Energy demand of electrochemical FA production

Faradic							
efficiency \rightarrow	50%	60%	70%	80%	90%	95%	100%
Voltage / V \downarrow							
1	385.9	321.6	275.7	241.2	214.4	203.1	193.0
1.5	578.9	482.4	413.5	361.8	321.6	304.7	289.5
1.7	656.1	546.8	468.6	410.1	364.5	345.3	328.1
1.8	694.7	578.9	496.2	434.2	385.9	365.6	347.3
1.9	733.3	611.1	523.8	458.3	407.4	385.9	366.6
2	771.9	643.2	551.3	482.4	428.8	406.3	385.9
2.1	810.5	675.4	578.9	506.5	450.3	426.6	405.2
2.2	849.1	707.6	606.5	530.7	471.7	446.9	424.5
2.3	887.7	739.7	634.0	554.8	493.1	467.2	443.8
2.4	926.3	771.9	661.6	578.9	514.6	487.5	463.1
2.5	964.9	804.0	689.2	603.0	536.0	507.8	482.4
2.6	1003.4	836.2	716.7	627.2	557.5	528.1	501.7
2.7	1042.0	868.4	744.3	651.3	578.9	548.4	521.0
2.75	1061.3	884.4	758.1	663.3	589.6	558.6	530.7

Table S1: Energy demand for the production of formic acid for different voltages and faradic efficiencies in kJ mol⁻¹

Faradic efficiency → Voltage / V↓	50%	60%	70%	80%	90%	95%	100%
1	62.7	75.2	87.7	100.3	112.8	119.1	125.4
1.5	41.8	50.1	58.5	66.9	75.2	79.4	83.6
1.7	36.9	44.2	51.6	59.0	66.4	70.1	73.7
1.8	34.8	41.8	48.7	55.7	62.7	66.2	69.6
1.9	33.0	39.6	46.2	52.8	59.4	62.7	66.0
2	31.3	37.6	43.9	50.1	56.4	59.5	62.7
2.1	29.8	35.8	41.8	47.8	53.7	56.7	59.7
2.2	28.5	34.2	39.9	45.6	51.3	54.1	57.0
2.3	27.3	32.7	38.2	43.6	49.1	51.8	54.5
2.4	26.1	31.3	36.6	41.8	47.0	49.6	52.2
2.5	25.1	30.1	35.1	40.1	45.1	47.6	50.1
2.6	24.1	28.9	33.7	38.6	43.4	45.8	48.2
2.7	23.2	27.9	32.5	37.1	41.8	44.1	46.4
2.75	22.8	27.4	31.9	36.5	41.0	43.3	45.6

Neglected energy demands: heat losses to ambience, energy demand for provision of CO₂.

Energy demand for the bicarbonate / formate approach

Concentration of formate / bicarbonate	5±1M	based on Bi et al., 2014 ¹
Ambient temperature	20 °C	
Reaction temperature - charging	40 ± 5 °C	based on Bi et al., 2014 ¹
Charging pressure	40 ± 5 bar	based on Bi et al., 2014 ¹
Efficiency of compressor	60 ± 5 %	
Conversion in hydrogenation reaction	100 %	Estimate
Reaction temperature - discharging	80 ± 5 °C	based on Papp et al, 2011 ²
Discharging pressure	6 bar	based on Papp et al, 2011 ²
Conversion in dehydrogenation reaction	100 %	Estimate
Assumptions for internal heat recovery:		

Table S3. Assumptions made for estimating energy demand of the bicarbonate / formate approach

Assumptions for internal heat recovery:

• During charging: 50 % of the heat released during H₂ compression can be used for preheating

o During discharging: the hot bicarbonate solution is used to preheat the cold formate solution entering the reactor; 20 K temperature that cannot be covered by internal heat integration

Neglected energy demands: heat losses to ambience and energy demand for mixing and gas introduction.

Energy demand for catalytic decomposition of FA to H₂ and CO₂

Table S4. Assumptions made for estimating energy demand for catalytic hydrogen release from FA

Concentration of formate / bicarbonate	4 ± 2 M	based on Fellay et al., 2008 ³
Ambient temperature	20 °C	
Reaction temperature	80 ± 20 °C	based on Fellay et al., 2008 ³
Share of water / formic acid evaporated	10 ± 5 %	Estimate
Share of water / forfile actu evaporated	5 ± 2.5 %	Estimate
conversion	100%	Estimate
A second with a second		

Assumptions for internal heat recovery:

Cold FA solution is preheated by cooling the hot streams leaving the reactor

 \circ It is assumed that 20 ± 10 K of the temperature difference must be provided externally, because of limitations in heat transfer

Neglected energy demands: heat losses to ambience.

