# SUPPORTING INFORMATION 

# Cobalt-Catalyzed Cross-Coupling Reactions of Arylboronic Esters and Aryl Halides 

Hung A. Duong,* Wenqin Wu, Yu-Yuan Teo<br>Email: duong_hung@ices.a-star.edu.sg<br>Organic Chemistry, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros \#07-01, Singapore 138665

General information. All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. THF and DMF were dried over alumina under $\mathrm{N}_{2}$ using a Grubbs-type solvent purification system. Cobalt(II) chloride ( $97 \%$, Alfa Aesar), cobalt(II) chloride (99.998\%, Strem), cobalt(II) acetate (Alfa Aesar), cobalt(II) bromide (99\%, Alfa Aesar), cobalt(II) iodide (Alfa Aesar), cobalt(II) acetylacetonate (Sigma Aldrich), cobalt(III) acetylacetonate (Sigma Aldrich), potassium methoxide (Fluka and Sigma Aldrich), aryl bromides and aryl chlorides were purchased from commercial sources and used as received. Terpyridine and arylboronic esters were synthesized according to literature procedures. ${ }^{1}$ Reactions were monitored by thin-layer chromatography (TLC), which was performed on 0.25 mm silica gel plates visualized using UV radiation ( 254 nm ). Column chromatography was performed on silica gel (200-300 mesh) by elution with appropriate solvent. GC-MS analysis was performed by using an Agilent HP-7890 instrument with an Agilent HP-5975 with triple-axis detector and HP-5MS capillary column by using helium as the carrier gas. NMR spectra were recorded with a 400 or 600 MHz instrument and were calibrated by using residual nondeuterated solvent $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm} ; \delta_{\mathrm{C}}=77.10 \mathrm{ppm}\right.$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}: \delta_{\mathrm{H}}=2.05 \mathrm{ppm} ; \delta_{\mathrm{C}}=29.84 \mathrm{ppm}\right)$ as an internal reference. The following abbreviations were used to designate the multiplicities: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=\operatorname{triplet}, \mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

[^0]Optimizations of the Co-catalyzed of cross-coupling of 1a and 2a:


| 28 | $\mathbf{2 a}$ | $12 \mathrm{~mol} \% \mathrm{CoBr}_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 100 | 92 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 29 | $\mathbf{2 a}$ | $12 \mathrm{~mol} \% \mathrm{Co}(\mathrm{acac})_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 47 | 38 |
| 30 | $\mathbf{2 a}$ | $12 \mathrm{~mol} \% \mathrm{Co}(\mathrm{acac})_{3}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 3 | 0 |
| $31^{\mathrm{b}}$ | $\mathbf{2 a}$ | $12 \mathrm{~mol} \% \mathrm{CoCl}_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 100 | 94 |
| 32 | $\mathbf{2 a}$ | none | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 16 | 0 |
| 33 | $\mathbf{2 a}$ | $12 \mathrm{~mol} \% \mathrm{PdCl}_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 80 | 12 |
| 34 | $\mathbf{2 a}$ | $12 \mathrm{~mol} \% \mathrm{NiCl}_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 15 | 8 |
| 35 | $\mathbf{2 a}$ | $12 \mathrm{~mol} \% \mathrm{CuCl}^{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 9 | 0 |
| 36 | $\mathbf{2 a}$ | $12 \mathrm{~mol} \% \mathrm{FeCl}_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 0 | 0 |
| 37 | $\mathbf{2 b}$ | $12 \mathrm{~mol} \% \mathrm{CoCl}_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 52 | 40 |
| 38 | $\mathbf{2 e}$ | $12 \mathrm{~mol} \% \mathrm{CoCl}_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOMe | DMF | 60 | 85 | 75 |
| 39 | $\mathbf{2 e}$ | $12 \mathrm{~mol} \% \mathrm{CoCl}_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOtBu | DMF | 60 | 8 | 7 |
| 40 | $\mathbf{2 e}$ | $12 \mathrm{~mol} \% \mathrm{CoCl}_{2}$ | $12 \mathrm{~mol} \% \mathrm{TPy}$ | 1.5 equiv KOEt | DMF | 60 | 100 | 92 |

${ }^{\bar{a}}$ Determined by GC using dodecane as an internal standard. ${ }^{b} \mathrm{CoCl}_{2}$ (99.998\%) was employed.
General Procedure for Cobalt-catalyzed Suzuki Cross-coupling Reaction of Aryl Chlorides and Bromides:

In a glovebox, $\mathrm{CoCl}_{2}(3.2 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, $\mathrm{TP}(7.7 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, KOMe ( $52.6 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ) were charged to a dried reaction tube. 0.5 ml DMF was added. The mixture was allowed to stir at rt for 5 min before a solution of aryl halide ( 0.5 $\mathrm{mmol}, 1.0 \mathrm{eq})$ and arylboronic ester ( $0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ) in 0.5 ml DMF was added. The tube was sealed, taken out of the glovebox and stirred at $80^{\circ} \mathrm{C}$ for 16 h . The reaction progress was monitored by GC using dodecane as the internal standard. Once the reaction was completed, the reaction mixture was quenched with water and extracted with ethyl acetate several times. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and the resulting crude mixture was purified by silica gel column chromatography.

