Supporting Information

Electrooxidative C(sp3)-H Amination of Azoles via Intermolecular Oxidative C(sp3)-H/N-H Cross-Coupling

Jiwei Wu[†], Yi Zhou[†], Yuchen Zhou[†], Chien-Wei Chiang[†] Aiwen Lei*^{†‡}

[†] The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China; [‡] State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China. *Email: aiwenlei@whu.edu.cn

1.	General information	.S2
2.	Experimental procedure	.S2
3.	Additional experiments	S4
4.	Proposed mechanism	S6
5.	Detail descriptions for products	.S6
6.	Copies of product NMR spectra	S14
7.	References	S39

1. General information

All glassware was oven dried at 110 °C for hours and cooled down under vacuum. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The instrument for electrolysis is dual display potentiostat (D*J*S-292B) (made in China). The anode electrode and cathode electrode all are Pt ($1.5 \times 1.5 \text{ cm}^2$). Cyclic voltammograms were obtained on a CHI 605E potentiostat. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90 °C). GC-MS spectra were recorded on Varian GC MS 3900-2100T or SHIMADZU GC MS-2010. ¹H and ¹³C NMR data were recorded with Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts were reported relative to tetramethylsilane (0 ppm for ¹H), CDCl₃ (77.0 ppm for ¹³C).

2. Experimental Proceduces

2.1 General procedure for the electrooxidative C(sp3)-H amination of azoles with tetrahydrofuran: In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, azoles (0.3 mmol) and ⁿBu₄NBF₄ (65.85 mg, 0.2 mmol) were combined and added. The bottle was equipped with platinum electrodes (1.5 × 1.5 cm²) as both the anode and cathode and was then charged with nitrogen. Under the protection of N₂, CH₃CN (8 mL) and tetrahydrofuran (2 mL) were injected respectively into the tubes via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 12 mA at 80 °C for 3-5 h. When the reaction was finished, the reaction mixture was washed with water and extracted with diethyl ether (10 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product was obtained by flash column chromatography on silica gel.

2.2 General procedure for the electrooxidative C(sp3)–H amination of 1H-benzotriazole with other C(sp3)-H sources: In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, 1H-benzotriazole (35.74 mg, 0.3 mmol) and ${}^{n}Bu_{4}NBF_{4}$ (65.85 mg, 0.2 mmol) were combined and added. The bottle was equipped with platinum electrodes (1.5×1.5 cm²) as both the anode and cathode and was then charged with nitrogen. Under the protection of N₂, CH₃CN (10 mL) and other C(sp3)-H sources (10 equiv.) were injected respectively into the tubes via syringes.

The reaction mixture was stirred and electrolyzed at a constant current of 12 mA at 80 $^{\circ}$ C for 3 h. When the reaction was finished, the reaction mixture was washed with water and extracted with diethyl ether (10 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product was obtained by flash column chromatography on silica gel.

Procedure for gram scale synthesis: In an oven-dried undivided three-necked bottle (250 mL) equipped with a stir bar, 1H-benzotriazole (1.19 g, 10 mmol) and ⁿBu₄NBF₄ (987.81 mg, 3 mmol) were combined and added. The bottle was equipped with platinum electrodes $(1.5 \times 1.5 \text{ cm}^2)$ as both the anode and cathode and was then charged with nitrogen. Under the protection of N₂, CH₃CN (60 mL) and tetrahydrofuran (40 mL) were injected respectively into the tubes via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 60 mA at 80 °C for 24 h. When the reaction was finished, the reaction mixture was washed with water and extracted with diethyl ether (100 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product was obtained by flash column chromatography on silica gel.

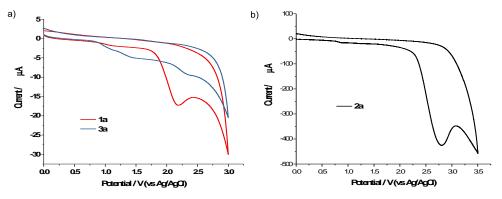

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Entry	Variation from the standard conditions	Yield of 3a (%) ^b
1	Pt (-) C (+) instead of Pt (-) Pt (+)	51
2	C (-) C (+) instead of Pt (-) Pt (+)	trace
3	Ni (-) C (+) instead of Pt (-) Pt (+)	38
4	ⁿ Bu ₄ NClO ₄ instead of ⁿ Bu ₄ NBF ₄	84
5	ⁿ Bu ₄ NHSO ₄ instead of ⁿ Bu ₄ NBF ₄	69
6	ⁿ Bu ₄ NI instead of ⁿ Bu ₄ NBF ₄	n.d.
7	ⁿ Et ₄ NBF ₄ instead of ⁿ Bu ₄ NBF ₄	88
8	DCE instead of CH ₃ CN	71
9	DM SO instead of CH ₃ CN	trace
10	H ₂ O instead of CH ₃ CN	n.d.
11	EtOH instead of CH ₃ CN	n.d.

Table S1. Optimization of the reaction conditions.^a

^a Reaction conditions: Pt anode, Pt cathode, constant current = 12 mA, **1a** (0.3 mmol), **2a** (2.0 mL), ⁿBu₄NBF₄ (0.2 mmol), in 8.0 mL CH₃CN at 80 °C under N₂ for 3 h. ^b Yields shown are of isolated products. RT = room temperature. n.d. = not detected.

3. Additional experiments

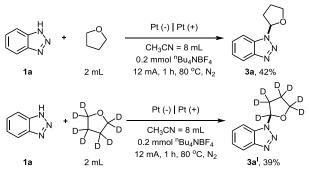
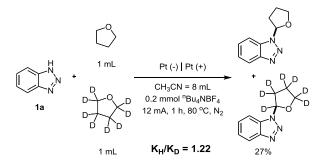
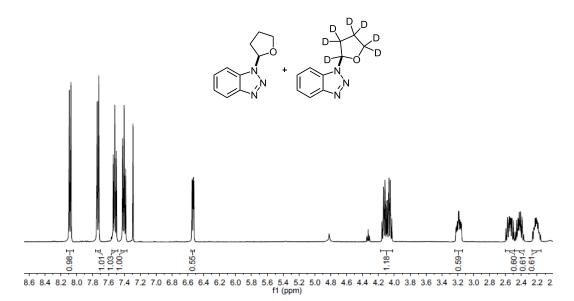

3.1 Cyclic voltammetry of 1a, 3a and 2a.

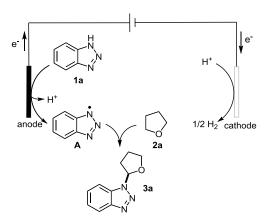
Figure S1. a) Cyclic voltammetry of **1a** and **3a** in CH₃CN with ⁿBu₄NBF₄ (0.2 mmol) under nitrogen at a platinum-disk electrode at a scan rate of v = 0.1 Vs⁻¹. b) Cyclic voltammetry of **2a** in CH₃CN with ⁿBu₄NBF₄ (0.2 mmol) under nitrogen at a platinum-disk electrode at a scan rate of v = 0.1 Vs⁻¹.

3.2 KIE Determined with Two Parallel Reactions:


General procedure and results: In two oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, 1H-benzotriazole (35.74 mg, 0.3 mmol), ⁿBu₄NBF₄ (65.85 mg, 0.2 mmol) and were combined and added. The bottle was equipped with platinum electrodes $(1.5 \times 1.5 \text{ cm}^2)$ as both the anode and cathode and was then charged with nitrogen. Under the protection of N₂, CH₃CN (8 mL) tetrahydrofuran (2 mL) and *d*₈-tetrahydrofuran (2 mL) were injected respectively into the tubes via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 12 mA at 80 °C for 1 h. When the reaction was finished, the reaction mixture was washed with water and extracted with diethyl ether (10 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product was obtained by flash column chromatography on silica gel. As a result, the desired coupling products were obtained in 42% and 39% yields, respectively, in which $k_H/k_D = 1.07$.

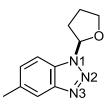


K_H/K_D = 1.07


3.3 Intermolecular Kinetic Isotopic Effect (KIE)

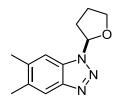
General procedure and characterization spectrum: In an oven-dried undivided three-necked bottle (25 mL) equipped with a stir bar, 1H-benzotriazole (35.74 mg, 0.3 mmol), ⁿBu₄NBF₄ (65.85 mg, 0.2 mmol) and were combined and added. The bottle was equipped with platinum electrodes $(1.5 \times 1.5 \text{ cm}^2)$ as both the anode and cathode and was then charged with nitrogen. Under the protection of N₂, CH₃CN (8 mL), tetrahydrofuran (1 mL) and *d*₈-tetrahydrofuran (1 mL) were injected into the tubes via syringes. The reaction mixture was stirred and electrolyzed at a constant current of 12 mA at 80 °C for 1 h. When the reaction was finished, the reaction mixture was washed with water and extracted with diethyl ether (10 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The pure product was obtained by flash column chromatography on silica gel with a total yield of 27% and detected by ¹H NMR to determine the exact KIE value. From the following ¹H NMR spectrum, we can calculate the KIE value to be $k_H/k_D = 0.55/0.45 = 1.22$

4. Proposed mechanism

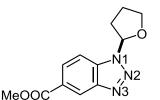

Scheme S1. Proposed mechanism.

