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This Supporting Information provides detailed derivations behind the transformation

optics treatment of gap cavities presenting material asymmetry. First, the most relevant

steps in the computation of the spectral density for these systems are presented. Next, the

iterative calculation of the surface plasmon resonant frequencies in dimers comprising two

different (metal-metal and metal-dielectric) materials is described.

Spectral Density in Nanocativies with Material Asymmetry

Figure 1(a), which sketches the most general gap cavity considered in this work, introduces

the variables ϵ1 and ϵ2. These denote the permittivities of the metal/dielectric nanosphere

with radius R1 and R2, respectively. Taking into account this asymmetry in the material

characteristics of the dimer, we obtain the following expressions for the expansion coefficients
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in Equation (2) at the intermediate shell region in the transformed frame

a+l =
aE+l − e−α1r

′−(2l+1)
1 aE−l

e−(α1+α2)(r′2/r
′
1)

2l+1 − 1
,

a−l =
−e−α2r′2l+1

2 aE+l + aE−l
e−(α1+α2)(r′2/r

′
1)

2l+1 − 1
,

(S1)

where aE+l and aE−l are given in Equation (3), and r′1 = (1−∆1)/(1+∆1), r
′
2 = (1+∆2)/(1+

∆1), with ∆1 = (δ+R2−R0)/(2R1+R2−R0) and ∆2 = δ/(R2−R0)+(δ+R2−R0)/(R2+R0).

Note that e−α1,2 = (ϵ1,2 + ϵD)/(ϵ1,2 − ϵD) reflects the material asymmetry of the system.

Importantly, the surface plasmon (SP) resonances sustained by the system are given by the

poles of the scattering coefficients above, i.e., by the condition

e−[α1(ω)+α2(ω)](r′2/r
′
1)

2l+1 − 1 = 0. (S2)

Using the relation

Ez =
∂Φ′

∂x′
∂x′

∂z
+

∂Φ′

∂y′
∂y′

∂z
+

∂Φ′

∂z′
∂z′

∂z
, (S3)

we can derive the scattered electric field in the original frame at the quantum emitter (QE)

position, rE, from the quasi-static potential within the transformed geometry, Φ′(r′). This

way, we obtain

Esc
z (rE) = − Λ2

(rE −R0)2

∑
l≥0

{
a+l [(η − 1)l + ηl(η − 1)l−1] +

+a−l [(η − 1)−(l+1) − η(l + 1)(η − 1)−(l+2)
}
Yl0(π), (S4)

where the definition of η can be found in the main text. Note that the dependence on Λ in

Equation (S4) is removed through the source coefficients, aE±l also provided in the main text.

Once the scattered field is known, the Purcell factor and spectral density can be calculated

through Equations (4) and (5).
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Iterative Calculation of Surface Plasmon Resonant Frequencies

Equation (S4) serves as an example of the natural way in which our TO approach leads to a

decomposition of the spectral density as a sum of terms with different index l. As shown in

Ref. 1, each of these terms can be split in single metal cavities. A new index, σ = ±1, can

then be used to label the two contributions to J(ω) with the same index l. This splitting is

possible thanks to the relatively simple form that Equations (S1) acquire for α1 = α2. The

method also provides a clear physical interpretation for σ, which gives the parity of the SP

modes with respect to the gap center. Finally, this procedure makes it possible to write each

contribution (characterized by indices l and σ) to J(ω) in a Lorentzian-like form.

In nanocavities involving two different metals, or a metal and a dielectric, the division of

each l-term in J(ω) does not occur naturally, and cannot be carried out in a fully analytical

and exact form. In the following, we describe briefly the iterative, approximate way in which

we introduce index σ in this case. Importantly, this index still indicates the SP parity.

However, in our derivations, it appears naturally linked to one of the two particles (or more

precisely, permittivities) forming the dimer. For this reason, the two possible values we use

for this index are no longer (+1,−1) but (1, 2). This way, we borrow the same notation as

in Figure 1(a) to label the two nanospheres in the cavity.

