Models for Unsymmetrical Active Sites in Metalloproteins: Structural, Redox, and Magnetic, Properties of Bimetallic Complexes with $\mathbf{M ~}^{\text {II }}-(\mu-\mathrm{OH})-\mathrm{Fe}^{\text {III }}$ Cores
Yohei Sano $^{\dagger}$, Nathanael Lau ${ }^{\dagger}$, Andrew C. Weitz ${ }^{\ddagger}$, Joseph W. Ziller ${ }^{\dagger}$, Michael P. Hendrich* ${ }^{*}$, A.S. Borovik* ${ }^{*}$
${ }^{\dagger}$ Department of Chemistry, University of California - Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, United States
${ }^{\ddagger}$ Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
E-mail: aborovik@uci.edu
Contents
Crystallography ..... S2
Table S1 ..... S3
Figure S1 ..... S4
Figure S2 ..... S4
Electron Paramagnetic Resonance Studies ..... S5
Figure S3 ..... S5
Figure S4 ..... S6
References ..... S6

## Crystallography

General Methods. Single crystals were mounted on a glass fiber or loop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 ${ }^{1}$ program package was used to determine the unit-cell parameters and for data collection. The raw frame data was processed using $\mathrm{SAINT}^{2}$ and $\mathrm{SADABS}^{3}$ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL ${ }^{4}$ program. The structures were solved by direct methods and refined on $\mathrm{F}^{2}$ by full-matrix least-squares techniques. The analytical scattering factors ${ }^{5}$ for neutral atoms were used throughout the analyses. Hydrogen atom $H(1)$ was located from a difference-Fourier map and refined ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $\mathrm{U}_{\mathrm{iso}}$ ). The remaining hydrogen atoms were included using a riding model. In addition to the triflate counterion there were two molecules of dichloromethane solvent present. The molecular structures of $\left[(T M T A C N) M^{\mathrm{II}}-(\mu-\mathrm{OH})-\mathrm{Fe}^{\mathrm{III}} \mathrm{MST}\right] \mathrm{OTf}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Fe}, \mathrm{Mn}\right)$ have already been reported. ${ }^{6}$

Structure of [(TMTACN)Co $\left.\mathbf{o}^{\mathbf{I I}}-(\boldsymbol{\mu}-\mathbf{O H})-\mathbf{F e}^{\mathbf{I I I}} \mathbf{M S T}\right] \mathbf{O T f}$. An orange crystal of approximate dimensions 0.106 x $0.253 \times 0.280 \mathrm{~mm}$ was analyzed. The diffraction symmetry was mmm and the systematic absences were consistent with the triclinic space group $P_{\overline{1}}$ that was later determined to be correct. Least-squares analysis yielded wR2 = 0.0709 and Goof $=1.037$ for 738 variables refined against 12670 data $(0.74 \AA), \mathrm{R} 1=0.0265$ for those 11382 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$.

Structure of $\left[(\mathbf{T M T A C N}) \mathbf{N i}^{\text {II }}-(\boldsymbol{\mu}-\mathbf{O H})-\mathbf{F e}^{\text {III }} \mathbf{M S T}\right] \mathbf{O T f}$. An orange crystal of approximate dimensions 0.114 x $0.152 \times 0.208 \mathrm{~mm}$ was analyzed. The diffraction symmetry was mmm and the systematic absences were consistent with the triclinic space group $P_{\overline{1}}$ that was later determined to be correct. Least-squares analysis yielded $\mathrm{wR} 2=$ 0.1118 and Goof $=1.036$ for 660 variables refined against 11911 data $(0.77 \AA), \mathrm{R} 1=0.0426$ for those 9209 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$.

Structure of [(TMTACN)Cu $\left.\mathbf{u}^{\text {II }}-(\mu-\mathbf{O H})-\mathbf{F e}^{\text {III }} \mathbf{M S T}\right] O T f$. An orange crystal of approximate dimensions 0.156 x $0.376 \times 0.426 \mathrm{~mm}$ was analyzed. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space group Pbca that was later determined to be correct. Least-squares analysis yielded wR2 $=0.1947$ and Goof $=1.217$ for 719 variables refined against 11851 data $(0.83 \AA), \mathrm{R} 1=0.0907$ for those 9810 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$.