5. Detail descriptions for products

1-(Tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole (3a)^[1]: 52.2 mg, yield: 92%. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 6.51 (dd, J = 6.8, 2.4 Hz, 1H), 4.14 – 3.99 (m, 2H), 3.19 – 3.10 (m, 1H), 2.57 – 2.46 (m, 1H), 2.45 – 2.33 (m, 1H), 2.23 – 2.13 (m, 1H).


 ^{13}C NMR (101 MHz, CDCl₃) δ 146.37, 132.82, 127.53, 124.15, 119.86, 110.45, 87.89, 69.32, 30.83, 24.44.

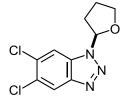
5-Methyl-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole and **6-Methyl-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole (3b,** N1/N3 = 1/1.6): 56.7 mg, yield: 93%.


¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.5 Hz, 1.00H), 7.81 (s, 0.64H), 7.58 (d, J = 8.5 Hz, 0.67H), 7.47 (s, 1.00H), 7.32 (d, J = 7.5 Hz, 0.66H), 7.20 (d, J = 8.5 Hz, 1.02H), 6.47 (t, J = 7.0 Hz, 1.67H), 4.12 – 3.99 (m, 3.49H), 3.21 – 3.09 (m, 1.74H), 2.52 (d, J = 8.6 Hz, 5.89H), 2.47 – 2.35 (m, 2.81H), 2.23 – 2.12 (m, 1.78H).

¹³C NMR (101 MHz, CDCl₃) δ 146.99, 145.06, 138.17, 134.15, 133.31, 131.32, 129.68, 126.43, 119.29, 118.78, 109.95, 109.61, 87.91, 87.65, 69.25, 30.81, 30.65, 24.48, 24.45, 22.07, 21.54. HRMS (ESI) calculated for $C_{11}H_{13}N_3O[M+Na]^+$: 226.0951; found: 226.0956.

5,6-Dimethyl-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole (**3c**)^[1]: 54.1 mg, yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.45 (s, 1H), 6.45 (dd, J = 6.7, 2.5 Hz, 1H), 4.12 – 4.05 (m, 1H), 4.04 – 3.97 (m, 1H), 3.20 – 3.10 (m, 1H), 2.54 – 2.35 (m, 8H), 2.21 – 2.11 (m, 1H).

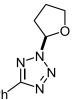
¹³C NMR (101 MHz, CDCl₃) δ 145.66, 137.86, 133.89, 131.88, 118.91, 109.84, 87.68, 69.18, 30.63, 24.48, 21.00, 20.48.



Methyl-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylate and Methyl 1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole-6-carboxylate (3d, N1/N3 = 1/3.7): 44.5 mg, yield: 60%.

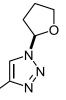
¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1.00H), 8.49 (s, 0.27H), 8.19 (d, J = 8.7 Hz, 1.11H), 8.08 (q, J = 8.7 Hz, 0.59H), 7.75 (d, J = 8.7 Hz, 1.13H), 6.57 (dd, J = 6.7, 1.9 Hz, 0.32H), 6.53 (dd, J = 6.7, 1.9 Hz, 1.09H), 4.16 – 4.03 (m, J = 28.1, 7.9 Hz, 3.19H), 3.99 (s, 4.29H), 3.21 – 3.14 (m, 1.49H), 2.61 – 2.48 (m, 1.49H), 2.44 – 2.33 (m, 1.64H), 2.23 – 2.16 (m, 1.52H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 166.67, 148.42, 146.16, 135.21, 132.64, 129.31, 128.39, 126.56, 124.96, 122.81, 119.79, 113.32, 110.50, 88.33, 69.57, 52.55, 31.06, 24.37.


HRMS (ESI) calculated for $C_{12}H_{13}N_3O_3[M+Na]^+$: 270.0849; found: 270.0855.

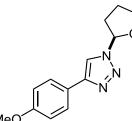
5,6-Dichloro-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole (3e): 33.2 mg, yield: 43%. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.91 (s, 1H), 6.44 (dd, J = 6.7, 2.1 Hz, 1H), 4.13 (q, J = 7.8 Hz, 1H), 4.07 – 3.99 (m, 1H), 3.23 – 3.16 (m, 1H), 2.60 – 2.48 (m, 1H), 2.37 – 2.29 (m, 1H), 2.27 – 2.14 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 145.34, 132.70, 131.94, 129.03, 120.76, 112.22, 88.80, 69.62, 31.03, 24.18.


HRMS (EI) calculated for $C_{10}H_9Cl_2N_3O$ (M): 257.0123; found: 257.0132.

5-Phenyl-2-(tetrahydrofuran-2-yl)-2H-tetrazole (3f)^[2]: 54.5 mg, yield: 84%.

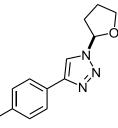
¹H NMR (400 MHz, CDCl₃) δ 8.19 (dd, J = 7.4, 2.3 Hz, 2H), 7.51 (dq, J = 7.3, 2.7, 2.1 Hz, 3H), 6.61 (dd, J = 6.5, 2.1 Hz, 1H), 4.34 – 4.27 (m, 1H), 4.20 – 4.13 (m, 1H), 2.77 – 2.67 (m, 1H), 2.60 – 2.47 (m, 2H), 2.25 – 2.14 (m, 1H).


¹³C NMR (101 MHz, CDCl₃) δ 165.26, 130.47, 128.96, 127.45, 127.04, 91.77, 70.35, 31.96, 24.15.

4-Phenyl-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole (3g)^[3]: 57.4 mg, yield: 89%.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.83 (d, J = 7.1 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 6.37 (dd, J = 6.7, 2.5 Hz, 1H), 4.27 – 4.20 (m, 1H), 4.12 – 4.06 (m, 1H), 2.77 – 2.69 (m, 1H), 2.52 – 2.41 (m, 2H), 2.17 – 2.10 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 148.12, 131.48, 130.38, 128.89, 128.58, 126.09, 92.39, 69.65, 31.43, 24.56.



MeO

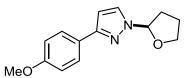
4-(4-Methoxyphenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole (3h): 44.1mg, yield: 60%. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.75 (d, *J* = 8.9 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 6.34 (dd, *J* = 6.7, 2.5 Hz, 1H), 4.25 - 4.17 (m, 1H), 4.12 - 4.03 (m, 1H), 3.86 (s, 3H), 2.77 - 2.67 (m, 1H), 2.54 -2.37 (m, 2H), 2.18 - 2.05 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.92, 148.01, 131.01, 127.42, 123.06, 114.29, 92.28, 69.61, 55.40, 31.37, 24.61.

HRMS (ESI) calculated for $C_{13}H_{15}N_3O_2$ [M+Na]⁺: 268.1056; found: 268.1071.

4-(4-Chlorophenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole (3i): 55.3 mg, yield: 74%.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.76 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.5 Hz, 2H), 6.35 (dd, J = 6.6, 2.4 Hz, 1H), 4.22 (q, J = 7.7 Hz, 1H), 4.09 (q, J = 7.7 Hz, 1H), 2.77 – 2.67 (m, 1H), 2.55 – 2.39 (m, 2H), 2.20 – 2.06 (m, 1H).

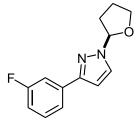

¹³C NMR (101 MHz, CDCl₃) δ 147.14, 134.41, 131.46, 129.16, 128.94, 127.38, 92.52, 69.76, 31.49, 24.59.

HRMS (ESI) calculated for C₁₂H₁₂ClN₃O [M+Na]⁺: 273.0561; found: 273.0567.

3-Phenyl-1-(tetrahydrofuran-2-yl)-1H-pyrazole (3j)^[3]: 58.5 mg, yield: 91%.

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.1 Hz, 2H), 7.61 (d, J = 2.4 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 6.61 (d, J = 2.4 Hz, 1H), 6.06 (dd, J = 6.6, 2.5 Hz, 1H), 4.24 - 4.19 (m, 1H), 4.04 (q, J = 7.3 Hz, 1H), 2.74 - 2.67 (m, 1H), 2.43 - 2.32 (m, 1H), 2.30 - 2.21 (m, 1H), 2.13 - 2.02 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 151.95, 133.68, 129.25, 128.62, 127.70, 125.76, 102.96, 90.32, 69.39, 32.02, 24.44.

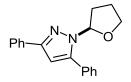


3-(4-Methoxyphenyl)-1-(tetrahydrofuran-2-yl)-1H-pyrazole (3k): 67.4 mg, yield: 92%.

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 2.4 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 6.52 (d, J = 2.4 Hz, 1H), 6.04 (dd, J = 6.6, 2.6 Hz, 1H), 4.20 (td, J = 7.9, 5.5 Hz, 1H), 4.03 (q, J = 7.4 Hz, 1H), 3.86 (s, 3H), 2.73 – 2.64 (m, 1H), 2.43 – 2.30 (m, 1H), 2.30 – 2.19 (m, 1H), 2.13 – 2.02 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.35, 151.85, 129.20, 127.03, 126.57, 114.01, 102.50, 90.27, 69.37, 55.40, 32.00, 24.50.

