Supporting Information

Models for Unsymmetrical Active Sites in Metalloproteins: Structural, Redox, and Magnetic, Properties of Bimetallic Complexes with M^{II} –(μ -OH)–Fe^{III} Cores

Yohei Sano[†], Nathanael Lau[†], Andrew C. Weitz[‡], Joseph W. Ziller[†], Michael P. Hendrich^{*,‡}, A.S. Borovik^{*,†}

[†]Department of Chemistry, University of California – Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, United States

[‡]Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States

E-mail: aborovik@uci.edu

Contents

Crystallography	
Table S1	
Figure S1	
Figure S2	
Electron Paramagnetic Resonance Studies	
Figure S3	
Figure S4	
References	

Crystallography

General Methods. Single crystals were mounted on a glass fiber or loop and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection. The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The structures were solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analyses. Hydrogen atom H(1) was located from a difference-Fourier map and refined (x,y,z and U_{iso}). The remaining hydrogen atoms were included using a riding model. In addition to the triflate counterion there were two molecules of dichloromethane solvent present. The molecular structures of [(TMTACN)M^{II}–(μ -OH)–Fe^{III}MST]OTf (M^{II} = Fe, Mn) have already been reported.⁶

Structure of [(TMTACN)Co^{II}–(μ -OH)–Fe^{III}MST]OTf. An orange crystal of approximate dimensions 0.106 x 0.253 x 0.280 mm was analyzed. The diffraction symmetry was mmm and the systematic absences were consistent with the triclinic space group $P_{\overline{1}}$ that was later determined to be correct. Least-squares analysis yielded wR2 = 0.0709 and Goof = 1.037 for 738 variables refined against 12670 data (0.74Å), R1 = 0.0265 for those 11382 data with I > 2.0 σ (I).

Structure of [(TMTACN)Ni^{II}–(μ -OH)–Fe^{III}MST]OTf. An orange crystal of approximate dimensions 0.114 x 0.152 x 0.208 mm was analyzed. The diffraction symmetry was mmm and the systematic absences were consistent with the triclinic space group $P_{\overline{1}}$ that was later determined to be correct. Least-squares analysis yielded wR2 = 0.1118 and Goof = 1.036 for 660 variables refined against 11911 data (0.77Å), R1 = 0.0426 for those 9209 data with I > 2.0 σ (I).

Structure of [(TMTACN)Cu^{II}–(\mu-OH)–Fe^{III}MST]OTf. An orange crystal of approximate dimensions 0.156 x 0.376 x 0.426 mm was analyzed. The diffraction symmetry was mmm and the systematic absences were consistent with the orthorhombic space group *Pbca* that was later determined to be correct. Least-squares analysis yielded wR2 = 0.1947 and Goof = 1.217 for 719 variables refined against 11851 data (0.83Å), R1 = 0.0907 for those 9810 data with I > 2.0 σ (I).

Structure of [(TMTACN)Zn^{II}–(μ -OH)–Fe^{III}MST]OTf. An orange crystal of approximate dimensions 0.136 x 0.149 x 0.168 mm was analyzed. The diffraction symmetry was mmm and the systematic absences were consistent with the triclinic space group $P_{\overline{1}}$ that was later determined to be correct. Least-squares analysis yielded wR2 = 0.1809 and Goof = 1.048 for 672 variables refined against 13151 data (0.75Å), R1 = 0.0660 for those 10084 data with I > 2.0 σ (I).