2-Phenylpyridine (3a) ${ }^{2}$


3a was prepared from 2-chloropyridine ( $57 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $1-10 \%$ of $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether) to afford the desired product as a colourless oil ( $71 \mathrm{mg}, 91 \%$ ).

[^1]3a was prepared from 2-bromopyridine ( $79 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75$ mmol, 1.5 eq). The crude mixture was purified by flash column chromatography ( $1-10 \%$ of $\mathrm{Et}_{2} \mathrm{O} /$ petroleum ether) to afford the desired product as a colourless oil ( $67 \mathrm{mg}, 86 \%$ ).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.70(\mathrm{dt}, J=4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.76-$ $7.69(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=5.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 157.4,149.6,139.3,136.8,129.0,128.7,126.9,122.1,120.6$.

## 2-(4-Methoxyphenyl)pyridine (3b) ${ }^{2}$



3b was prepared from 2-chloropyridine ( $57 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and 2-(4-methoxyphenyl)-5,5-dimethyl-1,3,2-dioxaborinane ( $165 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5-10 \%$ of $\mathrm{Et}_{2} \mathrm{O}$ /petroleum ether) to afford the desired product as a white solid ( $78 \mathrm{mg}, 84 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.63$ (dd, $J=4.8,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{ddd}, J=6.7,4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ $-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4,157.0,149.4,136.6$, 131.9, 128.1, 121.3, 119.7, 114.0, 55.2.

2-(4-(Trifluoromethyl)phenyl)pyridine (3c) ${ }^{3}$


3c was prepared from 2-chloropyridine ( $57 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and 5,5-dimethyl-2-(4-(trifluoromethyl)phenyl)-1,3,2-dioxaborinane ( $194 \mathrm{mg}, \mathrm{o} .75 \mathrm{mmol} 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $3-5 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ pentane) to afford the desired product as a colourless oil ( $101 \mathrm{mg}, 90 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.73$ (ddd, $J=4.8,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 2 \mathrm{H})$,

[^2]7.30 (ddd, $J=7.0,4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.8,149.9$, 142.7, $137.0,130.8(\mathrm{q}, J=33.3 \mathrm{~Hz}), 127.2,125.7(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.3(\mathrm{q}, J=273.7 \mathrm{~Hz}), 123.0$, 120.9.

4-(Pyridin-2-yl)benzonitrile (3d) ${ }^{4}$


3d was prepared from 2-chloropyridine ( $57 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and 4-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)benzonitrile ( $161 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $3-30 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ pentane) to afford the desired product as a white solid ( $57 \mathrm{mg}, 63 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 8.76-8.70(\mathrm{~m}, 1 \mathrm{H})$, $8.38-8.30(\mathrm{~m}, 2 \mathrm{H}), 8.06$ (dd, $J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{dd}, J=7.6,4.7$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 155.5,150.8,144.2,138.1,133.4,128.3$, 124.4, 121.7, 119.3, 113.2.

2-(o-Tolyl)pyridine (3e) ${ }^{5}$


3e was prepared from 2-chloropyridine ( $57 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and 5,5-dimethyl-2-(o-tolyl)-1,3,2-dioxaborinane ( 153 mg, o. 75 mmol 1.5 eq ). The crude mixture was purified by flash column chromatography ( $3 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ pentane ) to afford the desired product as a colourless oil ( $66 \mathrm{mg}, 78 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.70(\mathrm{ddd}, J=4.9,1.9,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=7.9,2.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 4 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 160.0, 149.1, 140.4, 136.2, 135.7, 130.7, 129.6, 128.3, 125.9, 124.1, 121.6, 20.3.

2-(Naphthalen-1-yl)pyridine ( $\mathbf{3 f})^{6}$

[^3]

3f was prepared from 2-chloropyridine ( $57 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and 5,5-dimethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborinane ( $180 \mathrm{mg}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA}$ /pentane) to afford the desired product as a yellow oil ( $98 \mathrm{mg}, 95 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.82$ (ddd, $J=5.0,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.12 (dd, $J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.98-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.44$ (m, $5 \mathrm{H}), 7.32$ (ddd, $J=7.6,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,149.3$, $138.3,136.3,133.8,131.0,128.8,128.2,127.4,126.4,125.7,125.5,125.2,124.9,121.9$.

2-(Thiophen-2-yl)pyridine (3g) ${ }^{7}$


3 g was prepared from 2 -chloropyridine ( $28 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) and 5,5-dimethyl-2-(thiophen-2-yl)-1,3,2-dioxaborinane ( $74 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $15 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ petroleum ether) to afford the desired product as yellow oil ( $30 \mathrm{mg}, 75 \%$ ). 0.25 mmol scale $0.25 \mathrm{mmol}{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 8.55-8.47(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=3.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dt, $J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (ddd, $J=7.2,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (ddd, $J=4.8,3.6,0.9 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 153.4,150.3,146.0,137.6,128.9,128.6,125.5$, 122.9, 119.3.