HRMS (ESI) calculated for C₁₄H₁₄N₂O₂ [M+H]⁺: 245.1285; found: 245.1284


3-(3-Fluorophenyl)-1-(tetrahydrofuran-2-yl)-1H-pyrazole (3l): 57.8 mg, yield: 83%.

¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.54 (m, 3H), 7.37 (q, J = 7.8, 7.1 Hz, 1H), 7.01 (t, J = 8.4 Hz, 1H), 6.61 – 6.56 (m, 1H), 6.04 (d, J = 6.4 Hz, 1H), 4.21 (q, J = 7.1 Hz, 1H), 4.05 (q, J = 7.1 Hz, 1H), 2.75 – 2.64 (m, 1H), 2.42 – 2.33 (m, 1H), 2.31 – 2.25 (m, 1H), 2.14 – 2.03 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.26 (d, J = 244.6 Hz), 150.87, 135.99 (d, J = 8.4 Hz), 130.13 (d, J = 8.4 Hz), 129.52, 121.39 (d, J = 2.9 Hz), 114.46 (d, J = 21.3 Hz), 112.58 (d, J = 22.5 Hz), 103.18, 90.40, 69.50, 32.05, 24.46.

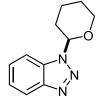
¹⁹FNMR (377 MHz, CDCl₃) δ -113.53.

HRMS (ESI) calculated for $C_{13}H_{13}FN_2O[M+H]^+$: 233.1085; found: 233.1085.

3,5-Diphenyl-1-(tetrahydrofuran-2-yl)-1H-pyrazole (**3m**)^[4]: 52.2 mg, yield: 60%.

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.0 Hz, 2H), 7.66 (d, J = 6.8 Hz, 2H), 7.53 (t, J = 7.2 Hz, 2H), 7.50 – 7.43 (m, 3H), 7.36 (t, J = 7.4 Hz, 1H), 6.67 (s, 1H), 6.04 (dd, J = 7.2, 3.0 Hz, 1H), 4.36 – 4.29 (m, 1H), 4.08 – 4.00 (m, 1H), 2.92 – 2.83 (m, 1H), 2.72 – 2.60 (m, 1H), 2.32 – 2.23 (m, 1H), 2.15 – 2.05 (m 1H).

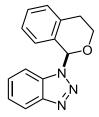
¹³C NMR (101 MHz, CDCl₃) δ 150.91, 145.79, 133.68, 130.57, 129.39, 128.79, 128.71, 128.64, 127.81, 125.85, 103.73, 86.69, 69.26, 31.11, 25.68.



1-(Tetrahydrofuran-2-yl)-1H-indazole (3n): 41.2 mg, yield: 73%.

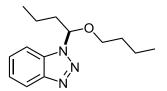
¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 6.43 (dd, J = 6.7, 3.2 Hz, 1H), 4.12 – 4.00 (m, 2H), 3.03 – 2.93 (m, 1H), 2.51 – 2.38 (m, 2H), 2.20 – 2.08 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 139.94, 134.03, 126.65, 124.75, 121.23, 121.09, 109.74, 86.91, 68.86, 30.33, 25.17.


HRMS (ESI) calculated for $C_{11}H_{12}N_2O[M+Na]^+$: 211.0842; found: 211.0843.

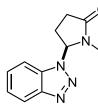
1-(Tetrahydro-2H-pyran-2-yl)-1H-benzo[d][1,2,3]triazole (30)^[1]: 30.5 mg, yield: 50%.

¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.3 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 6.05 (dd, J = 8.3, 2.9 Hz, 1H), 4.00 – 3.91 (m, 1H), 3.84 – 3.75 (m, 1H), 2.69 – 2.57 (m, 1H), 2.27 – 2.14 (m, 2H), 1.91 – 1.69 (m, 3H).

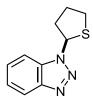

¹³C NMR (101 MHz, CDCl₃) δ 146.41, 132.50, 127.54, 124.23, 119.96, 111.18, 85.74, 66.97, 29.37, 24.99, 21.72.

1-(Isochroman-1-yl)-1H-benzo[d][1,2,3]triazole (3p)^[1]: 67.8 mg, yield: 90%.

¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 6.3, 3.1 Hz, 1H), 7.44 (s, 1H), 7.42 – 7.33 (m, 4H), 7.21 (t, J = 7.3 Hz, 1H), 7.03 (dq, J = 6.9, 3.3 Hz, 1H), 6.96 (d, J = 7.8 Hz, 1H), 4.15 – 4.08 (m, 2H), 3.16 (dt, J = 14.3, 6.9 Hz, 1H), 3.07 – 3.01 (m, 1H).

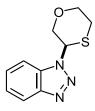

¹³C NMR (101 MHz, CDCl₃) δ 146.48, 134.80, 132.72, 130.26, 129.17, 127.74, 127.11, 126.95, 124.18, 120.14, 110.84, 83.51, 62.11, 27.89.

1-(1-Butoxybutyl)-1H-benzo[d][1,2,3]triazole (3q)^[5]: 22.2 mg, yield: 30%.


¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 8.3 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 8.1 Hz, 1H), 6.08 (t, J = 6.8 Hz, 1H), 3.52 – 3.44 (m, 1H), 3.27 – 3.18 (m, 1H), 2.34 – 2.22 (m, 1H), 2.17 – 2.06 (m, 1H), 1.56 – 1.43 (m, 3H), 1.36 – 1.27 (m, 3H), 0.96 (t, J = 7.4 Hz, 3H), 0.84 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 146.93, 131.36, 127.45, 124.29, 120.17, 111.47, 91.05, 69.03, 36.85, 31.38, 19.28, 18.38, 13.83, 13.63.

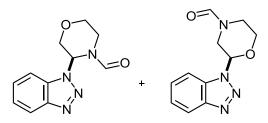
5-(1H-benzo[d][1,2,3]triazol-1-yl)-1-methylpyrrolidin-2-one (**3r**)^[1]: 55.1 mg, yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.2 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.48 – 7.43 (m, 2H), 6.52 (dd, J = 8.5, 2.9 Hz, 1H), 3.01 – 2.81 (m, 2H), 2.70 (s, 4H), 2.53 – 2.44 (m, 1H).


¹³C NMR (101 MHz, CDCl₃) δ 174.51, 146.69, 131.34, 128.47, 124.71, 120.78, 109.05, 74.69, 29.37, 27.73, 25.16.

1-(Tetrahydrothiophen-2-yl)-1H-benzo[d][1,2,3]triazole (3s)^[3]: 30.8 mg, yield: 50%.

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 6.48 (dd, J = 6.4, 3.9 Hz, 1H), 3.37 – 3.29 (m, 1H), 3.16 – 3.10 (m, 1H), 2.98 – 2.93 (m, 1H), 2.64 – 2.47 (m, 2H), 2.39 – 2.32 (m, 1H).

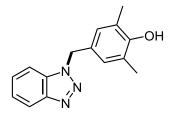
¹³C NMR (101 MHz, CDCl₃) δ 146.52, 132.18, 127.23, 124.13, 120.18, 110.38, 65.97, 37.28, 33.97, 29.96.



1-(1,4-Oxathian-3-yl)-1H-benzo[d][1,2,3]triazole (3t): 41.8 mg, yield: 63%.

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 5.79 (dd, J = 5.8, 3.1 Hz, 1H), 4.67 (dd, J = 12.1, 5.8 Hz, 1H), 4.46 (dd, J = 12.1, 3.1 Hz, 1H), 4.19 – 4.13 (m, 2H), 3.11 (dt, J = 13.8, 5.3 Hz, 1H), 2.86 (dt, J = 13.8, 4.8 Hz, 1H).

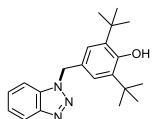
¹³C NMR (101 MHz, CDCl₃) δ 146.13, 132.46, 127.75, 124.41, 120.38, 110.51, 70.85, 68.24, 54.28, 26.77.


HRMS (ESI) calculated for $C_{10}H_{11}N_3OS [M+Na]^+$: 244.0515; found: 244.0518.

3-(1H-benzo[d][1,2,3]triazol-1-yl)morpholine-4-carbaldehyde and **2-(1H-benzo[d][1,2,3]triazol-1-yl)morpholine-4-carbaldehyde** ($3u/3u^{I} = 2.3/1$): 63.4 mg, yield: 91%.

¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 0.43H), 8.18 (s, 1.00H), 8.12 – 8.06 (m, 1.44H), 7.90 (d, J = 8.5 Hz, 0.45H), 7.82 (d, J = 8.4 Hz, 1.02H), 7.56 – 7.48 (m, 1.47H), 7.40 (q, J = 8.1 Hz, 1.48H), 6.85 (d, J = 3.6 Hz, 1.00H), 6.41 (d, J = 3.4 Hz, 0.45H), 4.85 – 4.76 (m, 1.50H), 4.26 – 4.15 (m, 2.42H), 4.10 (dd, J = 12.6, 3.7 Hz, 1.07H), 3.82 – 3.63 (m, 2.59H), 3.48 (d, J = 13.3 Hz, 1.06H), 3.16 – 3.05 (m, 0.47H). ¹³C NMR (101 MHz, CDCl₃) δ 175.55, 174.43, 146.61, 144.49, 131.26, 128.39, 127.06, 124.63, 120.70, 118.43, 108.97, 80.59, 74.62, 29.29, 28.84, 27.65, 25.81, 25.08, 23.85.