Structure of [(TMTACN)Zn $\left.{ }^{\text {II }}-(\boldsymbol{\mu} \mathbf{- O H})-\mathbf{F e}^{\text {III }} \mathbf{M S T}\right] \mathbf{O T f}$. An orange crystal of approximate dimensions 0.136 x $0.149 \times 0.168 \mathrm{~mm}$ was analyzed. The diffraction symmetry was mmm and the systematic absences were consistent with the triclinic space group $P_{\overline{1}}^{-1}$ that was later determined to be correct. Least-squares analysis yielded wR2 = 0.1809 and Goof $=1.048$ for 672 variables refined against 13151 data $(0.75 \AA), R 1=0.0660$ for those 10084 data with $\mathrm{I}>2.0 \sigma(\mathrm{I})$.

|  | $\begin{gathered} {\left[(\mathrm{TMTACN}) \mathrm{Co} \mathrm{ol}_{-}^{\mathrm{II}}\right.} \\ \left.(\mu-\mathrm{OH})-\mathrm{Fe}^{\mathrm{III}} \mathrm{MST}\right] \mathrm{OTf} \end{gathered}$ | $\begin{aligned} & {\left[(\mathrm{TMTACN}) \mathrm{Ni}^{\mathrm{II}}-\right.} \\ & \left.(\mu-\mathrm{OH})-\mathrm{Fe}^{\mathrm{III}} \mathrm{MST}\right] \mathrm{OTf} \end{aligned}$ | $\begin{aligned} & {\left[(\mathrm{TMTACN}) \mathrm{Cu}^{\mathrm{II}}-\right.} \\ & \left.(\mu-\mathrm{OH})-\mathrm{Fe}^{\mathrm{III}} \mathrm{MST}\right] \mathrm{OTf} \end{aligned}$ | $\begin{aligned} & {\left[(\mathrm{TMTACN}) \mathrm{Zn} \mathrm{II}_{-}\right.} \\ & \left.(\mu-\mathrm{OH})-\mathrm{Fe}^{\mathrm{III}} \mathrm{MST}\right] \mathrm{OTf} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| formula | $\begin{aligned} & {\left[\mathrm{C}_{42} \mathrm{H}_{67} \mathrm{CoFeN}_{7} \mathrm{O}_{7} \mathrm{~S}_{3}\right]} \\ & {\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right] \cdot\left(\mathrm{CH}_{3} \mathrm{CN}\right)} \end{aligned}$ | $\begin{aligned} & {\left[\mathrm{C}_{42} \mathrm{H}_{67 \mathrm{~N},} \mathrm{FeN}_{7} \mathrm{O}_{7} \mathrm{~S}_{3}\right]} \\ & {\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right] \cdot\left(\mathrm{CH}_{3} \mathrm{CN}\right)} \end{aligned}$ | $\begin{aligned} & {\left[\mathrm{C}_{42} \mathrm{H}_{67} \mathrm{CuFeN}_{7} \mathrm{O}_{7} \mathrm{~S}_{3}\right]} \\ & {\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right] \cdot 3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)} \end{aligned}$ | $\begin{aligned} & {\left[\mathrm{C}_{42} \mathrm{H}_{67} \mathrm{ZnFeN}_{7} \mathrm{O}_{7} \mathrm{~S}_{3}\right]} \\ & {\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right] \cdot 1.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)} \end{aligned}$ |
| fw | 1183.11 | 1182.89 | 1401.44 | 1275.88 |
| T (K) | 88(2) K | 88(2) K | 143(2) K | 88(2) K |
| crystal system | Triclinic | Triclinic | Orthorhombic | Triclinic |
| space group | $P_{1}$ | $P_{\overline{1}}$ | Pbca | $P_{1}$ |
| a ( $\AA$ ) | 11.6341(5) | 11.6180(16) | 17.047(2) | 11.8947(6) |
| b ( $\AA$ ) | 15.6144(6) | 15.620(2) | 27.052(4) | 15.7190(9) |
| c ( $\AA$ ) | 15.7195(6) | 15.659(2) | 28.045(4) | 15.8049(9) |
| $\alpha\left({ }^{\circ}\right)$ | 80.3235(4) | 80.0664(18) | 90 | 82.0438(7) |
| $\beta\left({ }^{\circ}\right)$ | 69.3935(4) | 69.2828(17) | 90 | $88.8630(7)^{\circ}$. |
| $\gamma\left({ }^{\circ}\right)$ | 89.8327(4) | 89.7521(18) | 90 | 70.7837(7) |
| Z | 2 | 2 | 8 | 2 |
| $\mathrm{V}\left(\AA^{3}\right)$ | 2629.97(18) | 2613.1(6) | 12933(3) | 2762.5(3) |
| $\delta_{\text {calc }}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$ | 1.494 | 1.503 | 1.440 | 1.534 |
| indep. reflections | 12670 | 11911 | 11851 | 13151 |
| R1 | 0.0265 | 0.0426 | 0.0907 | 0.0660 |
| wR2 | 0.0709 | 0.1118 | 0.1947 | 0.1809 |
| Goof | 1.037 | 1.036 | 1.217 | 1.048 |
| CCDC\# | 1571442 | 1571443 | 1571445 | 1571444 |
| $\begin{aligned} & \mathrm{wR} 2=\left[\Sigma \left[\mathrm { w } \left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\right.\right.\right. \\ & \mathrm{R} 1=\Sigma\| \| \mathrm{F}_{\mathrm{o}}\|-\| \mathrm{F}_{\mathrm{c}} \\| / \\ & \text { Goof }=\mathrm{S}=[\Sigma[\mathrm{w} \mid \\ & \text { refined. } \end{aligned}$ | $\begin{aligned} & \left.\left.\left.{ }_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)^{2}\right]\right]^{1 / 2} \\ & \left\|\mathrm{~F}_{\mathrm{o}}\right\| \\ & \left.\left.\left.\mathrm{o}_{\mathrm{o}}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})\right]^{1 / 2} \text { wher } \end{aligned}$ | n is the number of refle | tions and p is the total | mber of parameters |