2-(furan-2-yl)pyridine ( $\mathbf{3 h})^{6}$


[^4]3h was prepared from 2-chloropyridine ( $28 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) and 2-(furan-2-yl)-5,5-dimethyl-1,3,2-dioxaborinane ( $68 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $15-20 \%$ of $\mathrm{Et}_{2} \mathrm{O}$ with $1 \%$ TEA /petroleum ether) to afford the desired product as a colourless oil ( $33 \mathrm{mg}, 46 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 8.56$ (ddd, $J=4.8,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.24$ (ddt, $J=6.9$, $4.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=3.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 154.9,150.5,150.2,144.4,137.6,122.9,118.8,112.9,109.3$.

3-Bromo-2-phenylpyridine ( $\mathbf{3 i})^{8}$

$3 i$ was prepared from 3-bromo-2-chloropyridine ( $96 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 143 mg , $0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $2 \%$ acetone /petroleum ether) to afford the desired product as a colourless oil ( $74 \mathrm{mg}, 63 \%$ ) together with an impure mixture of 2-phenylpyridine $\mathbf{3 a}$ ( 11 mg , ca. 14\%).
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.63(\mathrm{dd}, J=4.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{dd}, J=8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 158.2,148.0,141.3,139.5,129.3,128.8,128.0,123.2,119.8$.

2-Methyl-6-phenylpyridine (3j) ${ }^{9}$

$\mathbf{3} \mathbf{j}$ was prepared from 2-chloro-6-methylpyridine ( $64 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 143 mg , $0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5 \%$ $\mathrm{Et}_{2} \mathrm{O}$ with $1 \%$ TEA/petroleum ether) to afford the desired product as a colourless oil ( 65 mg , $77 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dt}, J$

[^5]$=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 158.4,157.0,139.8,136.9,128.7,128.7,127.0$, 121.6, 117.6, 24.8.

2-Methoxy-6-phenylpyridine ( $\mathbf{3 k})^{10}$


3k was prepared from 2-bromo-6-methoxypyridine ( $94 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 143 $\mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5 \%$ $\mathrm{Et}_{2} \mathrm{O}$ with $0.5 \% \mathrm{TEA} /$ petroleum ether) to afford the desired product as a colourless oil ( 75 mg , $81 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.07(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (dd, $J=8.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.5,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 163.8$, 154.7, 139.2, 139.1, 128.9, 128.6, 126.7, 112.8, 109.3, 53.2.

4-Methyl-2-phenylpyridine (3I) ${ }^{11}$


31 was prepared from 2-bromo-4-methylpyridine ( $86 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 143 mg , $0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5 \%$ $\mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ pentane $)$ to afford the desired product as a white solid $(72 \mathrm{mg}, 85 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.55(\mathrm{dd}, J=5.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{dq}, J=$ $1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{ddt}, J=5.0,1.4,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3,149.4,147.8,139.5$, 128.8, 128.7, 126.9, 123.1, 121.6, 21.2.

Methyl 6-phenylnicotinate (3m) ${ }^{3}$

[^6]
$\mathbf{3 m}$ was prepared from methyl 6-chloronicotinate ( $86 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 143 mg , $0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $15 \%$ $\mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ petroleum ether) to afford the desired product as white solid ( 71 mg , $67 \%) .{ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 9.20(\mathrm{dd}, J=2.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=8.3,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.25-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{dd}, J=8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 166.1,161.2,151.3,139.0,138.6,130.8,129.7$, 128.1, 125.3, 120.6, 52.6.

2-Phenyl-4-(trifluoromethyl)pyridine (3n) ${ }^{12}$


3n was prepared from 2-bromo-4-(trifluoromethyl)pyridine ( $113 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA}$ /petroleum ether) to afford the desired product as a colorless oil ( $86 \mathrm{mg}, 77 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.87(\mathrm{dt}, J=5.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.07 $-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{dq}, J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.41(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.8,150.7,139.2(\mathrm{q}, J=33.1 \mathrm{~Hz}), 138.1,129.9,129.0,127.1,123.0(\mathrm{q}, J=273.7$ $\mathrm{Hz}), 117.6(\mathrm{q}, J=3.0 \mathrm{~Hz}), 116.1(\mathrm{q}, J=4.0 \mathrm{~Hz})$.

2-Phenyl-3-(trifluoromethyl)pyridine (30) ${ }^{13}$


3o was prepared from 2-bromo-3-(trifluoromethyl)pyridine (113 mg, 0.5 mmol ) and PhB (neo) ( $143 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5 \% \mathrm{Et}_{2} \mathrm{O}$ with $0.5 \% \mathrm{TEA} /$ petroleum ether) to afford the desired product as a colourless oil ( $67 \mathrm{mg}, 60 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.85$ (ddd, $J=4.7,1.7,0.8 \mathrm{~Hz}$,

[^7]$1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.36(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 158.5,151.8,139.1,135.0(\mathrm{q}, J=5.1 \mathrm{~Hz}), 128.9,128.7(\mathrm{q}, J=1.0 \mathrm{~Hz}), 128.1,125.1(\mathrm{q}, J=$ $18.2 \mathrm{~Hz}), 122.3(\mathrm{q}, J=274.7 \mathrm{~Hz}), 121.8$.