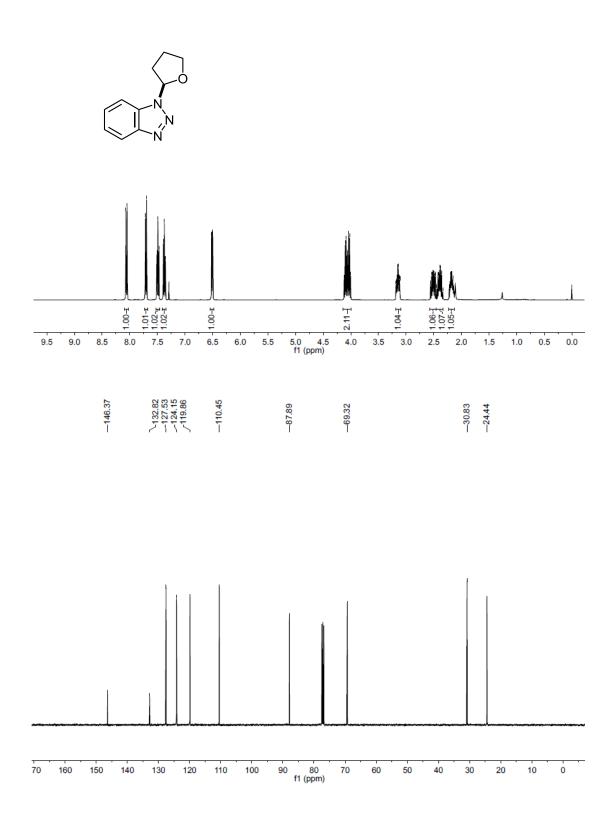
HRMS (ESI) calculated for $C_{11}H_{12}N_4O_2[M+Na]^+$: 255.0852; found: 255.0858.



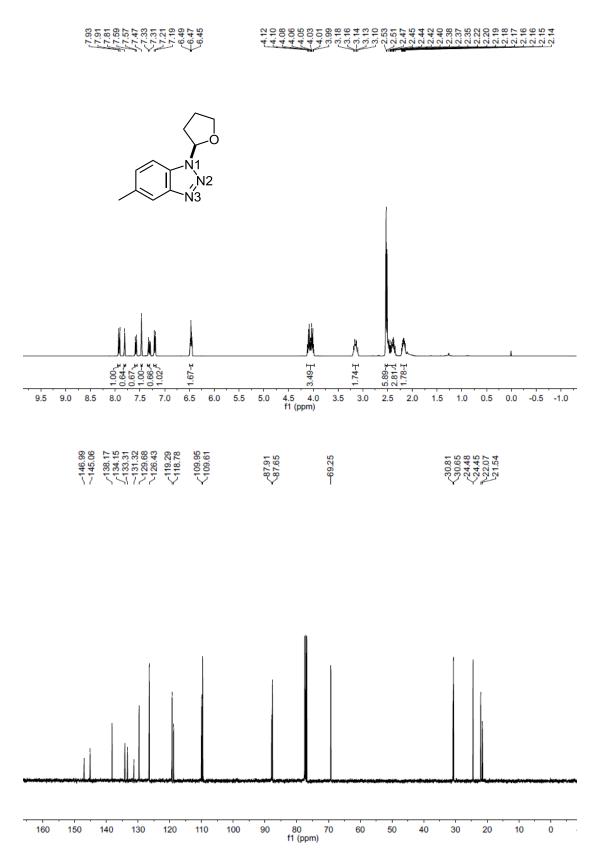
4-((1H-Benzo[d][1,2,3]triazol-1-yl)methyl)-2,6-dimethylphenol (**3v**): 51.7 mg, yield: 68%. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.3 Hz, 1H), 7.43 (d, J = 3.6 Hz, 2H), 7.38 – 7.34 (m, 1H), 6.97 (s, 2H), 5.73 (s, 2H), 5.34 (s, 1H), 2.23 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 152.57, 146.23, 132.73, 128.14, 127.29, 126.03, 123.93, 123.85, 119.89, 110.00, 52.07, 16.06. HRMS (ESI) calculated for C₁₅H₁₅N₃O[M+H]⁺: 254.1288; found: 254.1296.

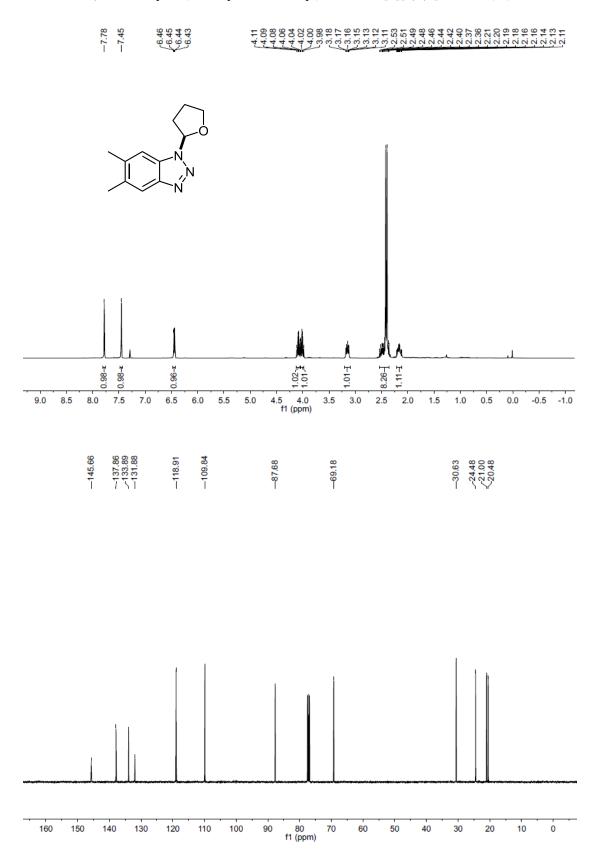
1-(Cyclopent-2-en-1-yl)-1H-benzo[d][1,2,3]triazole (3w)^[6]: 23.3mg, yield: 42%.

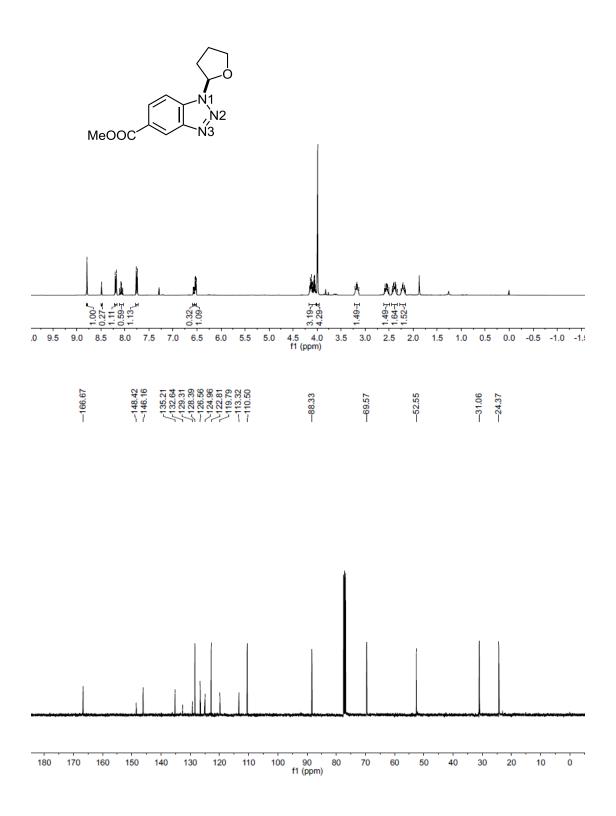
¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.7 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.49 – 7.42 (m, 1H), 7.40 – 7.36 (m, J = 8.0, 7.0, 1.0 Hz, 1H), 6.34 -6.31 (m, 1H), 6.20 – 6.18 (m, 1H), 6.01 - 5.99 (m, 1H), 2.90 – 2.78 (m, 1H), 2.78 – 2.61 (m, 2H), 2.29 – 2.20 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.70, 137.07, 131.96, 128.45, 126.87, 123.77, 120.11, 110.26, 65.84, 32.05, 30.16.

