Supporting Information for

Rapid Synthesis of Nanoporous Conformal Coatings via Plasma-Enhanced Sequential Infiltration of a Polymer Template.

Yunlong She¹, Jihyung Lee¹, Benjamin T. Diroll², Byeongdu Lee³, Samir Aouadi¹, Elena V. Shevchenko^{2,*}, Diana Berman^{1,*}

¹Materials Science and Engineering Department, University of North Texas, Denton, TX, 76203, USA

²Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA

³Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA

Corresponding authors: Diana Berman (Diana.Berman@unt.edu), Elena Shevchenko (eshevchenko@anl.gov).

CONTENT

Figure S1: Rupture of aluminum oxide films during oxygen plasma assisted (20 minutes) polymer removal.

Figure S2: Dependence of the porosity of synthesized metal oxide films on the polar/nonpolar domain concentration ratio in the swelled PS-b-P4VP polymer.

Figure S3: GISAXS data linecut for 1 PE SIS deposited aluminum oxide in non-swelled PS-b-p4VP polymer.

Supplementary Note 1: GISAXS data analysis.

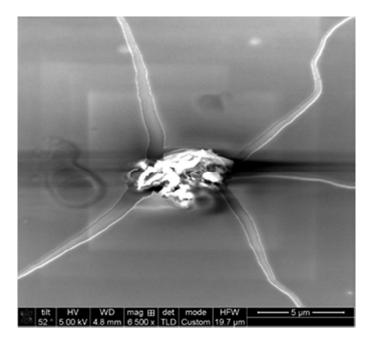


Figure S1. Rupture of aluminum oxide films during oxygen plasma assisted (20 minutes) polymer removal. The figure demonstrates damage to the coating made of aluminum oxide-infiltrated PS-b-P4VP polymer.

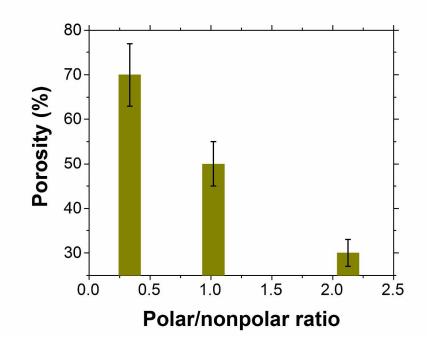
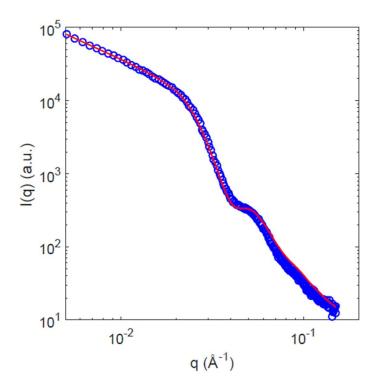



Figure S2. Dependence of the porosity of synthesized metal oxide films on the polar/nonpolar domain concentration ratio in the swelled PS-b-P4VP polymer.

Figure S3. GISAXS data linecut for 1 PE SIS deposited aluminum oxide in non-swelled PS-bp4VP polymer.

Supplementary Note 1: GISAXS data analysis.

Horizontal cut of GISAXS data can be fit with a vertically oriented cylinder model.

$$F(q_{xy},R) = 2\pi R^2 \frac{J_0(q_{xy}R)}{q_{xy}R}$$
$$I(q_{xy}) = S(q_{xy}) \int n(r;r_0,\sigma) |F(q_{xy},r)|^2 dr + Bg$$
$$S(q_{xy}) = S_0(q_{xy};D,v) + kq^{-n}$$

 $S(q_{xy}; D, v)$ is the structure factor in the in-plane, which is composed of S_0 and a power-law type of scattering with an exponent *n*. The latter is to describe possible clustering of cylinders. For the former, we used the hard sphere structure factor that is described by two parameters, *D* and *v*, which are a hydrodynamic radius and volume fraction. The hydrodynamic radius is about the half of the inter-cylinder distance. n(r) is the Schultz size distribution function, which also has two parameters, mean radius r_0 and variance σ . J_0 is the Bessel function of the first kind of order 0. *Bg* stands for background scattering.

We obtained $r_0=9.2$ nm, $\sigma=17.4\%$, D=12.86 nm, v=0.158 and n=0.83.