Our objective is splitting the coefficients a+l and a−l into two resonant terms, each of

them depending on only one of the two metal permittivities. In the case of a single metal,

the decomposition is done by writing the denominator in Equations (S1) as

e−2α(r′2/r
′
1)

2l+1 − 1 =
(
e−α(r′2/r

′
1)

l+1
2 − 1

)(
e−α(r′2/r

′
1)

l+1
2 + 1

)
. (S5)

In order to mimic this decomposition, we deal with the problem of finding convenient ap-

proximate forms for Equation (S2) into two different frequency ranges. If we denote ϵ1 (ϵ2)

as the metal with a higher (lower) plasma frequency, such as Ag (Au) in the main text, we

can proceed as follows.
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First, we focus at frequencies ωl,1, which are solutions of Equation (S2) located below

the PS for ϵ1(ω). In this regime, we can make ϵ2(ωl,1) ≃ ϵ∞,2 and

e−α2(ωl,1) =
ϵ2(ωl,1) + ϵD
ϵ2(ωl,1)− ϵD

≈ ϵ∞,2 + ϵD
ϵ∞,2 − ϵD

. (S6)

Thus, we can write

e−[α1(ωl,1)+α2(ωl,1)](r′2/r
′
1)

2l+1 − 1 ≃ e−α1(ωl,1)
{(

ϵ∞,2−ϵD
ϵ∞,2+ϵD

)
(r′2/r

′
1)

2l+1 − eα1(ωl,1)
}
. (S7)

Thus, we can set the initial seed for the calculation of the SP resonant frequencies through

any of the two factors above. For simplicity, we take the condition e−α1(ωl,1) = 0, which yields

the zero-order approximation for ωl,1,

ωl,1 ≃ ω
(0)
l,1 =

ωp,1√
ϵ∞,1 + ϵD

. (S8)

This value can be refined iteratively to i-th order by solving the equation

e−[α1(ω
(i)
l,1)+α2(ω

(i−1)
l,1 )](r′2/r

′
1)

2l+1 − 1 = 0. (S9)

We focus next on ωl,2, low frequency solutions of Equation (S2). In this regime, we

perform the following zero-order approximation for e−α1(ωl,2)

e−α1(ωl,2) =
ϵ1(ωl,2) + ϵD
ϵ1(ωl,2)− ϵD

≈ 1, (S10)

which assumes that ϵ1(ωl,2) ≪ −ϵD. Introducing this expression into Equation (S2), we

obtain

e−[α1(ωl,2)+α2(ωl,2)](r′2/r
′
1)

2l+1 − 1 ≃ e−α2(ωl,2)](r′2/r
′
1)

2l+1 − 1 = 0 (S11)
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This leads to zero-order approximation to ωl,2,

ωl,2 ≃ ω
(0)
l,2 =

ωp,2√
ϵ∞,2 + ϵD

ξ0l + 1

ξ0l − 1

, (S12)

where ξ0l =
(

1+∆2

1−∆1

) 2l+1
2
. Again, this value can be refined by solving iteratively

e−[α1(ω
(i−1)
l,2 )+α2(ω

(i)
l,2)](r′2/r

′
1)

2l+1 − 1 = 0. (S13)

Once the SP resonant frequencies ωl,1 and ωl,2 are converged (typically within ∼ 10

iterations), the Lorentzian decomposition of J(ω) can be also applied to nanocavities with

material asymmetry. This acquires the form of Equation (9), where the width of each the

different terms is given by the Drude damping of the corresponding permittivity (γ1, γ2),

and the coupling strengths are calculated as

g2l,1 =
γ1π

2
Jl(ωl,1),

g2l,2 =
γ2π

2
Jl(ωl,2),

(S14)

where Jl(ω) is the l-contribution to the spectral density (which emerges naturally in our TO

approach) and the high quality resonator limit2 is implicit.

The derivations above can be easily adapted to treat cavities formed by metallic, ϵ1(ω),

and dielectric, ϵ2, spheres. In this case, Equation (S2) admits only one solution, which makes

the index σ redundant. The SP frequencies for such system can be written as

ωl =
ωp√

ϵ∞ + ϵD
ξl+1
ξl−1

, (S15)

where ξl = ξl(ϵ2) = e−α2

(
1+∆2

1−∆1

) 2l+1
2
.
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