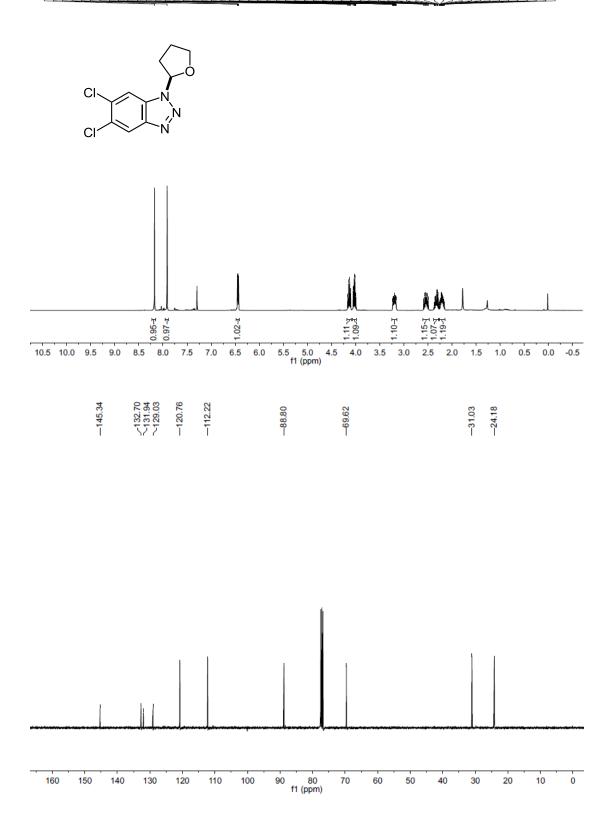

4-((1H-benzo[d][1,2,3]triazol-1-yl)methyl)-2,6-di-tert-butylphenol (5a): 76.8 mg, yield: 76%.

¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.05 (m, 1H), 7.46 (q, J = 8.7 Hz, 2H), 7.39 – 7.33 (m, 1H), 7.20 (s, 2H), 5.77 (s, 2H), 5.34 (d, J = 2.9 Hz, 1H), 1.41 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 153.95, 146.22, 136.50, 132.82, 127.20, 125.42, 124.86, 123.81, 119.95, 109.93, 52.71, 34.33, 30.17. HRMS (ESI) calculated for C₂₁H₂₇N₃O [M+H]⁺: 338.2227; found: 338.2230.

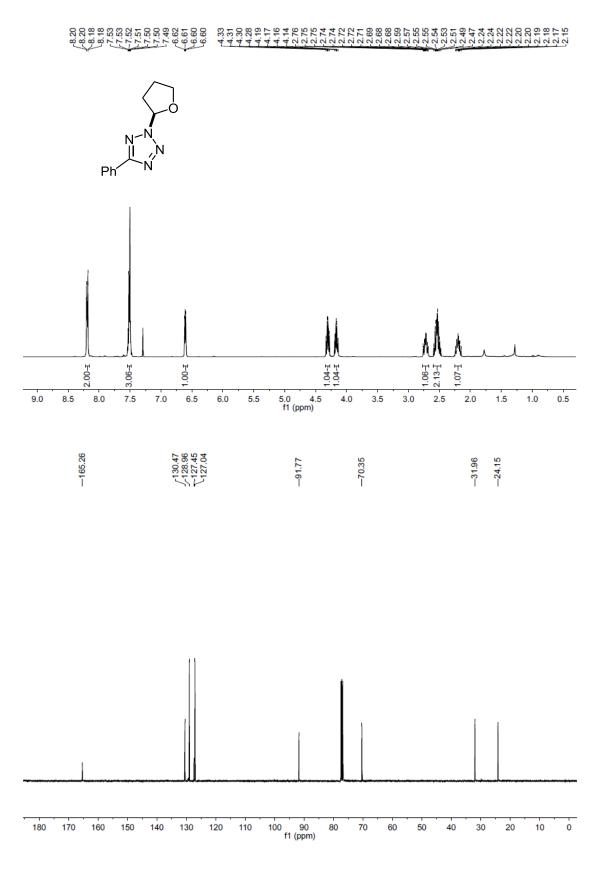

6. Copies of product NMR spectra

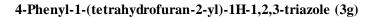

1-(Tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole (3a)

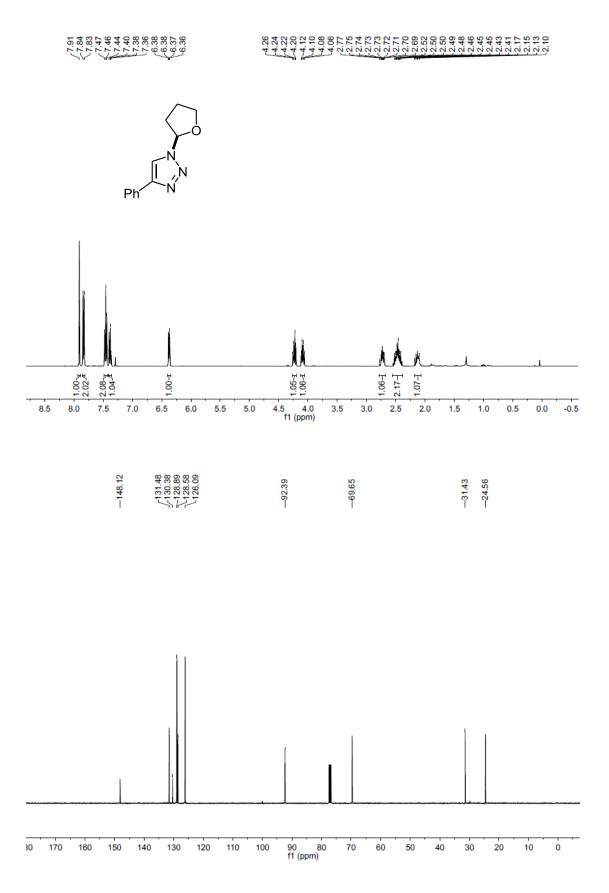

$\label{eq:stability} 5-Methyl-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole and 6-Methyl-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole (3b, N1/N3 = 1/1.6)$



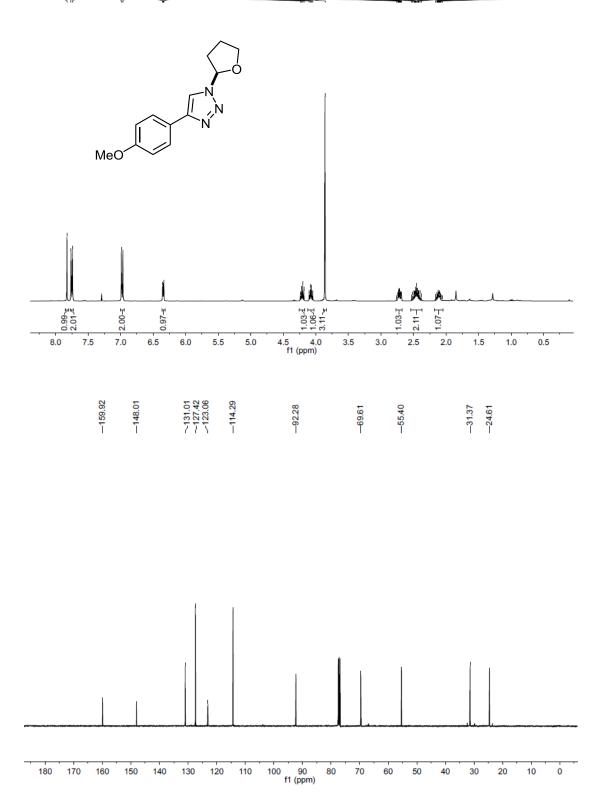
5,6-Dimethyl-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole (3c)

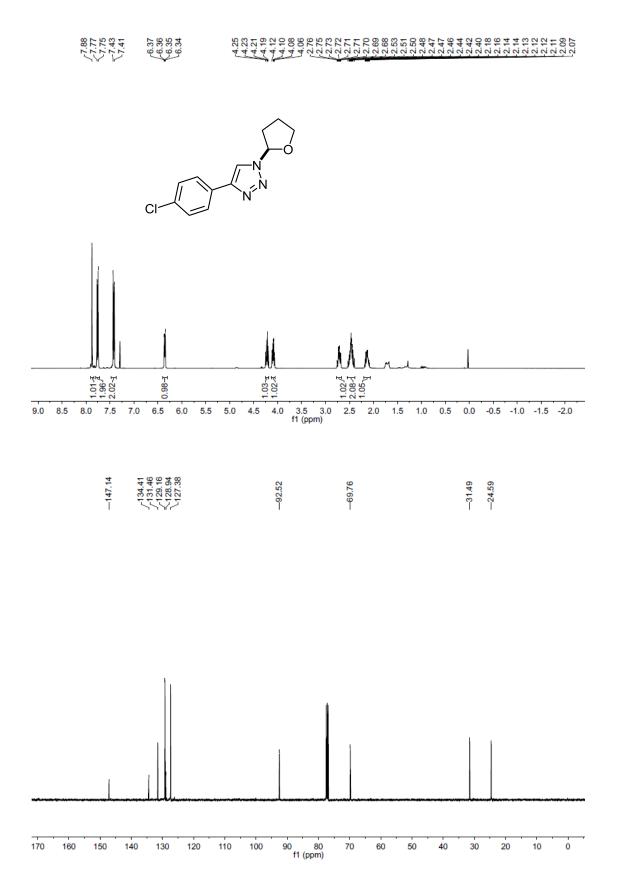

$\label{eq:methyl-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylate and Methyl 1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole-6-carboxylate (3d, N1/N3 = 1/3.7)$