2-Phenylquinoline ( $\mathbf{3 p})^{9}$


3p was prepared from 2-chloroquinoline ( $82 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75$ mmol, 1.5 eq ). The crude mixture was purified by flash column chromatography ( $2-10 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ pentane $)$ to afford the desired product as a colorless oil $(83 \mathrm{mg}, 81 \%){ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25-8.15(\mathrm{~m}, 4 \mathrm{H}), 7.92-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.44(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.4,148.3,139.7,136.8,129.7,129.7,129.4,128.9$, 127.6, 127.5, 127.2, 126.3, 119.0.

4-Methyl-2-phenylpyrimidine (3q) ${ }^{14}$

$\mathbf{3 q}$ was prepared from 2-chloro-4-methylpyrimidine ( $64 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 143 $\mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5 \%$ $\mathrm{Et}_{2} \mathrm{O}$ with $0.5 \% \mathrm{TEA} /$ petroleum ether) to afford the desired product as a colourless oil ( 60 mg , $70 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.65(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.48-8.40(\mathrm{~m}, 2 \mathrm{H}), 7.52-$ $7.44(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.3, 164.3, 156.7, 137.8, 130.6, 128.5, 128.2, 118.6, 24.4.

2-Phenylpyrazine (3r) ${ }^{15}$


[^8]3r was prepared from 2-chloropyrazine ( $29 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) and PhB (neo) ( $72 \mathrm{mg}, 0.375$ $\mathrm{mmol}, 1.5 \mathrm{eq})$. The crude mixture was purified by flash column chromatography ( $10 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ petroleum ether) to afford the desired product as white solid ( $27.7 \mathrm{mg}, 71 \%$ ). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.04(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{dd}, J=2.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.52$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.44(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 153.1,144.4,142.5,141.9,136.2,130.2,129.2,127.1$.

3-Phenylpyridine (3s) ${ }^{9}$


3s was prepared from 3-bromopyridine ( $40 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) and PhB (neo) ( $71 \mathrm{mg}, 0.375$ $\mathrm{mmol}, 1.5 \mathrm{eq})$. The crude mixture was purified by flash column chromatography ( $10 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ pentane $)$ to afford the desired product as a colourless oil ( $21 \mathrm{mg}, 54 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.85(\mathrm{dd}, J=2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ (dd, $J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.1,148.0,137.7,136.8,134.7,129.1,128.2,127.2$, 123.7.

2-Methoxy-5-phenylpyridine (3t) ${ }^{10}$


3t was prepared from 5-bromo-2-methoxypyridine ( $94 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 143 mg , $0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5 \%$ $\mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ pentane $)$ to afford the desired product as a colourless oil $(61 \mathrm{mg}, 66 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{dd}, J=2.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.6,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6,145.0,137.9,137.6,130.2$, 129.0, 127.4, 126.7, 110.9, 53.6.

5-Phenylpyrimidine (3u) ${ }^{10}$


3u was prepared from 5-bromopyrimidine ( $80 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75$ mmol, 1.5 eq). The crude mixture was purified by flash column chromatography ( $30 \%$ DCM with $1 \%$ TEA/ pentane) to afford the desired product as a yellow oil ( $68 \mathrm{mg}, 87 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 9.05(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.61-$ $7.45(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 158.3,155.6,135.4,134.9,130.2$, 129.7, 127.9.

1-Methyl-4-phenyl-1 H -imidazole (3v) ${ }^{16}$


3v was prepared from 4-bromo-1-methyl-1H-imidazole ( $81 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $20 \%$ acetone / dichloromethane) to afford the desired product as a colourless oil $(61 \mathrm{mg}, 77 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 7.81(\mathrm{dd}, J=2.0,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.79(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}$, $2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta$ 142.5, 139.1, 136.1, 129.2, 126.9, 125.3, 117.2, 33.4.

3-Phenylquinoline (3w) ${ }^{17}$


3w was prepared from 3-bromoquinoline ( $104 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5-30 \%$

[^9]$\mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ pentane $)$ to afford the desired product as a colourless oil ( $80 \mathrm{mg}, 78 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.19(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.28(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dq}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.56$ (dddd, $J=22.7,8.0,6.6$, $1.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.44(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.8,147.3$, 137.8, 133.8, 133.3, 129.4, 129.2, 129.2, 128.1, 128.0, 127.4, 127.0.

6-Phenylquinoline ( $\mathbf{3 x})^{9}$

$\mathbf{3 x}$ was prepared from 6-bromoquinoline ( $104 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75$ mmol, 1.5 eq). The crude mixture was purified by flash column chromatography ( $30 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \%$ TEA/pentane) to afford the desired product as a white solid ( $65 \mathrm{mg}, 63 \%$ ) . ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.92$ (dd, $J=4.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.21 (dd, $J=8.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.99 (dd, $J$ $=7.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=8.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 150.2,147.5,140.3,139.5,136.5,129.8,129.4,129.0$, $128.5,127.8,127.5,125.5,121.5$.