Table S1. Crystanographic data for $[(1M1ACN)M (\mu-O1)]$ re-MS1] complexes $(M - C0, M, Cu, Zh)$.				
	[(TMTACN)Co ^{II} -	[(TMTACN)Ni ^{II} -	[(TMTACN)Cu ^{II} -	[(TMTACN)Zn ^{II} –
	(µ-OH)–Fe ^{III} MST]OTf	(µ-OH)–Fe ^m MST]OTf	(µ-OH)–Fe ^m MST]OTf	(µ-OH)–Fe ^{III} MST]OTf
	$[C_{42}H_{67}CoFeN_7O_7S_3]$	$[C_{42}H_{67Ni}FeN_7O_7S_3]$	$[C_{42}H_{67}CuFeN_7 O_7 S_3]$	$[C_{42}H_{67}ZnFeN_7O_7S_3]$
formula	$[CF_3SO_3] \bullet (CH_3CN)$	$[CF_3SO_3] \bullet (CH_3CN)$	$[CF_3SO_3] \bullet 3(CH_2Cl_2)$	$[CF_3SO_3] \bullet 1.5(CH_2Cl_2)$
fw	1183.11	1182.89	1401.44	1275.88
T (K)	88(2) K	88(2) K	143(2) K	88(2) K
crystal system	Triclinic	Triclinic	Orthorhombic	Triclinic
space group	$P\overline{1}$	$P\overline{1}$	Pbca	Pī
a (Å)	11.6341(5)	11.6180(16)	17.047(2)	11.8947(6)
b (Å)	15.6144(6)	15.620(2)	27.052(4)	15.7190(9)
c (Å)	15.7195(6)	15.659(2)	28.045(4)	15.8049(9)
α (°)	80.3235(4)	80.0664(18)	90	82.0438(7)
β (°)	69.3935(4)	69.2828(17)	90	88.8630(7)°.
γ (°)	89.8327(4)	89.7521(18)	90	70.7837(7)
Z	2	2	8	2
V (Å ³)	2629.97(18)	2613.1(6)	12933(3)	2762.5(3)
$\delta_{calc}~(mg/m^3)$	1.494	1.503	1.440	1.534
indep. reflections	12670	11911	11851	13151
R1	0.0265	0.0426	0.0907	0.0660
wR2	0.0709	0.1118	0.1947	0.1809
Goof	1.037	1.036	1.217	1.048
CCDC#	1571442	1571443	1571445	1571444

Table S1. Crystallographic data for $[(TMTACN)M^{II}-(\mu-OH)-Fe^{III}MST]^+$ complexes $(M^{II} = Co^{II}, Ni^{II}, Cu^{II}, Zn^{II})$.

 $wR2 = \left[\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]\right]^{1/2}$ $R1 = \Sigma||F_o| - |F_c|| / \Sigma|F_o|$ $Goof = S = \left[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)\right]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

Figure S1. Cyclic voltammograms of (A) $[(TMTACN)Co^{II}-(\mu-OH)-Fe^{III}MST]^+$, (B) $[(TMTACN)Ni^{II}-(\mu-OH)-Fe^{III}MST]^+$, (C) $[(TMTACN)Cu^{II}-(\mu-OH)-Fe^{III}MST]^+$, and (D) $[(TMTACN)Zn^{II}-(\mu-OH)-Fe^{III}MST]^+$. The cyclic voltammograms were collected at 100 mV s⁻¹ in the presence of $[FeCp_2]$ (*).

Figure S2. Plots of displacement of the M^{II} ion from the plane formed from the N atoms of the TMTACN ligand (black circles) and M^{II} –O1 bond length (gray squares) versus (A) the ionic radii of the M^{II} ions⁷ and the (B) pK_a values for the $[M^{II}(H_2O)_6]^{2+}$ complexes.⁸

Electron Paramagnetic Resonance Studies.

 $[\mathbf{Mn}^{II}(\mathbf{OH})\mathbf{Fe}^{III}]^+$. No EPR signals were observed from the $[\mathbf{Mn}^{II}(\mathbf{OH})\mathbf{Fe}^{III}]^+$ complex in parallel- or perpendicularmodes for temperatures < 20 K. For temperatures greater than 20 K, a parallel-mode signal at g = 11 appeared and grew in intensity with increasing temperature (Figure S4). The signal is in the region expected for S = 2 signals. The absence of this signal below 20 K and growth at higher temperatures is indicative of an antiferromagnetic exchange coupling between the S = 5/2 Fe^{III} and S = 5/2 Mn^{II} to give a spin coupled $S_C = 0$ ground state, and $S_C = 2$ as one of the excited state spin manifolds. The temperature dependence of the spectrum was measured. The inset of Figure S4 shows a plot of signal intensity × temperature as a function of temperature where the ordinate axis is proportional to the percentage population of the $S_C = 2$ manifold. This percentage was calculated as a function of temperature based on eq 1 (see main text) and also plotted. The solid-line plot indicated an exchange coupling of J = +35(3) cm⁻¹ with the uncertainty indicated by the dashed lines on the figure. The simulation overlaid on the spectra uses eq 1 with the Fe^{III} parameters of $[Zn^{II}(OH)Fe^{III}]^+$ and the Mn^{II} parameters listed in Table 3 (Figure S4). The simulations use a concentration in quantitative agreement with the complex added to solution. The simulation of a previously published EPR spectrum of Mn^{II}TMACN gave $|D| = 0.1 \text{ cm}^{-1}$,⁷ which is close to the value derived from the simulations of $[Mn^{II}(OH)Fe^{III}]^+$. The g = 11 signal is not from the $S_C = 3$ spin manifold because the simulations for this assignment did not agree with the position or intensity of the data.

