Carbene-Catalyzed formal [5+5] Reaction for Coumarin Construction and Total Synthesis of Defucogilvocarcins

Xuan Huang¹[§], Tingshun Zhu¹[§], Zhijian Huang¹, Yuexia Zhang¹, Zhichao Jin^{1,2}, Giuseppe Zanoni², and Yonggui Robin Chi^{1*}

¹Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore. ²Department of Chemistry, University of Pavia, 27100 Pavia, Italy

[§] These authors contributed equally to this work

Supplementary Information

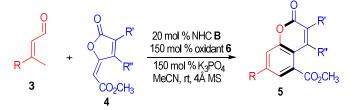
Contents

I: General Information	S2
II: Experimental Procedures	S3
III: References	S18
VI: ¹ H NMR, ¹³ C NMR spectra of products	S20

I: General Information

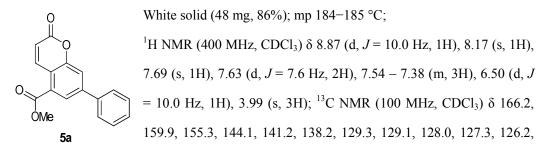
All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. THF were distilled from sodium-benzophenone, CH₂Cl₂ and CH₃CN was distilled from calcium hydride. All the chemicals were purchased commercially and used without further purification, unless otherwise stated. Flash chromatography was performed using silica gel (200-300 mesh). Reactions were monitored by thin layer chromatography (TLC). Visualization was achieved under a UV lamp (254nm and 365 nm), I_2 and by developing the plates with *p*-anisaldehyde or phosphomolybdic acid. ¹H and ¹³C NMR were recorded on Bruker BBFO 400 MHz NMR, Bruker AV-500 MHz NMR spectrometer with TMS as the internal standard and were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: ¹H NMR = 7.26, ¹³C NMR = 77.16). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants (J) are reported in Hertz (Hz). IR spectra were recorded on a Shimadzu IR Prestige-21 FT-IR spectrometer as neat thinfilms between KBr plates. High resolution Mass spectra (HRMS) were recorded by using Finnigan MAT 95 XP mass spectrometer (Thermo Electron Corporation). Enals 3^{1} and furanone 4^2 were prepared with reported procedures or commercial available. If not further mentioned, silica gel column chromatography for product purification was eluted with hexane/ethyl acetate.

II: Experimental Procedures

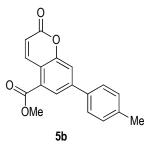

Table 1. Optimization of the reaction conditions^a

$R + Q = \frac{20 \text{ mol }\% \text{ NHC cat.}}{150 \text{ mol }\% \text{ oxidant}} R + \frac{20 \text{ mol }\% \text{ oxidant}}{\text{solvent, 48 h, rt}} R = \frac{150 \text{ mol }\% \text{ oxidant}}{5a}$								
<	∧N (⊕)N (N-	Ar (N _N _	• Mes ^{_N} _/	IVIES, /-		<i>_t</i> Bu		
		BF ₄ ^O BF ₄	C E	,⊖ 0=<)=0		
	A : Ar = Ph B : Ar = Me C : Ar = C ₆	D IS	E	<i>t</i> Bu	oxidant 6	[*] tBu		
Entry	NHC	Base	Solvent	Temp.(°C)	Time(h)	$\text{Yield}(\%)^b$		
1	Α	$Cs_2CO_3(1.0 eq)$	THF	23	48	trace		
2	В	$Cs_2CO_3(1.0 eq)$	THF	23	48	14		
3	С	$Cs_2CO_3(1.0 eq)$	THF	23	48	trace		
4	D	$Cs_2CO_3(1.0 eq)$	THF	23	48	5		
5	Е	$Cs_2CO_3(1.0 eq)$	THF	23	48	trace		
6	В	DBU (1.0 eq)	THF	23	48	trace		
7	В	Et ₃ N (1.0 eq)	THF	23	48	0		
8	В	$K_{3}PO_{4}(1.0 eq)$	THF	23	48	50		
9	В	$K_{3}PO_{4}(1.0 eq)$	DCM	23	48	53		
10	В	$K_{3}PO_{4}(1.0 eq)$	MeCN	23	48	76		
11	В	$K_{3}PO_{4}$ (1.0 eq)	MeCN	40	24	66		
12	В	$K_{3}PO_{4}(1.0 eq)$	MeCN	60	3	55		
13	В	$K_{3}PO_{4}(1.0 eq)$	MeCN	80	3	60		
14	В	K_3PO_4 (1.2 eq)	MeCN	23	48	79		
15	В	K_3PO_4 (1.5 eq)	MeCN	23	48	86		
16	В	$K_3PO_4(2.0 eq)$	MeCN	23	48	77		
17		K ₃ PO ₄ (1.5eq)	MeCN	23	48	0		