Energy demand for thermal decomposition of FA to H₂O and CO

Table S5. Assumptions made for estimating energy demand for thermal carbon monoxiderelease from FA

Ambient temperature	20 °C	
Reaction temperature	500 ± 100 °C	Estimate based on Blake et al., 1971 ⁴
conversion	100%	Estimate

Assumptions for internal heat recovery:

Cold FA is preheated by cooling the hot stream leaving the reactor

 \circ It is assumed that 100 ± 25 K of the temperature difference must be provided externally, because of limitations in heat transfer

Neglected energy demands: heat losses to ambience.

Data on direct formic acid fuel cells

	no electr	ic current	electric current $j = 90 \text{ mA cm}^{-2}$			electric current j = 137 mA cm ⁻²			
c(FA)	Crossover current	molar Flux	Crossover current	molar Flux	loss due to crossover	Crossover current	molar Flux	loss due to crossover	
mol L ⁻¹	mA cm ⁻²	mol cm ⁻² s ⁻¹	mA cm ⁻²	mol cm ⁻² s ⁻¹	%	mA cm ⁻²	mol cm ⁻² s ⁻¹	%	
2	20	1.0E-07							
6	29	1.5E-07	13	6.7E-08	12.6				
10	51	2.6E-07	33	1.7E-07	26.8	35	1.8E-07	20.3	
12	63	3.3E-07	40	2.1E-07	30.8	50	2.6E-07	26.7	
15	92	4.8E-07	60	3.1E-07	40.0	60	3.1E-07	30.5	

Table S6: Crossover current data reported by Jeong et al.⁵ at 30 °C for a direct formic acid fuel cell membrane

Table S7: Voltages of direct formic acid fuel cell membranes at different current densities reported in literature

		На	et al., 2	004 ⁶		Rice et	Larsen et al., 2006 ⁸		Ortiz-Ortega et al., 2014 ⁹		
		maximum	1.8M	1.8M	4.4M	al., 2002 ⁷					
Current density	mA cm ⁻²	250	67	40	36		650	290	0	150	200
Power density	mW cm⁻²	33	17.8	16	14.2		255	160	0	69	68
Voltage	V	0.13	0.27	0.40	0.39	0.72	0.39	0.55	0.89	0.46	0.34
Electric energy	kJ mol⁻¹	25.5	51.3	77.2	76.1	138.9	75.7	106.5	171.7	88.8	65.6
Efficiency	%	10.5	21.2	31.9	31.5	57.4	31.3	44.0	71.0	36.7	27.1

Neglected effects that might influence the efficiency of direct formic acid fuel cell:

- If the direct FAFC is fed with an aqueous solution of FA, the solvent water must be transported out of the cell to avoid its accumulation. This water will most likely transport a certain share of the FA out of the system.

- Ohmic losses

- Preheating (might be negligible, since the FAFC is operated near ambient temperature and the heat released by the cell seems to be sufficient).

Producing electricity from FA

Table S8: Assumptions made for estimating efficiency of electricity production from FA

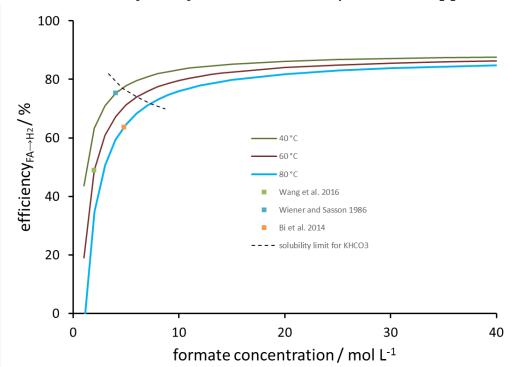

All assumption concerning the individual release options as described in the respective tables above						
Provision of heat for decomposition Partial combustion of hydrogen						
Energy demand for purification	21.7 kJ mol ⁻¹	PSA; based on Liu et al., 2011 ¹⁰				
Efficiency of fuel cell	60 ± 10 %	based on DoE report for status 2015 ¹¹				
Efficiency of ICE for repowering CO	37 ± 2 %	Based on Natkin et al., 2003 ¹²				