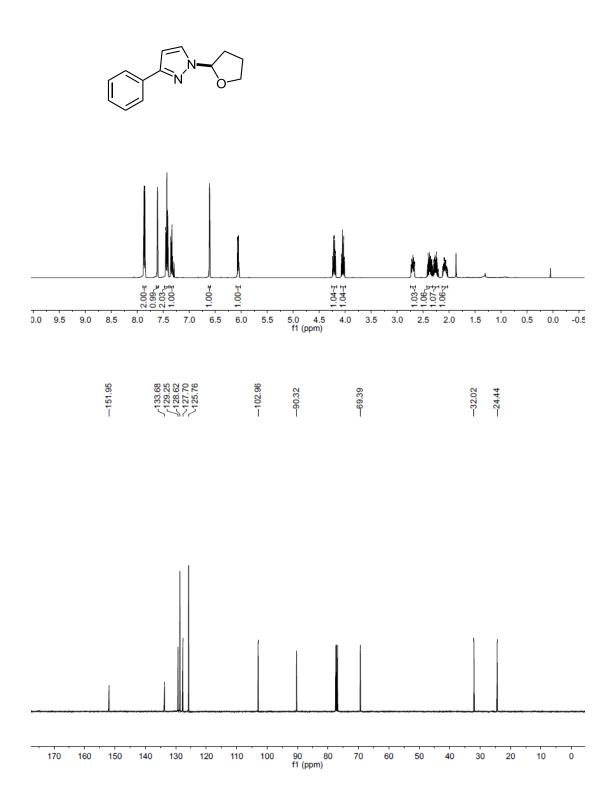

5,6-Dichloro-1-(tetrahydrofuran-2-yl)-1H-benzo[d][1,2,3]triazole (3e)

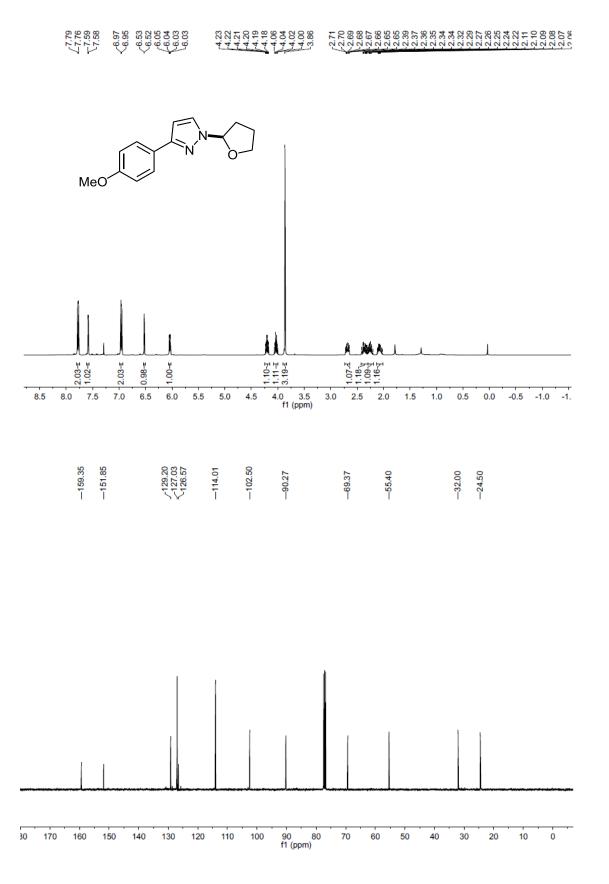
5-Phenyl-2-(tetrahydrofuran-2-yl)-2H-tetrazole (3f)





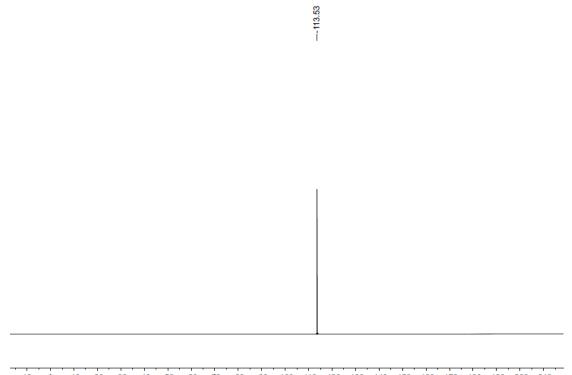
4-(4-Methoxyphenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole (3h)



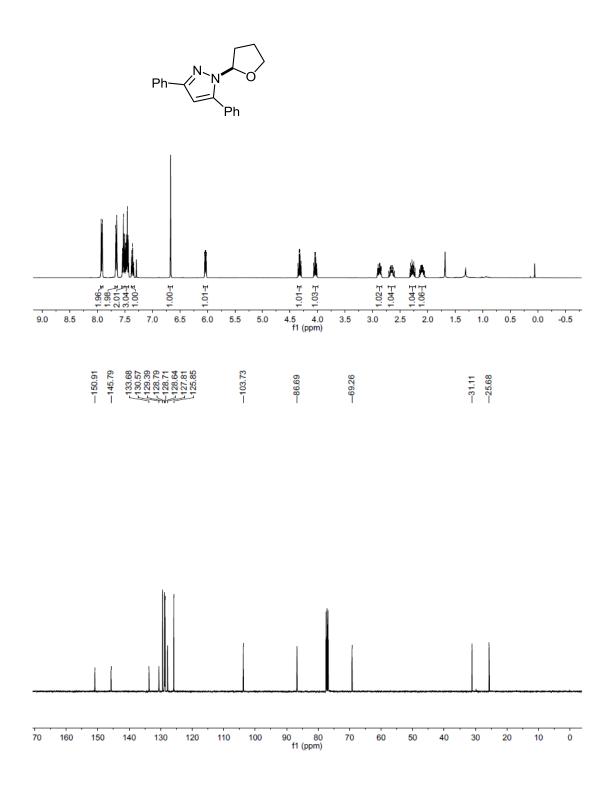


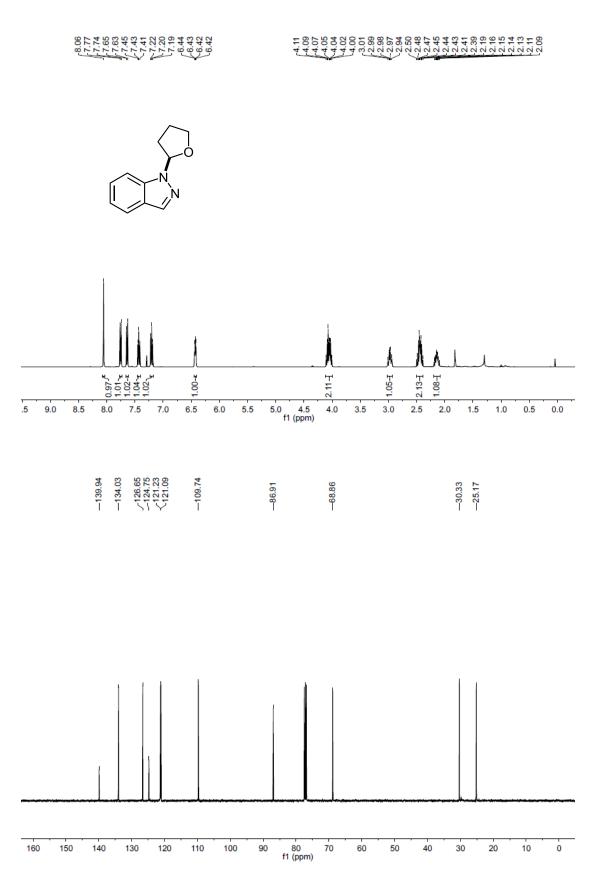
4-(4-Chlorophenyl)-1-(tetrahydrofuran-2-yl)-1H-1,2,3-triazole (3i)

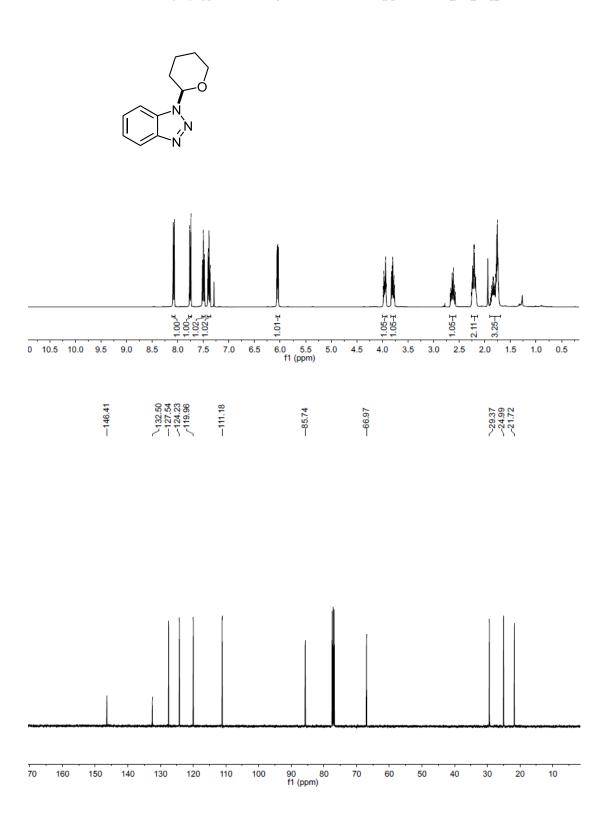
3-Phenyl-1-(tetrahydrofuran-2-yl)-1H-pyrazole (3j)