^{*a*}Reaction conditions unless otherwise specified: **3a** (0.12 mmol), **4a** (0.10 mmol), NHC (0.02mmol), **4** (0.15 mmol), base (0.10 mmol), solvent (1 mL), 4 Å molecular sieves, 48 h, rt. ^{*b*}Isolated yield based on **1a** after chromatography.

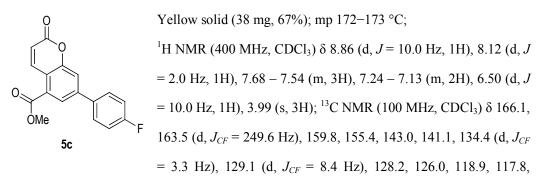

As shown in Supplementary Table 1, Triazolium-based NHC catalyst **B** and **D** with an *N*-mesityl substituent were found to mediate the formation of **5a**.(Supplementary Table 1, entries 2 & 4). Selection of base is critical for this reaction. Changing Cs2CO3 to DBU or Et3N led to little formation of **5a** (Supplementary Table 1, entries 6-7), and K3PO4 was found to be the best base for the reaction(Supplementary Table 1, entry 8). Solvent screening show CH3CN is better than CH2Cl2 or THF (Supplementary Table 1, entries 9-10). Increasing reaction temperature can shorten the reaction time, but with slightly lower yield (Supplementary Table 1, entries 11-13). Screening the amount of base K₃PO₄ showed 1.5equiv is the optimized (Supplementary Table1, entries 14-16). No reaction occurred without NHC precatalyst.

General procedure for the catalytic synthesis of products 5

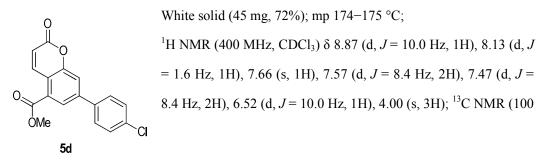

Under Ar atmosphere, a solution of enal **3** (0.12 mmol), furanone **4** (0.1 mmol), oxidant **6** (0.15 mmol), K_3PO_4 (0.1 mmol or 0.15 mmol), activated 4Å MS (30 mg) and NHC pre-catalyst **B** (0.02 mmol) in 1.0 mL MeCN was stirred at rt for 48 hours. The mixture was concentrated under reduced pressure and purified by silica gel column chromatography to afford the corresponding product **5**.

Methyl 2-oxo-7-phenyl-2H-chromene-5-carboxylate (5a)

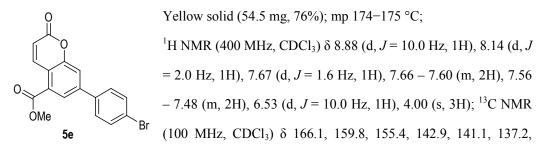
119.1, 117.7, 117.5, 52.8; IR v_{max} (neat, cm⁻¹):1755, 1717, 1607, 1252, 1209, 1026, 849, 696; HRMS: (ESI) for $C_{17}H_{13}O_4^+[M+H]^+$: calcd 281.0808, found 281.0819.


Methyl 2-oxo-7-(p-tolyl)-2H-chromene-5-carboxylate (5b)

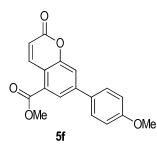
White solid (52 mg, 88%); mp 202–203 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, *J* = 10.0 Hz, 1H), 8.17 (d, *J* = 1.6 Hz, 1H), 7.69 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 6.50 (d, *J* = 10.0 Hz, 1H), 4.00 (s, 3H), 2.42 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ 166.3, 160.0, 155.4, 144.1, 141.2, 139.3, 135.3, 130.1, 128.0, 127.1, 126.0, 118.8, 117.5, 117.3,


52.8, 21.3; IR v_{max} (neat, cm⁻¹): 1744, 1721, 1609, 1433, 1338, 1321, 1254, 1215, 1109, 1028, 822; HRMS: (ESI) for $C_{18}H_{15}O_4^+$ [M+H]⁺: calcd 295.0965, found 295.0976.