Figure S3. EPR spectra (red) and simulations (black) of $[Mn^{II}(OH)Fe^{III}]^+$ for sample temperature of 66 K. Microwave parameters: 9.334 GHz, 20 mW, B₁ || B. See Table 3 in main text for simulation parameters. The inset shows signal intensity × temperature and the corresponding percent population of S = 2 for J = +35(3) cm⁻¹. The dashed lines represent the error in J.

[Fe^{II}(OH)Fe^{III}]⁺. The EPR spectrum of the [Fe^{II}(OH)Fe^{III}J⁺ complex shows a signal with all g-values < 2 (Figure S5). The low g-values are typical of a mixed-valence species with S = 2 Fe^{II} antiferromagnetically exchange coupled to S = 5/2 Fe^{III}, which results in the $S_C = 1/2$ spin state lowest in energy. The g-tensor from the $S_C = 1/2$ simulation is $\mathbf{g} = (1.91, 1.68, 1.49)$. The poor match to data suggests broadening by intermolecular interactions or sample heterogeneity. For temperatures > 20 K, signals from excited spin manifolds are not observed due to signal broadening. The saturation behavior of the ground state $S_C = 1/2$ signal was measured as a function of temperature to determine the exchange coupling constant J. A series of EPR spectra were recorded at multiple microwave powers and multiple temperatures. The power dependence of the signal was fit to determine the power at half-saturation (P_{1/2}) at each temperature. The P_{1/2} values as a function of temperature data were then fit using the function, where $A = 5.2 \ \mu W/K$, B = 63 W, and $\Delta = 56$ K (39 cm⁻¹). The first and second terms are due to the direct and Orbach

relaxation processes, respectively, and Δ is the energy of the excited S_C = 3/2 manifold. From the value of Δ , the exchange coupling constant of J = +26(4) cm⁻¹ was calculated, with the uncertainty in the value indicated by the dashed lines on the figure.

Figure S4. EPR spectra (red) and simulations (black) of $[Fe^{II}(OH)Fe^{III}]^+$ for a sample temperature of 7 K. Microwave parameters: 9.644 GHz, 0.2 mW, $B_1 \perp B$. For the $S_C = 1/2$ simulation, g = (1.91, 1.68, 1.49). The inset shows the power at half saturation versus temperature, and a fit with for the $S_C = 3/2$ state at 39 cm⁻¹, see main text for further information.

References

- (1) APEX2 Version 2010.3-0, Bruker AXS, Inc.; Madison, WI 2010.
- (2) SAINT Version 7.68a, Bruker AXS, Inc.; Madison, WI 2009.
- (3) Sheldrick, G. M. SADABS, Version 2008/1, Bruker AXS, Inc.; Madison, WI 2008.
- (4) Sheldrick, G. M. SHELXTL, Version 2008/4, Bruker AXS, Inc.; Madison, WI 2008.
- (5) International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.
- (6) Sano, Y.; Weitz, A. C.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S. Unsymmetrical Bimetallic Complexes with M^{II}-(μ-OH)-M^{III} Cores (M^{II}M^{III} = Fe^{II}Fe^{III}, Mn^{II}Fe^{III}, Mn^{II}Mn^{III}): Structural, Magnetic, and Redox Properties. *Inorg. Chem.* **2013**, *52*, 10229–10231.
- (7) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr. Sect. A* **1976**, *32*, 751–767.
- (8) Jackson, V. E.; Felmy, A. R.; Dixon, D. A. Prediction of the pK_a's of Aqueous Metal Ion +2 Complexes. J. Phys. Chem. A 2015, 119, 2926–2939
- (9) Flassbeck, C.; Wieghardt, K.; Bill, E.; Butzlaff, C.; Trautwein, A. X.; Nuber, B.; Weiss, J. Coordination of 4,7bis(2-hydroxybenzyl)-1-oxa-4,7-diazacyclononane (LH₂) with manganese(II) and -(III) and zinc(II). Crystal structure of [(LH)₂Zn₂(μ-OH)](PF₆)•0.5CH₃OH. *Inorg. Chem.* **1992**, *31*, 21–26.