Table S9: Energy demand for hydrogen release and efficiency for electricity production from FA assuming electric heating for heat provision to the release step

	er	demand nol ⁻¹	h _{FA→Electricity} / %					
	with		without		assuming electric heating; not considering purification			
	heat	±	heat recovery	±	with		without	
	recovery		lecovery		heat	±	heat	±
					recovery		recovery	
Catalytic (aqueous)	65.69	18.9	108.10	32.8	32.8	12.7	15.3	16.8
Catalytic (pure FA)	20.41	1.4	24.37	2.2	51.6	10.0	49.9	10.0
Bicarbonate	40.54	13.6	77.00	19.1	43.2	11.5	28.2	12.7
Biological	?	?	?	?	?	?	?	?
thermal	53.73	1.7	80.30	6.3	14.8	2.1	3.8	3.0
direct-FAFC	not applicable		not applie	cable			24	5

Table S10: Efficiency of electricity production from FA assuming partial combustion of hydrogen to cover the energy demand of the release step

		ectricity %	h _{FA→Electricity} /%					
	assuming		l combusti	on of	assuming partial combustion of			
	_	the	gas;		_	the	gas;	
	not con	siderir	ng purificat	ion	consider	ing pu	rification (PSA)
	with without				with		without	
	heat	±	heat	±	heat	±	heat	±
	recovery		recovery		recovery		recovery	
Catalytic (aqueous)	43.7	10.7	33.2	14.6	34.7	11.4	24.2	15.2
Catalytic (pure FA)	54.9	9.2	54.0	9.0	46.0	10.1	45.0	9.9
Bicarbonate	49.9	10.0	40.9	10.4	49.9	10.0	40.9	10.4
Biological	?	?	?	?	?	?	Ş	?
thermal	30.0	1.7	26.5	2.9	30.0	1.7	26.5	2.9
direct-FAFC			24	5			24	5

Sensitivity analysis: Bicarbonate / Formate approach

Figure S1: Efficiency of H₂ release from an aqueous solution of a formate salt as as a function of concentration for different temperatures; added are three examples for concentrations/temperatures found in literature and the solubility limit for potassium bicarbonate

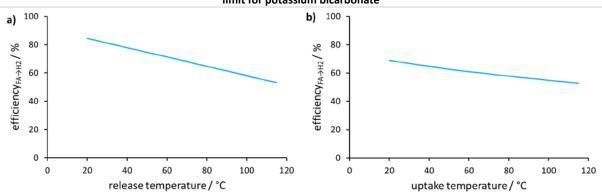


Figure S2: Efficiency of H₂ release from an aqueous solution of a formate salt as as a function of a) temperature of hydrogen release and b) temperature of hydrogen uptake

Supporting information for "Hydrogen storage in formic acid: A comparison of process options" by K. Müller, K. Brooks and T. Autrey

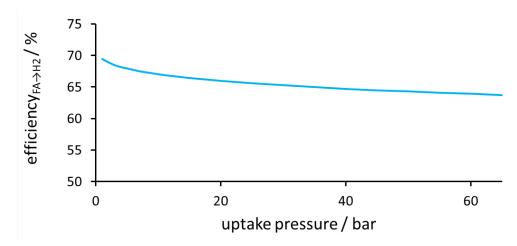
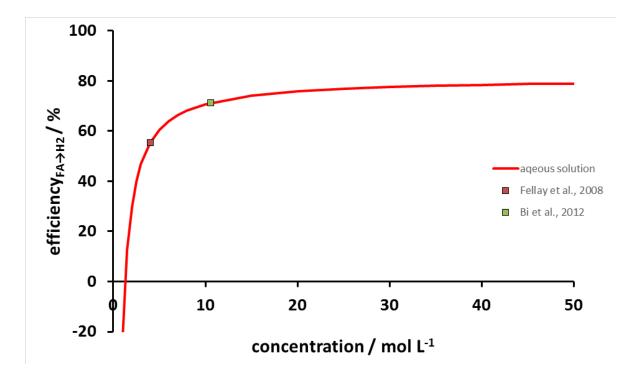