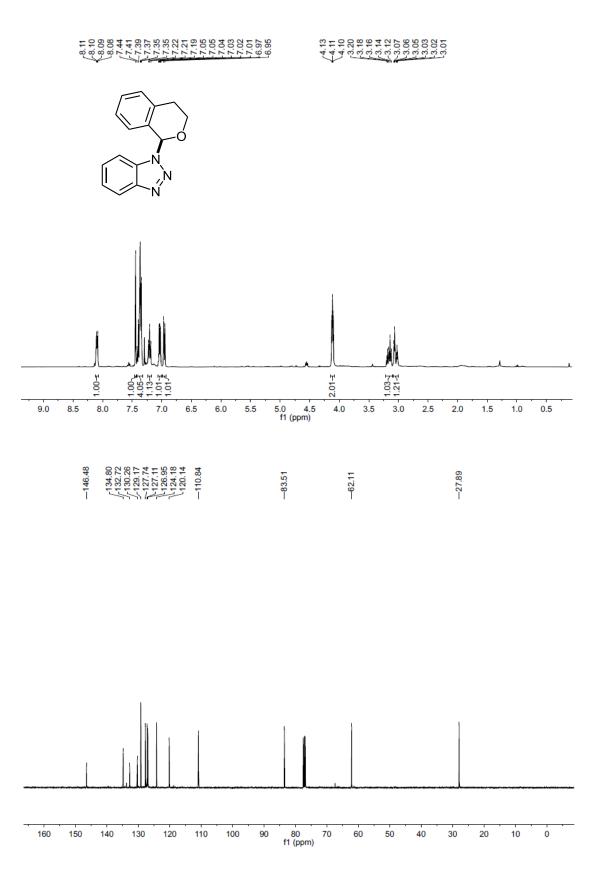


3-(4-Methoxyphenyl)-1-(tetrahydrofuran-2-yl)-1H-pyrazole (3k)

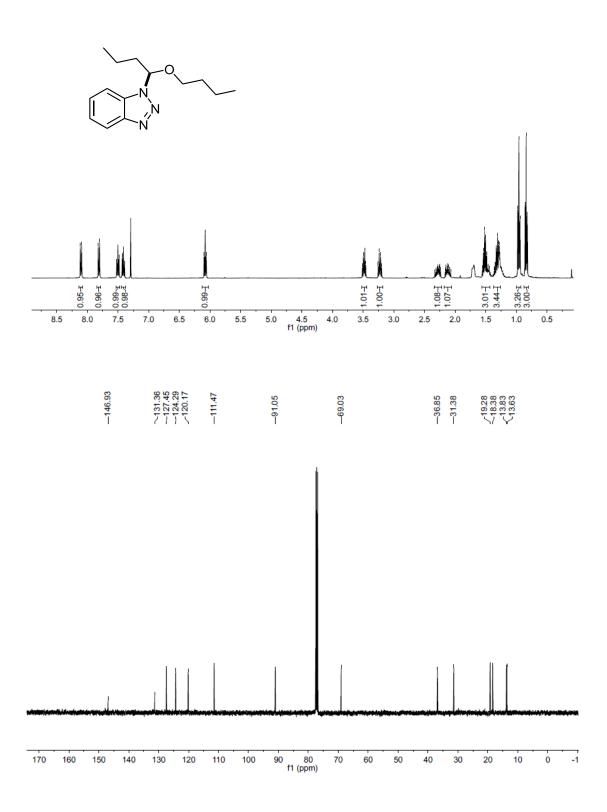


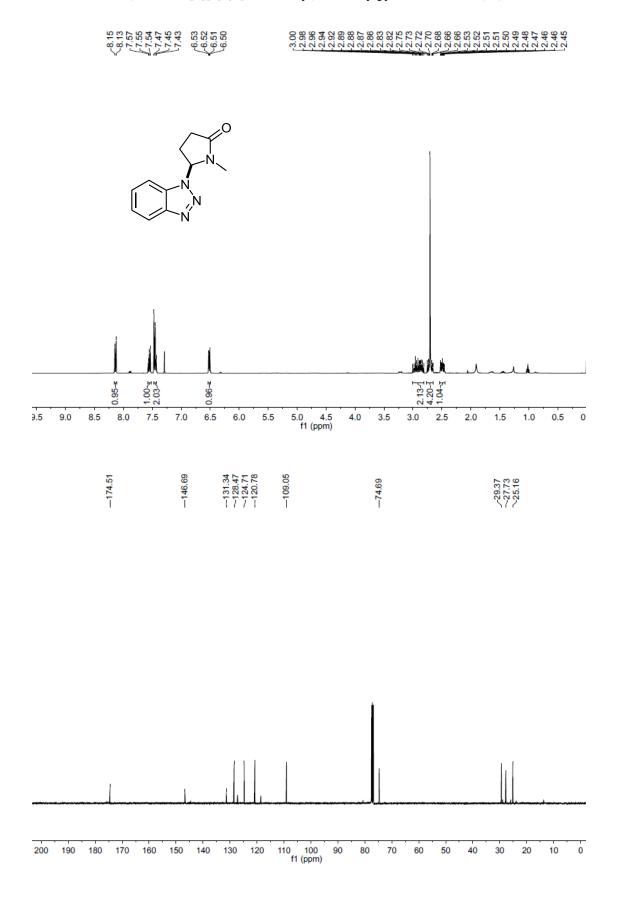

3-(3-Fluorophenyl)-1-(tetrahydrofuran-2-yl)-1H-pyrazole (3l)


10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)


3,5-diphenyl-1-(tetrahydrofuran-2-yl)-1H-pyrazole (3m)

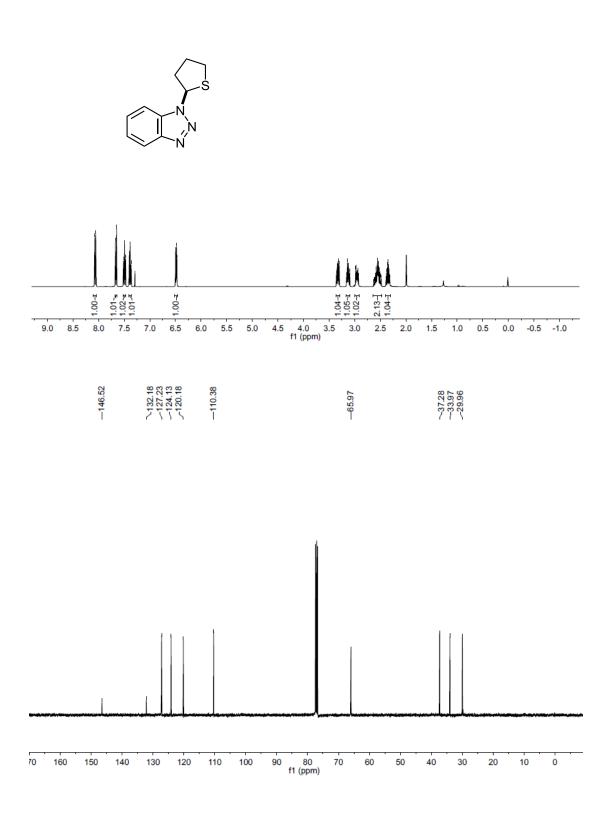
1-(Tetrahydro-2H-pyran-2-yl)-1H-benzo[d][1,2,3]triazole (30)

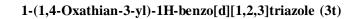


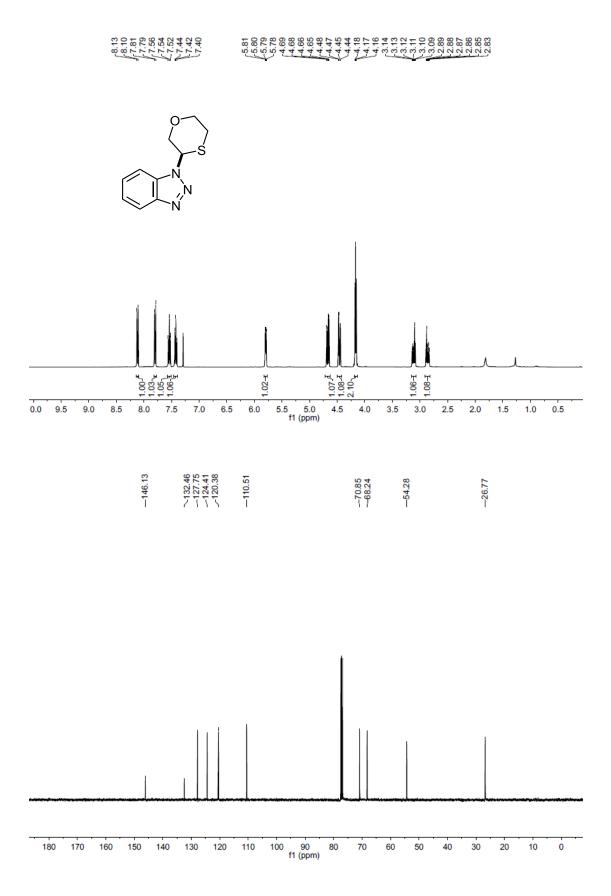


1-(Isochroman-1-yl)-1H-benzo[d][1,2,3]triazole (3p)

