Supporting Information for

Ethylene Polymerization by Dinuclear Xanthene-Bridged Imino- and Aminopyridyl Nickel Complexes

Chunyong Rong,[†] Fuzhou Wang,^{*,†,‡} Weimin Li[†] and Min Chen^{*,†}

[†]Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pertrochemical Engineering, Changzhou University, Changzhou 213164, China. [‡]Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

*E-mail: wangfuzhou1718@126.com (F. W); misschen@ustc.edu.cn (M. C)

Table of contents

- 1. ¹H and ¹³C NMR spectra of ligands L-A, L-B, L-C and L-D (Figures S1–S7)
- 2. ¹H NMR spectra of the polyethylenes (Figures S8–S15)
- 3. DSC data of the polyethylenes (Figures S16–S35)
- 4. X-ray Crystallography (Figure S36)

1. ¹H and ¹³C NMR spectra of ligands L-A, L-B, L-C and L-D

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃, ppm) of L-A.

Figure S2. ¹³C NMR spectrum (125 MHz, CDCl₃, ppm) of L-A.

Figure S3. ¹H NMR spectrum (500 MHz, CDCl₃, ppm) of L-B.

Figure S4. ¹³C NMR spectrum (125 MHz, CDCl₃, ppm) of L-B.

Figure S5. ¹H NMR spectrum (500 MHz, CDCl₃, ppm) of L-C.

Figure S6. ¹³C NMR spectrum (125 MHz, CDCl₃, ppm) of L-C.

Figure S7. ¹H NMR spectrum (500 MHz, CDCl₃, ppm) of L-D.

2. ¹H NMR spectra of the polyethylenes

Figure S8. ¹H NMR spectrum of polyethylene obtained by Ni₂-A from table 1, entry 1 ($C_2D_2Cl_4$, 120 °C, B = 40).

Figure S9. ¹H NMR spectrum of polyethylene obtained by Ni₂-A from table 1, entry 4 ($C_2D_2Cl_4$, 120 °C, B = 27).

Figure S10. ¹H NMR spectrum of polyethylene obtained by Ni₂-C from table 1, entry 7 ($C_2D_2Cl_4$, 120 °C, B = 61).

Figure S11. ¹H NMR spectrum of polyethylene obtained by Ni₂-C from table 1, entry 10 ($C_2D_2Cl_4$, 120 °C, B = 58).

Figure S12. ¹H NMR spectrum of polyethylene obtained by Ni-A from table 1, entry 13 ($C_2D_2Cl_4$, 120 °C, B = 66).

Figure S13. ¹H NMR spectrum of polyethylene obtained by **Ni-B** from table 1, entry 16 ($C_2D_2Cl_4$, 120 °C, B = 60).

Figure S14. ¹H NMR spectrum of polyethylene obtained by Ni-C from table 1, entry 19 ($C_2D_2Cl_4$, 120 °C, B = 65).

Figure S15. ¹H NMR spectrum of polyethylene obtained by Ni-D from table 1, entry 22 ($C_2D_2Cl_4$, 120 °C, B = 76).

3. DSC data of the polyethylenes

Figure S16. DSC data of the polyethylene from table 1, entry 1.

Figure S17. DSC data of the polyethylene from table 1, entry 2.

Figure S18. DSC data of the polyethylene from table 1, entry 4.

Figure S19. DSC data of the polyethylene from table 1, entry 5.

Figure S20. DSC data of the polyethylene from table 1, entry 6.

Figure S21. DSC data of the polyethylene from table 1, entry 7.

Figure S22. DSC data of the polyethylene from table 1, entry 10.

Figure S23. DSC data of the polyethylene from table 1, entry 12.

Figure S24. DSC data of the polyethylene from table 1, entry 13.

Figure S25. DSC data of the polyethylene from table 1, entry 14.

Figure S26. DSC data of the polyethylene from table 1, entry 15.

Figure S27. DSC data of the polyethylene from table 1, entry 16.

Figure S28. DSC data of the polyethylene from table 1, entry 17.

Figure S29. DSC data of the polyethylene from table 1, entry 18.

Figure S30. DSC data of the polyethylene from table 1, entry 19.

Figure S31. DSC data of the polyethylene from table 1, entry 20.

Figure S32. DSC data of the polyethylene from table 1, entry 21.

Figure S33. DSC data of the polyethylene from table 1, entry 22.

Figure S34. DSC data of the polyethylene from table 1, entry 23.

Figure S35. DSC data of the polyethylene from table 1, entry 24.

4. X-ray Crystallography

Figure S36. Molecular structure of Ni₂-C'. Thermal ellipsoids are shown at the 30% probability level.

The molecular structure of Ni₂-C' was confirmed by single-crystal X-ray diffraction and the corresponding ORTEP diagram is shown in Figure S8. Data collections were performed at 296(2) K on a Bruker SMART APEX diffractometer with a charge-coupled device (CCD) area detector, using graphite monochromated MoKa radiation ($\lambda = 0.71073$ Å). The determination of crystal class and unit cell parameters was carried out using the SMART program package. The raw frame data were processed using SAINT and SADABS to yield the reflection data file. The structures were solved by using the SHELXTL program. Refinement was performed on F^2 anisotropically for all nonhydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Crystal data, data collection, and refinement parameters are listed in Table S1. Bond distances and angles are summarized in Table S2 and S3.