Figure S3 : Efficiency of H₂ release from an aqueous solution of a formate salt as a function of hydrogen pressure for the hydrogenation reaction of Bicarbonate to Formate

Sensitivity analysis: Catalytic decomposition of FA to H₂ and CO₂

Figure S4: Efficiency of catalytic H_2 release from FA at 80 °C as a function concentration; added are two examples for concentrations found in literature

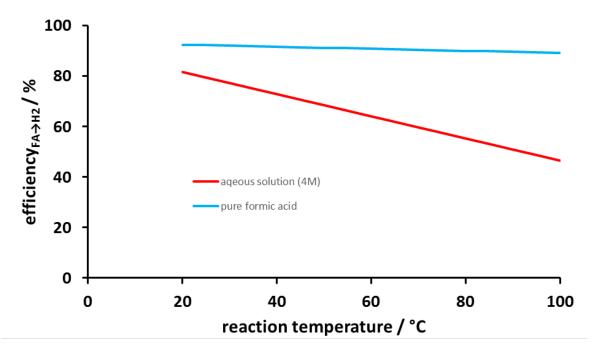


Figure S5: Efficiency of catalytic H₂ release from FC as function of reaction temperature

References for the supporting information

- 1. Bi, Q.-Y.; Lin, J.-D.; Liu, Y.-M.; Du, X.-L.; Wang, J.-Q.; He, H.-Y.; Cao, Y., An Aqueous Rechargeable Formate-Based Hydrogen Battery Driven by Heterogeneous Pd Catalysis. *Angewandte Chemie International Edition* **2014**, 53, (49), 13583-13587.
- 2. Papp, G.; Csorba, J.; Laurenczy, G.; Joó, F., A Charge/Discharge Device for Chemical Hydrogen Storage and Generation. *Angewandte Chemie* **2011**, 123, (44), 10617-10619.
- 3. Fellay, C.; Dyson, P. J.; Laurenczy, G., A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst. *Angewandte Chemie* **2008**, 120, (21), 4030-4032.
- 4. Blake, P. G.; Davies, H. H.; Jackson, G. E., Dehydration mechanisms in the thermal decomposition of gaseous formic acid. *Journal of the Chemical Society B: Physical Organic* **1971**, (0), 1923-1925.
- 5. Jeong, K.-J.; Miesse, C. M.; Choi, J.-H.; Lee, J.; Han, J.; Yoon, S. P.; Nam, S. W.; Lim, T.-H.; Lee, T. G., Fuel crossover in direct formic acid fuel cells. *Journal of Power Sources* **2007**, 168, (1), 119-125.
- 6. Ha, S.; Adams, B.; Masel, R. I., A miniature air breathing direct formic acid fuel cell. *Journal of Power Sources* **2004**, 128, (2), 119-124.
- 7. Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T., Direct formic acid fuel cells. *Journal of Power Sources* **2002**, 111, (1), 83-89.
- 8. Larsen, R.; Ha, S.; Zakzeski, J.; Masel, R. I., Unusually active palladium-based catalysts for the electrooxidation of formic acid. *Journal of Power Sources* **2006**, 157, (1), 78-84.
- 9. Ortiz-Ortega, E.; Goulet, M.-A.; Lee, J. W.; Guerra-Balcazar, M.; Arjona, N.; Kjeang, E.; Ledesma-Garcia, J.; Arriaga, L. G., A nanofluidic direct formic acid fuel cell with a combined flow-through and air-breathing electrode for high performance. *Lab on a Chip* **2014**, 14, (24), 4596-4598.
- 10. Liu, Z.; Grande, C. A.; Li, P.; Yu, J.; Rodrigues, A. E., Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas. *Separation and Purification Technology* **2011**, 81, (3), 307-317.
- 11. DOE Technical Targets for Fuel Cell Systems and Stacks for Transportation Applications -Status 2015. https://www.energy.gov/eere/fuelcells/doe-technical-targets-fuel-cell-systemsand-stacks-transportation-applications
- 12. Natkin, R. J.; Tang, X.; Boyer, B.; Oltmans, B.; Denlinger, A.; Heffel, J. W. *Hydrogen IC engine* boosting performance and NO_x study; 0148-7191; SAE Technical Paper: 2003.