8-Phenylquinoline (3y) ${ }^{10}$


3y was prepared from 8-bromoquinoline ( $104 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75$ $\mathrm{mmol}, 1.5 \mathrm{eq})$. The crude mixture was purified by flash column chromatography ( $10 \% \mathrm{Et}_{2} \mathrm{O}$ with $1 \%$ TEA/pentane) to afford the desired product as a yellow oil ( $76 \mathrm{mg}, 74 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.99(\mathrm{dd}, J=4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J$ $=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.62(\mathrm{dd}, J=8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.2,146.0,140.9,139.6,136.3$, 130.6, 130.3, 128.7, 128.0, 127.5, 127.4, 126.3, 121.0.

2-Phenylthiophene ( $\mathbf{3} \mathbf{z})^{3}$

$\mathbf{3 z}$ was prepared from 2-bromothiophene ( $82 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75$ mmol, 1.5 eq). The crude mixture was purified by flash column chromatography (petroleum ether) to afford the desired product as a yellow solid ( $59 \mathrm{mg}, 75 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=$ $5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 144.9,135.2,129.9,129.1,128.3,126.5$, 125.9, 124.2.

3-Phenylfuran (3aa) ${ }^{18}$


3aa was prepared from 3-bromofuran ( $74 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $143 \mathrm{mg}, 0.75 \mathrm{mmol}$, $1.5 \mathrm{eq})$. The crude mixture was purified by flash column chromatography (petroleum ether) to afford the desired product as a white solid $(44 \mathrm{mg}, 61 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta$ $8.01(\mathrm{dd}, J=1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H})$, $6.88(\mathrm{dd}, J=1.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 144.9,139.8$, 133.4, 129.6, 127.7, 127.3, 126.5, 109.5.

5-Chloro-2-phenylpyridine (3ab) ${ }^{19}$


[^10]3ab was prepared from 2,5-dichloropyridine ( $74 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( $114 \mathrm{mg}, 0.6$ $\mathrm{mmol}, 1.2 \mathrm{eq})$.The crude mixture was purified by flash column chromatography ( $1-5 \% \mathrm{Et}_{2} \mathrm{O}$ /petroleum ether) to afford the desired product as a white solid ( $89 \mathrm{mg}, 94 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{dd}, J=2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.54$ $-7.37(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,148.4,138.1,136.7,130.7,129.4$, 128.9, 126.9, 121.3.

## 5-Bromo-2-phenylpyridine (3ac)



3ac was prepared from 5-bromo-2-chloropyridine ( $96 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 114 mg , $0.6 \mathrm{mmol}, 1.2 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $1-5 \%$ $\mathrm{Et}_{2} \mathrm{O}$ /petroleum ether) to afford the desired product as a white solid ( $87 \mathrm{mg}, 74 \%$ ) together with 2-Chloro-5-phenylpyridine (3ac') ( $8 \mathrm{mg}, 8 \%$ ).

3ac: ${ }^{20}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.74(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.92(\mathrm{~m}, 2 \mathrm{H})$, $7.87(\mathrm{dd}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.38(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.0,150.7,139.5,138.2,129.5,129.0,126.9,121.8,119.4$.

3ač: $:{ }^{21}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.49$ (ddd, $J=7.6,6.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{dd}, J=12.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 150.4,148.1,137.3,136.6,135.8,129.3,128.6,127.1,124.3$.

4-(Trifluoromethyl)-1,1'-biphenyl (3ae) ${ }^{9}$


3ae was prepared from 1-bromo-4-(trifluoromethyl)benzene ( $56 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) and $\mathrm{PhB}(\mathrm{neo})(71 \mathrm{mg}, 0.375 \mathrm{mmol}, 1.5 \mathrm{eq})$. The crude mixture was purified by flash column chromatography (petroleum ether) to afford the desired product as a white solid ( $43 \mathrm{mg} 77 \%$ ).

[^11]${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.70(\mathrm{~s}, 4 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.8(\mathrm{q}, 2.0 \mathrm{~Hz}), 139.9,129.3\left(\mathrm{~d},{ }^{2} J=\right.$ $32.3 \mathrm{~Hz}), 129.1,128.8,128.3,127.4,127.3,125.8\left(\mathrm{q},{ }^{3} J=3.0 \mathrm{~Hz}\right), 121.7(\mathrm{q}, J=272.7 \mathrm{~Hz})$.

## [1,1'-Biphenyl]-4-carbonitrile (3af) ${ }^{9}$



3af was prepared from 4-bromobenzontirile ( $46 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) and PhB (neo) ( $71 \mathrm{mg}, 0.375$ mmol, 1.5 eq ). The crude mixture was purified by flash column chromatography ( $15 \%$ DCM with $1 \% \mathrm{TEA} /$ petroleum ether) to afford the desired product as a white solid ( $33 \mathrm{mg}, 74 \%$ ).