Methyl 7-(4-fluorophenyl)-2-oxo-2H-chromene-5-carboxylate (5c)

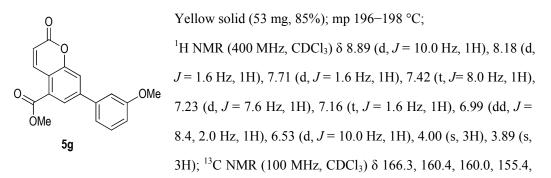

117.5, 116.4 (d, $J_{CF} = 21.8$ Hz), 52.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -112.5; IR v_{max} (neat, cm⁻¹): 1748, 1713, 1609, 1516, 1425, 1256, 1231, 1117, 1026, 829; HRMS: (ESI) for C₁₇H₁₂O₄F⁺ [M+H]⁺: calcd 299.0714, found 299.0726.

Methyl 7-(4-chlorophenyl)-2-oxo-2H-chromene-5-carboxylate (5d)

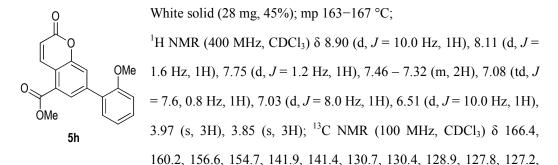

MHz, CDCl₃) δ 166.1, 159.8, 155.4, 142.8, 141.1, 136.7, 135.4, 129.6, 128.5, 128.3, 126.0, 119.0,118.0, 117.8, 52.9; IR ν_{max} (neat, cm⁻¹): 1751, 1713, 1610, 1502, 1433, 1253, 1234, 1215, 1092, 1036, 957, 902, 787; HRMS: (ESI) for $C_{17}H_{12}O_4Cl^+$ [M+H]⁺: calcd 315.0419, found 315.0420.

Methyl 7-(4-bromophenyl)-2-oxo-2H-chromene-5-carboxylate (5e)

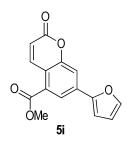
132.6, 128.8, 128.3, 125.9, 123.7, 119.0, 118.0, 117.9, 52.9; IR ν_{max} (neat, cm⁻¹): 1747, 1713, 1608, 1434, 1340, 1254, 1119, 1032, 837, 816; HRMS: (ESI) for $C_{17}H_{12}O_4Br^+$ [M+H]⁺: calcd 358.9913, found 358.9911.


Methyl 7-(4-methoxyphenyl)-2-oxo-2H-chromene-5-carboxylate (5f)

White solid (37 mg 60%); mp 170–172 °C;
¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 10.0 Hz, 1H), 8.14 (d, J = 2.0 Hz, 1H), 7.65 (d, J = 1.2 Hz, 1H), 7.59 (d, J = 8.8 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 6.48 (d, J = 10.0 Hz, 1H), 3.99 (s, 3H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 160.6, 160.1, 155.5, 143.8, 141.3, 130.6, 128.5, 128.0, 125.7, 118.4,


117.3, 117.0, 114.8, 55.6, 52.8; IR v_{max} (neat, cm⁻¹): 1740, 1721, 1605, 1518, 1259, 1111, 1032, 829;HRMS: (ESI) for C₁₈H₁₄O₅Na⁺ [M+Na]⁺: calcd 333.0733, found 333.0733.

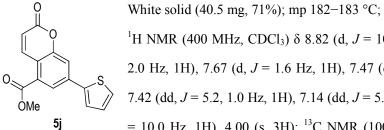
Methyl 7-(3-methoxyphenyl)-2-oxo-2H-chromene-5-carboxylate (5g)


144.1, 141.2, 139.8, 130.5, 128.1, 126.3, 119.8, 119.3, 117.8, 117.7, 114.4, 113.2, 55.6, 52.9; IR v_{max} (neat, cm⁻¹): 1742, 1719, 1607, 1580, 1439, 1319, 1257, 1207, 1111, 1028, 878, 845, 777; HRMS: (ESI) for C₁₈H₁₄O₅Na [M+Na]⁺: calcd 333.0733, found 333.0740.