Empirical Formula	$C_{53}H_{62}Br_4N_4Ni_2O_2$
Formula mass	1224.12
Temperature (K)	291(2)
Wavelength (Å)	0.71073
Crystal size (mm^3)	$0.33 \times 0.31 \times 0.25$
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
<i>a</i> (Å)	12.9028(4)
<i>b</i> (Å)	16.4766(6)
<i>c</i> (Å)	30.5902(16)
$V(\text{\AA}^3)$	6503.3(5)
Ζ	4
Density (calcd.) (mg/cm ³)	1.250
Absorption coefficient (mm ⁻¹)	3.071
F (000)	2480.0
Theta range for data collec. (°)	6.016 to 52.744
Limiting indices	$-16 \le h \le 15, -20 \le k \le 20, -38 \le l \le 38$
Reflections collected	30275
Independent reflections	12921
R _{int}	0.0516
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0588, wR_2 = 0.1365$
<i>R</i> indices (all data)	$R_1 = 0.0882, wR_2 = 0.1500$
Refinement method	Full-matrix least-squares on F^2
Goodness-of-fit on F^2	1.083
Largest diff. peak and hole (e.Å ⁻³)	0.54 and -0.40
Flack parameter	0.003(6)

Table S1. Crystal data and structure refinements of Ni₂-C'.

-

Table S2. Bond lengths (Å) for of Ni_2 -C'.

Atom Atom		Length/Å	Atom	Atom	Length/Å		
Br4	Ni2	2.4643(17)	C16	C15	1.382(16)		
Br2	Ni2	2.4873(14)	C16	C20	1.538(15)		
Br2	Ni1	2.5222(15)	C31	C26	1.390(14)		
Ni2	Br1	2.5038(15)	C31	C30	1.395(14)		
Ni2	N3	2.105(8)	N4	C48	1.345(12)		
Ni2	N4	2.062(8)	C32	C33	1.493(17)		
Br3	Ni1	2.5780(16)	C32	C34	1.521(15)		
Br1	Ni1	2.6319(15)	C43	C42	1.372(18)		
Ni1	N2	2.041(8)	C43	C44	1.365(19)		
Ni1	N1	2.195(9)	C50	C49	1.333(15)		
Ni1	O2	2.087(8)	C50	C51	1.378(16)		
01	C6	1.374(13)	C26	C12	1.491(14)		
01	C13	1.388(13)	C23	C18	1.530(15)		
C28	C29	1.389(13)	C23	C25	1.517(17)		
C28	C27	1.387(14)	C23	C24	1.536(15)		
C28	C32	1.501(14)	C13	C8	1.386(16)		
N2	C41	1.342(13)	C13	C12	1.397(15)		
N2	C45	1.319(14)	C36	C30	1.526(14)		
N3	C29	1.474(12)	C36	C35	1.524(15)		
N3	C47	1.522(12)	C36	C37	1.517(16)		
C17	C16	1.410(15)	C48	C49	1.389(13)		
C17	N1	1.476(14)	C44	C45	1.368(16)		
C17	C18	1.414(15)	C20	C22	1.564(17)		
C40	C41	1.536(15)	C20	C21	1.539(17)		
C40	N1	1.490(12)	C1	C2	1.389(17)		
C40	C46	1.507(14)	C5	C7	1.51(2)		
C14	C19	1.402(15)	C5	C4	1.391(16)		
C14	C15	1.366(15)	C11	C12	1.380(16)		
C14	C1	1.484(15)	C11	C10	1.367(18)		
C52	N4	1.347(12)	C8	C9	1.366(17)		
C52	C51	1.379(14)	C8	C7	1.53(2)		
C29	C30	1.430(13)	C2	C3	1.44(2)		
C47	C48	1.527(14)	C9	C10	1.36(2)		
C47	C53	1.529(16)	C7	C39	1.44(4)		
C41	C42	1.355(14)	C7	C38	1.64(4)		
C27	C26	1.407(14)	C7	C38'	1.40(4)		
C6	C1	1.392(16)	C7	C39'	1.83(4)		

C6	C5	1.388(15)	C3	C4	1.33(2)
C19	C18	1.388(15)			