3af was prepared from 4-chlorobenzontirile ( $34 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) and PhB (neo) ( $71 \mathrm{mg}, 0.375$ mmol, 1.5 eq). The crude mixture was purified by flash column chromatography ( $15 \%$ DCM with $1 \% \mathrm{TEA} /$ petroleum ether) to afford the desired product as a white solid ( $27 \mathrm{mg}, 60 \%$ ).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 7.88(\mathrm{~m}, J=2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.49$ $(\mathrm{m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 146.2$, 139.9, 133.5, 130.0, 129.5, 128.6, 128.0, 119.4, 111.8.

1-([1,1'-Biphenyl]-4-yl)ethan-1-one (3ag) ${ }^{22}$


3ag was prepared from 5-bromo-2-chloropyridine ( $99 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 143 mg , $0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $10-20 \%$ $\mathrm{Et}_{2} \mathrm{O}$ with $1 \% \mathrm{TEA} /$ petroleum ether) to afford the desired product as a white solid ( 51 mg , $52 \%) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.61$
(22) Penafiel, I., Pastor, I. M., Yus, M., Eur. J. Org. Chem. 2013, 1479.
$(\mathrm{m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.8,145.9,140.0,135.9,129.0,129.0,128.3,127.4,127.3,26.8$.

Methyl [1,1'-biphenyl]-3-carboxylate (3ah) ${ }^{9}$


3ah was prepared from methyl 3-bromobenzoate ( $108 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and PhB (neo) ( 143 mg , $0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $5-20 \%$ DCM with $1 \%$ TEA/ petroleum ether) to afford the desired product as a colourless oil ( 69 mg , $65 \%) .{ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 8.26(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dt}, J=7.7,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92$ (ddd, $J=7.8,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{td}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ $\delta 167.1,142.2,140.7,132.2,131.8,130.0,129.8,129.0,128.7,128.5,127.8,52.4$.

Methyl 4'-methoxy-[1,1'-biphenyl]-3-carboxylate (3ak) ${ }^{23}$


3ak was prepared from methyl 3-bromobenzoate ( $108 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) and 2-(4-methoxyphenyl)-5,5-dimethyl-1,3,2-dioxaborinane ( $165 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5 \mathrm{eq}$ ). The crude mixture was purified by flash column chromatography ( $20 \%$ DCM with $1 \% \mathrm{TEA}$ / petroleum ether) to afford the desired product as a white solid ( $88 \mathrm{mg}, 73 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 8.24-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{ddd}, J=7.7,1.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{ddd}, J=7.8,2.0$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{td}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\left.101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 160.7,141.8,133.0,131.7,129.9$, 128.8, 128.3, 127.9, 115.2, 55.6, 52.4.

4'-(Trifluoromethyl)-[1,1'-biphenyl]-4-carbonitrile (3al) ${ }^{24}$

[^12]

3al was prepared from 4-chlorobenzontirile ( $34 \mathrm{mg}, 0.25 \mathrm{mmol}$ ) and PhB (neo) ( $72 \mathrm{mg}, 0.375$ mmol, 1.5 eq). The crude mixture was purified by flash column chromatography ( $15 \% \mathrm{Et}_{2} \mathrm{O}$ /petroleum ether) to afford the desired product as a white solid ( $58 \mathrm{mg}, 93 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 8.01-7.91(\mathrm{~m}, 6 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 144.6,143.8,133.7,130.8(\mathrm{q}, J=32.3 \mathrm{~Hz}), 129.0,128.9,126.8(\mathrm{q}, J=4.0 \mathrm{~Hz})$, $125.3(\mathrm{q}, J=271.7 \mathrm{~Hz}), 119.1,112.8$.

1H NMR, CD3Cl, 400 MHz





Figure S1. ${ }^{1} \mathrm{H}$ Spectra of 3a
$13 \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}, ~ © \mathrm{Cl} 3,101 \mathrm{MHz}$


Figure S2. ${ }^{13} \mathrm{C}$ Spectra of 3a

13C\{1H\} NMR, CDC3, 101 MHz


Figure S3. ${ }^{1} \mathrm{H}$ Spectra of 3b



3b


| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 180 |  | 160 | 150 |  |  |  | 11 |  |  |  |  |  |  |  |  |  |  |  |

Figure S4. ${ }^{13}$ C Spectra of $\mathbf{3 b}$

1H NMR, CDCl3, 400 MHz


3c


Figure S5. ${ }^{1} \mathrm{H}$ Spectra of 3c


Figure S6. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 c}$

1H NMR, (CD3)2CO, 400 MHz


Figure S7. ${ }^{1} \mathrm{H}$ Spectra of 3d


Figure S8. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 d}$

1H NMR, CDCl3, 400 MHz




Figure S9. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 e}$


Figure S10. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 e}$

1H NMR, $\mathrm{CDCl} 3,400 \mathrm{MHz}$

## 



Figure S11. ${ }^{1}$ H Spectra of $\mathbf{3 f}$
13C\{1H\} NMR, CDCl3, 101 MHz


Figure S12. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 f}$


3 g


Figure S13. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 g}$
wwq7-61 NS.11.fid - T13-17 -C13CPD_ICES Acetone M: <br> Wenqin 11101 MHz