Methyl 7-(2-methoxyphenyl)-2-oxo-2H-chromene-5-carboxylate (5h)

122.2, 121.3, 117.7, 117.3, 111.6, 55.7, 52.7; IR ν_{max} (neat, cm⁻¹): 1740, 1713, 1611, 1258, 1215, 1111, 1028, 833, 752; HRMS: (ESI) for $C_{18}H_{15}O_5 [M+H]^+$: calcd 311.0914, found 311.0912.

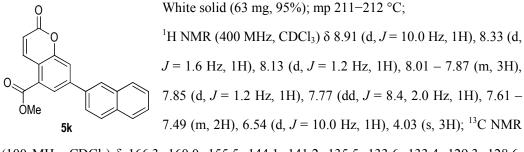
Methyl 7-(furan-2-yl)-2-oxo-2H-chromene-5-carboxylate (5i)



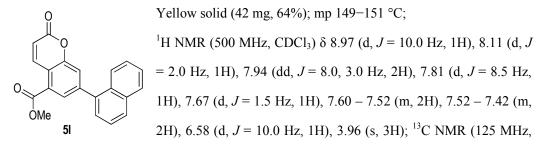
White solid (27 mg, 50%); mp 168–169 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, *J* = 10.0 Hz, 1H), 8.18 (d, *J* = 2.0 Hz, 1H), 7.71 (s, 1H), 7.56 (d, *J* = 1.2 Hz, 1H), 6.87 (d, *J* = 3.6 Hz, 1H), 6.55 (dd, *J* = 3.2, 1.6 Hz, 1H), 6.47 (d, *J* = 10.0 Hz, 1H), 3.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 159.9, 155.5, 151.4, 144.1, 141.1, 133.3, 128.3, 122.8, 117.4, 117.3, 115.2, 112.5, 108.8, 52.9; IR

 v_{max} (neat, cm⁻¹): 1745, 1717, 1610, 1585, 1254, 1207, 1113, 1028, 845;HRMS: (ESI) for $C_{15}H_{11}O_5[M+H]^+$: calcd 271.0601, found 271.0605.

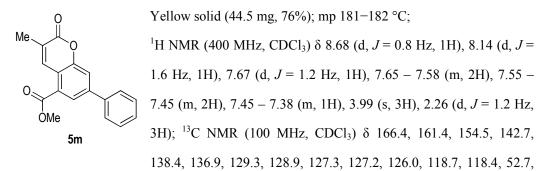

Methyl 2-oxo-7-(thiophen-2-yl)-2H-chromene-5-carboxylate (5j)

¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 10.0 Hz, 1H), 8.14 (d, J = 2.0 Hz, 1H), 7.67 (d, J = 1.6 Hz, 1H), 7.47 (dd, J = 3.6, 1.2 Hz, 1H), 7.42 (dd, J = 5.2, 1.0 Hz, 1H), 7.14 (dd, J = 5.2, 3.6 Hz, 1H), 6.47 (d, J = 10.0 Hz, 1H), 4.00 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 166.0,

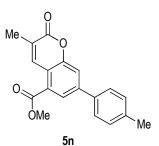

159.8, 155.4, 141.3, 141.1, 137.3, 128.8, 128.3, 127.5, 125.6, 124.8, 117.5, 117.2, 52.9;IR v_{max} (neat, cm⁻¹): 1728, 1607, 1308, 1256, 1215, 1115, 1036, 733;HRMS: (ESI) for $C_{15}H_{10}O_4SNa[M+Na]^+$: calcd 309.0192, found 309.0198.

Methyl 7-(naphthalen-2-yl)-2-oxo-2H-chromene-5-carboxylate (5k)

(100 MHz, CDCl₃) & 166.3, 160.0, 155.5, 144.1, 141.2, 135.5, 133.6, 133.4, 129.3, 128.6, 128.2, 127.9, 127.1, 127.0, 126.7, 126.4, 124.7, 119.3, 117.8, 117.6, 52.9; IR v_{max} (neat, cm⁻¹): 1748, 1721, 1609, 1439, 1260, 1219, 1107, 1030, 843, 824, 756; HRMS: (ESI) for $C_{21}H_{15}O_4^+$ $[M+H]^+$: calcd 331.0965, found 331.0972.