Figure S1. Cyclic voltammograms of (A) [(TMTACN) $\left.\mathrm{Co}^{\mathrm{II}-(~} \mu-\mathrm{OH}\right)-\mathrm{Fe}^{\mathrm{III}} \mathrm{MST}^{+}{ }^{+}$, (B) [(TMTACN)Ni ${ }^{\text {II }}-(\mu-\mathrm{OH})-$ $\left.\mathrm{Fe}^{\mathrm{III}} \mathrm{MST}\right]^{+}$, (C) $\left[(\mathrm{TMTACN}) \mathrm{Cu}^{\mathrm{II}}-(\mu-\mathrm{OH})-\mathrm{Fe}^{\mathrm{III}} \mathrm{MST}\right]^{+}$, and (D) $\left[(\mathrm{TMTACN}) \mathrm{Zn}^{\mathrm{II}}-(\mu-\mathrm{OH})-\mathrm{Fe}^{\mathrm{III}} \mathrm{MST}\right]^{+}$. The cyclic voltammograms were collected at $100 \mathrm{mV} \mathrm{s}^{-1}$ in the presence of $\left[\mathrm{FeCp}_{2}\right]\left({ }^{*}\right)$.


Figure $\boldsymbol{S} \mathbf{2}$. Plots of displacement of the $\mathrm{M}^{11}$ ion from the plane formed from the N atoms of the TMTACN ligand (black circles) and $\mathrm{M}^{\mathrm{II}}-\mathrm{O}$ bond length (gray squares) versus (A) the ionic radii of the $\mathrm{M}^{\mathrm{II}}$ ions ${ }^{7}$ and the $(\mathbf{B}) \mathrm{pK}_{\mathrm{a}}$ values for the $\left[\mathrm{M}^{\mathrm{I}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complexes. ${ }^{8}$

## Electron Paramagnetic Resonance Studies.

$\left[\mathbf{M n}^{\mathrm{II}}(\mathbf{O H}) \mathrm{Fe}^{\text {III }}\right]^{+}$. No EPR signals were observed from the $\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{OH}) \mathrm{Fe}^{\mathrm{III}}\right]^{+}$complex in parallel- or perpendicularmodes for temperatures $<20 \mathrm{~K}$. For temperatures greater than 20 K , a parallel-mode signal at $\mathrm{g}=11$ appeared and grew in intensity with increasing temperature (Figure S4). The signal is in the region expected for $S=2$ signals. The absence of this signal below 20 K and growth at higher temperatures is indicative of an antiferromagnetic exchange coupling between the $S=5 / 2 \mathrm{Fe}^{\mathrm{III}}$ and $S=5 / 2 \mathrm{Mn}^{\text {II }}$ to give a spin coupled $S_{C}=0$ ground state, and $S_{C}=2$ as one of the excited state spin manifolds. The temperature dependence of the spectrum was measured. The inset of Figure S 4 shows a plot of signal intensity $\times$ temperature as a function of temperature where the ordinate axis is proportional to the percentage population of the $S_{C}=2$ manifold. This percentage was calculated as a function of temperature based on eq 1 (see main text) and also plotted. The solid-line plot indicated an exchange coupling of $J=+35(3) \mathrm{cm}^{-1}$ with the uncertainty indicated by the dashed lines on the figure. The simulation overlaid on the spectra uses eq 1 with the $\mathrm{Fe}^{\mathrm{III}}$ parameters of $\left[\mathrm{Zn}^{\mathrm{II}}(\mathrm{OH}) \mathrm{Fe}^{\mathrm{III}}\right]^{+}$and the $\mathrm{Mn}^{\mathrm{II}}$ parameters listed in Table 3 (Figure S 4 ). The simulations use