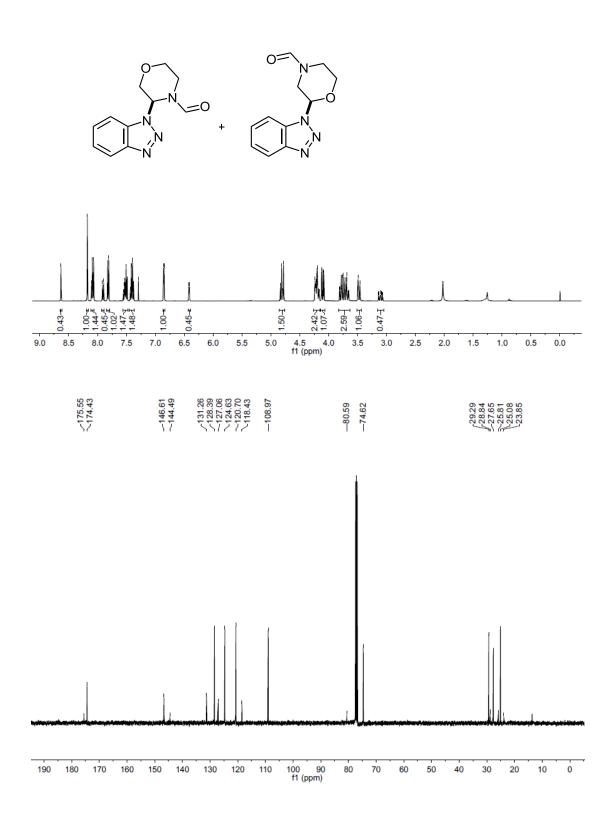
1-(1-Butoxybutyl)-1H-benzo[d][1,2,3]triazole (3q)

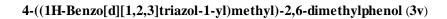


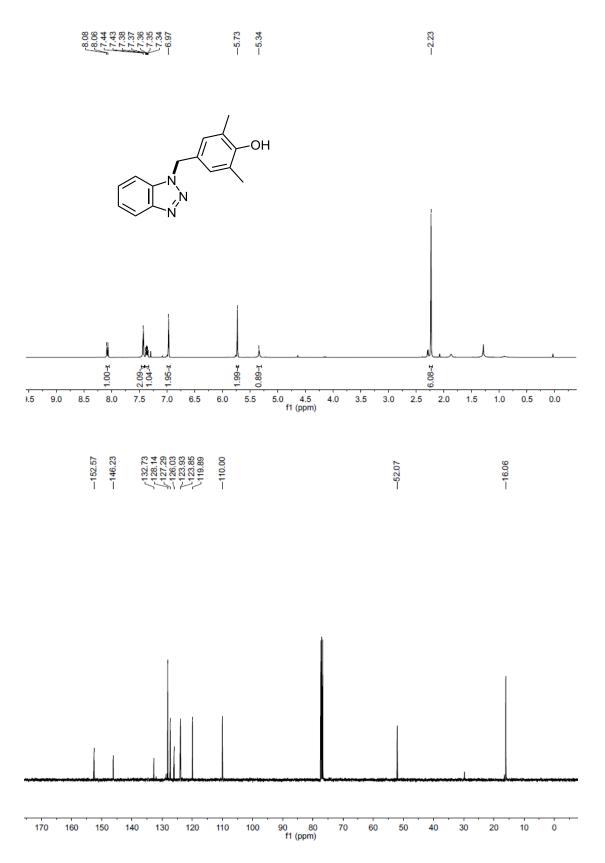


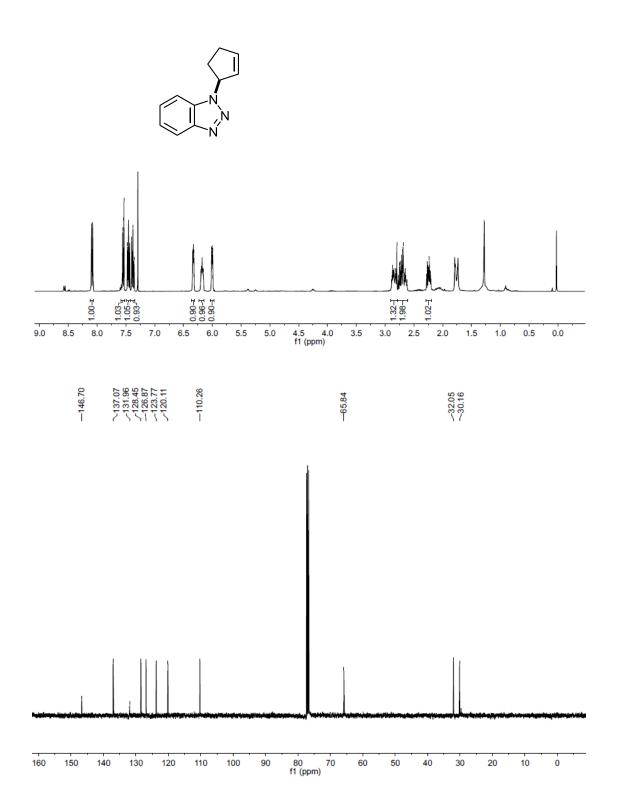


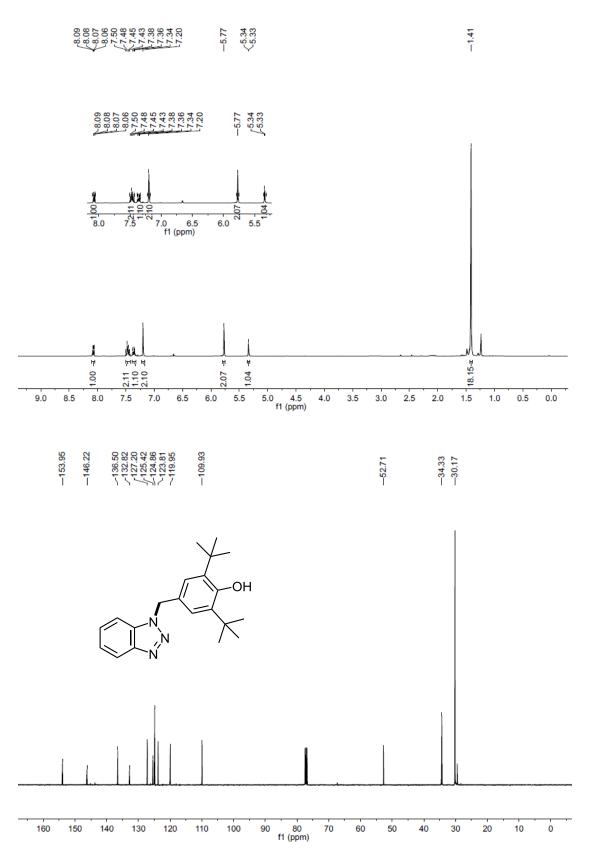
5-(1H-benzo[d][1,2,3]triazol-1-yl)-1-methylpyrrolidin-2-one (3r)


1-(Tetrahydrothiophen-2-yl)-1H-benzo[d][1,2,3]triazole (3s)






 $\label{eq:action} 3-(1H-benzo[d][1,2,3]triazol-1-yl)morpholine-4-carbaldehyde \ and \ 2-(1H-benzo[d][1,2,3]triazol-1-yl)morpholine-4-carbaldehyde \ (3u/3u^I=2.3/1)$



1-(Cyclopent-2-en-1-yl)-1H-benzo[d][1,2,3]triazole (3w)

4-((1H-benzo[d][1,2,3]triazol-1-yl)methyl)-2,6-di-tert-butylphenol (5a)

7 References

- [1] Singh, M.K.; Akula, H.K.; Satishkumar, S.; Stahl, L.; Lakshman, M.K. ACS Catal. 2016, 6, 1921–1928.
- [2] Wang, L.; Zhu, K.; Wu, W.; Chen, Q.; He, M. Catal. Sci. Technol. 2015, 5, 2891–2896.
- [3] Aruri, H.; Singh, U.; Sharma, S.; Gudup, S.; Bhogal, M.; Kumar, S.; Singh, D.; Gupta, V. K.; Kant, R.; Vishwakarma, R. A.; Singh, P. P. J. Org. Chem. 2015, 80, 1929–1936.
- [4] Sha, Q.; Liu, H.; Wei, Y. Eur. J. Org. Chem. 2014, 79, 7707–7715.
- [5] Sun, J.; Zhang, Y.; Mathan, S.; Wang, Y.; Pan, Y. J. Org. Chem. 2016, 81, 3380–3385.
- [6] Sun, J.; Wang, Y.; Pan, Y. J. Org. Chem. 2015, 80, 8945–8950.