Figure S14. ${ }^{13} \mathrm{C}$ Spectra of 3 g




Figure S15. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 h}$


[^13]Figure S16. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 h}$

1H NMR，（CD3） $2 \mathrm{CO}, 400 \mathrm{MHz}$



Figure S17．${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 i}$


発尽㘯 $3 i$



Figure S18．${ }^{13} \mathrm{C}$ Spectra of 3i

1H NMR, CDCl3, 400 MHz


Figure S19. ${ }^{1}$ H Spectra of $\mathbf{3 j}$
${ }^{13 C}\{1 \mathrm{H}\} \mathrm{NMR}, ~ © C \mathrm{Cl} 3,101 \mathrm{MHz}$

3j


シ80
$\stackrel{0}{2}$

Figure S20. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 j}$

1H NMR, CDCl3, 400 MHz


3k


Figure S21. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 k}$


Figure S22. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 k}$




Figure S23. ${ }^{1} \mathrm{H}$ Spectra of 31


$\stackrel{\cong}{\sim}$

Figure S24. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 1}$

WWQ7-59 2.10.fid - T15-20 - ICES_PROTON Acetone M:<br> Wenqin 9






Figure S25. ${ }^{1}$ H Spectra of $\mathbf{3 m}$


Figure S26. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 m}$

1 H NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$




Figure S27. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 n}$
$13 \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}, \mathrm{CDCl} 3,101 \mathrm{MHz}$


Figure S28. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 n}$

1H NMR, CDCl3, 400 MHz


Figure S29. ${ }^{1}$ H Spectra of $\mathbf{3 o}$


| 10 | 210 | 200 | 190 | 180 | 170 | 160 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 150 |  |  |  |  |  |
| Figure S30. |  |  |  |  |  |  |

1H NMR，CDCl3， 400 MHz



Figure S31．${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 p}$
$13 \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}, \mathrm{CDCl} 3,101 \mathrm{MHz}$



Figure S32．${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 p}$

1H NMR, $\mathrm{CDCl} 3,400 \mathrm{MHz}$




Figure S33. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 q}$




Figure S34. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 q}$


Figure S35. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 r}$

$3 r$




Figure S36. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 r}$

1H NMR, CDCl3, 400 MHz




|  |  |  | $$ | $\begin{aligned} & \text { T } \\ & \underset{\sim}{2} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| . 0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | $\begin{aligned} & 5.0 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$ | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0. |

Figure S37. ${ }^{1} \mathrm{H}$ Spectra of 3s


Figure S38. ${ }^{13} \mathrm{C}$ Spectra of 3 s


Figure S39. ${ }^{1} \mathrm{H}$ Spectra of 3t


Figure S40. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 t}$


Figure S41. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 u}$


Figure S42. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 u}$


Figure S43. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 v}$
$13 \mathrm{C}\{1 \mathrm{H}\}$ NMR, (CD3)2C0, 101 MHz






Figure $\mathbf{S 4 4} .{ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 v}$