Table S3. Bond angles (°) for Ni₂-C'.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Ni2	Br2	Ni1	93.38(5)	C14	C15	C16	126.4(11)
Br4	Ni2	Br2	96.17(5)	C28	C32	C34	109.5(9)
Br4	Ni2	Br1	108.61(6)	C33	C32	C28	114.6(10)
Br2	Ni2	Br1	86.35(5)	C33	C32	C34	110.6(11)
N3	Ni2	Br4	96.7(2)	C44	C43	C42	119.8(11)
N3	Ni2	Br2	91.8(2)	C41	C42	C43	118.5(12)
N3	Ni2	Br1	154.7(2)	C49	C50	C51	118.9(9)
N4	Ni2	Br4	93.6(2)	C27	C26	C12	121.5(9)
N4	Ni2	Br2	168.9(3)	C31	C26	C27	117.3(10)
N4	Ni2	Br1	95.6(2)	C31	C26	C12	120.9(9)
N4	Ni2	N3	81.8(3)	C18	C23	C24	111.2(9)
Ni2	Br1	Ni1	90.40(5)	C25	C23	C18	112.5(9)
Br2	Ni1	Br3	95.98(5)	C25	C23	C24	111.1(10)
Br2	Ni1	Br1	82.97(5)	01	C13	C12	116.2(9)
Br3	Ni1	Br1	166.47(7)	C8	C13	01	122.1(10)
N2	Ni1	Br2	170.5(2)	C8	C13	C12	121.6(11)
N2	Ni1	Br3	92.3(2)	C35	C36	C30	110.8(10)
N2	Ni1	Br1	90.1(2)	C37	C36	C30	109.9(10)
N2	Ni1	N1	80.4(3)	C37	C36	C35	112.1(11)
N2	Ni1	O2	94.0(3)	N4	C48	C47	119.1(8)
N1	Ni1	Br2	95.4(2)	N4	C48	C49	119.8(9)
N1	Ni1	Br3	86.1(3)	C49	C48	C47	121.2(9)
N1	Ni1	Br1	107.4(3)	C29	C30	C36	124.5(9)
O2	Ni1	Br2	92.0(2)	C31	C30	C29	117.1(9)
O2	Ni1	Br3	81.2(2)	C31	C30	C36	118.4(9)
O2	Ni1	Br1	85.4(2)	C17	N1	Ni1	124.9(6)
O2	Ni1	N1	165.9(3)	C17	N1	C40	115.1(9)
C6	01	C13	120.0(8)	C40	N1	Ni1	110.6(7)
C29	C28	C32	124.0(9)	C17	C18	C23	123.3(10)
C27	C28	C29	117.8(9)	C19	C18	C17	118.8(11)
C27	C28	C32	118.2(9)	C19	C18	C23	117.8(10)
C41	N2	Ni1	117.6(7)	C43	C44	C45	118.2(12)
C45	N2	Ni1	124.0(8)	C16	C20	C22	112.8(10)
C45	N2	C41	118.3(9)	C16	C20	C21	111.8(10)

C29	N3	Ni2	118.7(6)	C21	C20	C22	108.7(11)
C29	N3	C47	113.5(8)	C50	C49	C48	121.6(11)
C47	N3	Ni2	111.8(6)	C6	C1	C14	124.3(10)
C16	C17	N1	121.7(10)	C2	C1	C14	117.6(11)
C16	C17	C18	120.7(10)	C2	C1	C6	117.6(11)
C18	C17	N1	117.6(10)	C6	C5	C7	120.4(12)
N1	C40	C41	111.0(8)	C6	C5	C4	120.1(12)
N1	C40	C46	111.6(9)	C4	C5	C7	119.5(12)
C46	C40	C41	109.9(10)	C10	C11	C12	121.4(14)
C19	C14	C1	120.2(10)	C13	C8	C7	120.1(12)
C15	C14	C19	115.9(11)	C9	C8	C13	119.0(12)
C15	C14	C1	123.5(11)	C9	C8	C7	120.8(12)
N4	C52	C51	121.9(11)	C13	C12	C26	122.8(10)
C28	C29	N3	120.4(8)	C11	C12	C26	120.3(10)
C28	C29	C30	121.9(9)	C11	C12	C13	116.7(11)
C30	C29	N3	117.6(8)	C50	C51	C52	118.8(11)
N3	C47	C48	110.1(8)	C1	C2	C3	119.3(14)
N3	C47	C53	111.5(9)	C10	C9	C8	120.1(13)
C48	C47	C53	109.2(9)	C5	C7	C8	113.0(11)
N2	C41	C40	118.3(9)	C5	C7	C38	106.4(17)
N2	C41	C42	122.4(11)	C5	C7	C39'	97.1(19)
C42	C41	C40	119.3(10)	C8	C7	C38	104.1(19)
C28	C27	C26	123.0(10)	C8	C7	C39'	100.9(17)
01	C6	C1	115.3(9)	C39	C7	C5	118(2)
01	C6	C5	122.9(10)	C39	C7	C8	115(2)
C5	C6	C1	121.7(11)	C39	C7	C38	97(2)
C18	C19	C14	122.1(11)	C38'	C7	C5	121(2)
C17	C16	C20	124.9(11)	C38'	C7	C8	122(2)
C15	C16	C17	115.9(10)	C38'	C7	C39'	93(2)
C15	C16	C20	119.1(10)	N2	C45	C44	122.8(12)
C26	C31	C30	122.8(10)	C4	C3	C2	121.8(14)
C52	N4	Ni2	125.5(7)	C9	C10	C11	120.8(14)
C48	N4	Ni2	115.5(6)	C3	C4	C5	119.3(13)
C48	N4	C52	119.0(8)				