfume reservoir compositions in the membrane air freshener (testing conditions: air velocity: 0.1 ± 0.02 m/s, temperature: $25 \pm 1^{\circ}$ C).