a concentration in quantitative agreement with the complex added to solution. The simulation of a previously published EPR spectrum of $\mathrm{Mn}^{\mathrm{II}}$ TMACN gave $|\mathrm{D}|=0.1 \mathrm{~cm}^{-1}$, which is close to the value derived from the simulations of $\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{OH}) \mathrm{Fe}^{\mathrm{III}}\right]^{+}$. The $g=11$ signal is not from the $S_{C}=3$ spin manifold because the simulations for this assignment did not agree with the position or intensity of the data.


Figure S3. EPR spectra (red) and simulations (black) of $\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{OH}) \mathrm{Fe}^{\mathrm{III}}\right]^{+}$for sample temperature of 66 K . Microwave parameters: $9.334 \mathrm{GHz}, 20 \mathrm{~mW}, \mathrm{~B}_{1} \| \mathrm{B}$. See Table 3 in main text for simulation parameters. The inset shows signal intensity $\times$ temperature and the corresponding percent population of $S=2$ for $J=+35(3) \mathrm{cm}^{-1}$. The dashed lines represent the error in $J$.
$\left[\mathbf{F e}^{\text {II }}(\mathbf{O H}) \mathbf{F e}^{\text {III }}\right]^{+}$. The EPR spectrum of the $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{OH}) \mathrm{Fe}^{\mathrm{III}}\right]^{+}$complex shows a signal with all g -values $<2$ (Figure S5). The low g-values are typical of a mixed-valence species with $S=2 \mathrm{Fe}^{\mathrm{II}}$ antiferromagnetically exchange coupled to $S=5 / 2 \mathrm{Fe}^{\text {III }}$, which results in the $S_{C}=1 / 2$ spin state lowest in energy. The $g$-tensor from the $S_{C}=1 / 2$ simulation is $\mathbf{g}=(1.91,1.68,1.49)$. The poor match to data suggests broadening by intermolecular interactions or sample heterogeneity. For temperatures $>20 \mathrm{~K}$, signals from excited spin manifolds are not observed due to signal broadening. The saturation behavior of the ground state $S_{C}=1 / 2$ signal was measured as a function of temperature to determine the exchange coupling constant $J$. A series of EPR spectra were recorded at multiple microwave powers and multiple temperatures. The power dependence of the signal was fit to determine the power at half-saturation $\left(\mathrm{P}_{1 / 2}\right)$ at each temperature. The $\mathrm{P}_{1 / 2}$ values as a function of temperature data were then fit using the function, where $A$ $=5.2 \mu \mathrm{~W} / \mathrm{K}, B=63 \mathrm{~W}$, and $\Delta=56 \mathrm{~K}\left(39 \mathrm{~cm}^{-1}\right)$. The first and second terms are due to the direct and Orbach
relaxation processes, respectively, and $\Delta$ is the energy of the excited $\mathrm{S}_{\mathrm{C}}=3 / 2$ manifold. From the value of $\Delta$, the exchange coupling constant of $J=+26(4) \mathrm{cm}^{-1}$ was calculated, with the uncertainty in the value indicated by the dashed lines on the figure.