1 H NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$




Figure S45. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 w}$


Figure S46. ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{3 w}$


Figure S47. ${ }^{1} \mathrm{H}$ Spectra of $\mathbf{3 x}$
13C\{1H\} NMR, ©Cli3, 101 MHz


~~~


Figure S48. \({ }^{13} \mathrm{C}\) Spectra of \(\mathbf{3 x}\)

1H NMR, CDCl3, 400 MHz



Figure S49. \({ }^{1} \mathrm{H}\) Spectra of \(\mathbf{3 y}\)


Figure S50. \({ }^{13} \mathrm{C}\) Spectra of \(\mathbf{3 y}\)


Ph
\(3 z\)


Figure S51. \({ }^{1} \mathrm{H}\) Spectra of \(\mathbf{3 z}\)
wvq7-53 3.31.fid - t2 - C13CPD_ICES Acetone M: \\ Wenqin 32101 MHz




Figure S52. \({ }^{13} \mathrm{C}\) Spectra of \(\mathbf{3 z}\)

1H NMR, (CD3)2CO, 400 MHz


Figure S53. \({ }^{1} \mathrm{H}\) Spectra of 3aa


Figure S54. \({ }^{13} \mathrm{C}\) Spectra of 3aa


Figure S55. \({ }^{1} \mathrm{H}\) Spectra of 3ab
13C\{1H\} NMR, ©Cli3, 101 MHz



Figure S56. \({ }^{13} \mathrm{C}\) Spectra of 3ab


Figure S57. \({ }^{1} \mathrm{H}\) Spectra of 3ac
13C\{1H\} NMR, CDCl3, 101 MHz


Figure S58. \({ }^{13} \mathrm{C}\) Spectra of 3ac

\(13 C\{1 \mathrm{H}\}\) NMR, \(\operatorname{CDCl} 3,101 \mathrm{MHz}\)







Figure S59. \({ }^{1} \mathrm{H}\) Spectra of 3ae
wwq7-54 CF3.11.fid - T7-10 - C13CPD_ICES CDCl3 M: \\ Wenqin 57101 MHz




Figure S60. \({ }^{13} \mathrm{C}\) Spectra of 3ae

1H NMR, (CD3) \(2 \mathrm{CO}, 400 \mathrm{MHz}\)





Figure S61. \({ }^{1} \mathrm{H}\) Spectra of 3af


Figure S62. \({ }^{13} \mathrm{C}\) Spectra of 3af


,


Figure S63. \({ }^{1} \mathrm{H}\) Spectra of \(\mathbf{3 a g}\)


Figure S64. \({ }^{13} \mathrm{C}\) Spectra of \(\mathbf{3 a g}\)


Figure S65. \({ }^{1} \mathrm{H}\) Spectra of 3ah




Figure S66. \({ }^{13} \mathrm{C}\) Spectra of 3ah



Figure S67. \({ }^{1}\) H Spectra of 3ak


Figure S68. \({ }^{13} \mathrm{C}\) Spectra of 3ak

WWQ7-62 4.20.fid - T9,14 - ICES_PROTON Acetone M: \\ Wenqin 9400 MHz


3al


Figure S69. \({ }^{1} \mathrm{H}\) Spectra of 3al


Figure S70. \({ }^{13} \mathrm{C}\) Spectra of 3al~~~


[^0]:    (1) (a) Wang, J.; Hanan, G. S. Synlett 2005, 8, 1251. (b) Duong, H. A.; Nguyen, T. M.; Rosman, N. Z.; Tan, L. J. L. Synthesis 2014, 46, 1881.

[^1]:    (2) Liu, K. M.; Liao, L. Y.; Duan; X. F. Chem. Comm. 2015, 51, 1124.

[^2]:    (3) Martinez-Solorio, D.; Melillo, B.; Sanchez, L.; Liang, Y.; Lam, E.; Smith, A. B. J. Am. Chem. Soc. 2016, 138, 1836.

[^3]:    (4) Kan, J.; Huang, S.; Lin, J.; Zhang, M.; Su, W.; Angew. Chem. Int. Ed. 2015, 54, 2199.
    (5) Laha, J. K.; Jethava, K. P.; Patel, S.; Patel, K. V. J. Org. Chem. 2017, 82, 76.
    (6) Zhu, F.; Wang, Z-X. J. Org. Chem. 2014, 79, 4285.

[^4]:    (7) Luzung, M. R.; Patel, J. S.; Yin, J. J. Org. Chem. 2010, 75, 8330.

[^5]:    (8) Zhou, Q.; Zhang, B.; Su, L.; Jiang, T.; Chen, R.; Du, T.; Ye, Y.; Shen, J.; Dai, G.; Han, D.; Jiang, H. Tetrahedron 2013, 69, 10996.
    (9) Yuen, O. Y.; So, C. M.; Man, H. W.; Kwong, F. Y., Chem. Eur. J. 2016, 22, 6471.

[^6]:    (10) Wang, X.; He, Y.; Ren, M.; Liu, S.; Liu, H.; Huang, G. J. Org. Chem. 2016, 81, 7958.
    (11) Chen, M.; Micalizio, G. C.; J. Am. Chem. Soc. 2012, 134, 1352.

[^7]:    (12) Rosner, S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2016, 55, 10463.
    (13) Lin, X.; Hou, C.; Li, H.; Weng, Z. Chem. Eur. J. 2016, 22, 2075.

[^8]:    (14) Zhao, D.; Wang, T.; Shen, Q.; Li, J. Chem. Comm. 2014, 50, 4302.
    (15) Thapa, S.; Basnet, P.; Gurung, S. K.; Giri, R. Chem. Comm. 2015, 51, 4009.

[^9]:    (16) Kuma, S.; Jaller, D.; Patel, B.; LaLonde, J. M.; DuHadaway, J. B.; Malachowski, W. P.; Prendergast, G. C.; Muller, A. J. J. Med. Chem. 2008, 51, 4968.
    (17) Qiu, D.; Jin, L., Zheng, Z.; Meng, H.; Mo, F., Wang, X.; Zhang, Y.; Wang, J. J. Org. Chem. 2013, 78, 1923.

[^10]:    (18) Heijnene, D.; Tosi, F.; Vila, C.; Stuart, M.C.A.; Elsinga, P. H.; Szymanski, W.; Feringa, B. L. Angew. Chem. Int. Ed. 2017, 56, 3354.
    (19) Liu, K. M.; Liao, L. Y.; Duan; X. F. Chem. Comm. 2015, 51, 1124.

[^11]:    (20) Wang, J.; Wang, S.; Wang, G.; Zhang, J.; Yu, X. Chem. Comm. 2012, 48, 11769.
    (21) Zhang, E.; Tang, J.; Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Chem. A Eur. J. 2016, 22, 5692

[^12]:    (23) Leowanawat, P.; Zhang, N.; Resmerita, A-M.; Rosen, B. M.; Percec, V. J. Org. Chem. 2011, 76, 9946.
    (24) Hua, X.; Masson-Makdissi, J.; Sullivan, R. J.; Newman, S. G. Org. Lett. 2016, 18, 5312.

[^13]:    $\begin{array}{llllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110\end{array}{ }_{f 1}(\mathrm{ppm}){ }^{100}$