Figure S4. EPR spectra (red) and simulations (black) of $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{OH}) \mathrm{Fe}^{\mathrm{III}}\right]^{+}$for a sample temperature of 7 K . Microwave parameters: $9.644 \mathrm{GHz}, 0.2 \mathrm{~mW}, \mathbf{B}_{1} \perp \mathbf{B}$. For the $S_{C}=1 / 2$ simulation, $\mathbf{g}=(1.91,1.68,1.49)$. The inset shows the power at half saturation versus temperature, and a fit with for the $\mathrm{S}_{\mathrm{C}}=3 / 2$ state at $39 \mathrm{~cm}^{-1}$, see main text for further information.

## References

(1) APEX2 Version 2010.3-0, Bruker AXS, Inc.; Madison, WI 2010.
(2) SAINT Version 7.68a, Bruker AXS, Inc.; Madison, WI 2009.
(3) Sheldrick, G. M. SADABS, Version 2008/1, Bruker AXS, Inc.; Madison, WI 2008.
(4) Sheldrick, G. M. SHELXTL, Version 2008/4, Bruker AXS, Inc.; Madison, WI 2008.
(5) International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
(6) Sano, Y.; Weitz, A. C.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S. Unsymmetrical Bimetallic Complexes with $\mathrm{M}^{\mathrm{II}}-(\mu-\mathrm{OH})-\mathrm{M}^{\mathrm{III}}$ Cores $\left(\mathrm{M}^{\mathrm{II}} \mathrm{M}^{\mathrm{III}}=\mathrm{Fe}^{\mathrm{II}} \mathrm{Fe}^{\mathrm{IIII}}, \mathrm{Mn}^{\mathrm{II}} \mathrm{Fe}^{\mathrm{III}}, \mathrm{Mn}^{\mathrm{II}} \mathrm{Mn}^{\text {III }}\right)$ : Structural, Magnetic, and Redox Properties. Inorg. Chem. 2013, 52, 10229-10231.
(7) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751-767.
(8) Jackson, V. E.; Felmy, A. R.; Dixon, D. A. Prediction of the $\mathrm{pK}_{\mathrm{a}}$ 's of Aqueous Metal Ion +2 Complexes. $J$. Phys. Chem. A 2015, 119, 2926-2939
(9) Flassbeck, C.; Wieghardt, K.; Bill, E.; Butzlaff, C.; Trautwein, A. X.; Nuber, B.; Weiss, J. Coordination of 4,7-bis(2-hydroxybenzyl)-1-oxa-4,7-diazacyclononane $\left(\mathrm{LH}_{2}\right)$ with manganese(II) and -(III) and zinc(II). Crystal structure of $\left[(\mathrm{LH})_{2} \mathrm{Zn}_{2}(\mu-\mathrm{OH})\right]\left(\mathrm{PF}_{6}\right) \cdot 0.5 \mathrm{CH}_{3} \mathrm{OH}$. Inorg. Chem. 1992, 31, 21-26.