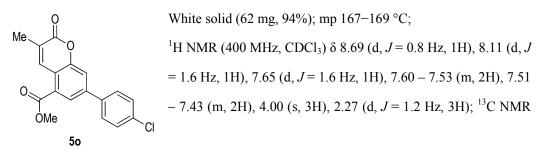

Methyl 7-(naphthalen-1-yl)-2-oxo-2H-chromene-5-carboxylate (5l)

CDCl₃) & 166.2, 159.9, 154.9, 144.2, 141.3, 137.3, 134.0, 131.1, 129.3, 129.2, 128.8, 127.7,

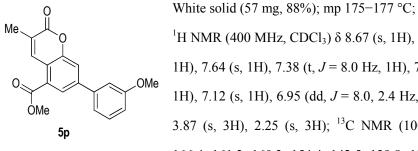

127.4, 127.0, 126.4, 125.5, 125.2, 122.5, 118.1, 117.7, 52.8; IR v_{max} (neat, cm⁻¹): 1738, 1724, 1608, 1431, 1381, 1338, 1263, 1234, 1206, 1119, 1036, 945, 839, 806, 785; HRMS: (ESI) for $C_{21}H_{15}O_4^+$ [M+H]⁺: calcd 331.0965, found 331.0976.

Methyl 3-methyl-2-oxo-7-phenyl-2H-chromene-5-carboxylate (5m)

17.8; IR v_{max} (neat, cm⁻¹): 1728, 1709, 1605, 1580, 1439, 1246, 1165, 1028, 756; HRMS: (ESI) for $C_{18}H_{15}O_4^+[M+H]^+$: calcd 295.0965, found 295.0970.

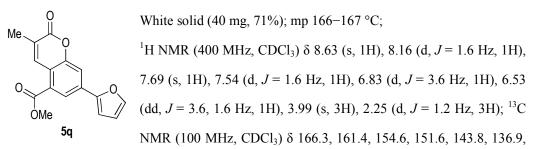

Methyl 3-methyl-2-oxo-7-(p-tolyl)-2H-chromene-5-carboxylate (5n)

White solid (48 mg, 78%); mp 186–190 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.68 (s, 1H), 8.13 (d, *J* = 1.5 Hz, 1H), 7.66 (d, *J* = 1.5 Hz, 1H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 3.99 (s, 3H), 2.41 (s, 3H), 2.26 (d, *J* = 1.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.5, 161.5, 154.5, 142.7, 139.0, 137.0, 135.5, 130.0, 127.2, 127.1, 127.0, 125.8, 118.4,

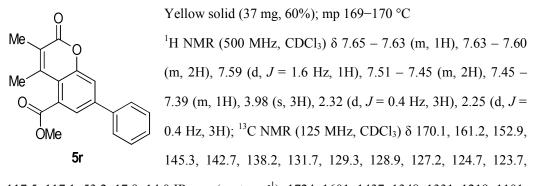

118.1, 52.7, 21.3, 17.8; IR v_{max} (neat, cm⁻¹): 1728, 1607, 1435, 1244, 1180, 822;HRMS: (ESI) for C₁₉H₁₇O₄⁺ [M+H]⁺: calcd 309.1121, found 309.1130.

Methyl 7-(4-chlorophenyl)-3-methyl-2-oxo-2H-chromene-5-carboxylate (50)

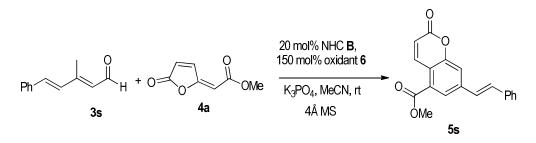
(100 MHz, CDCl₃) & 166.3, 161.3, 154.5, 141.5, 136.9, 136.8, 135.2, 129.6, 128.5, 127.7, 127.5, 125.8, 118.7, 118.6, 52.8, 17.8; IR v_{max} (neat, cm⁻¹): 1736, 1724, 1609, 1501, 1429, 1346, 1244, 1088, 1003, 824, 758; HRMS: (ESI) for $C_{18}H_{14}O_4Cl^+$ [M+H]⁺: calcd 329.0575, found 329.0583.


Methyl 7-(3-methoxyphenyl)-3-methyl-2-oxo-2H-chromene-5-carboxylate (5p)

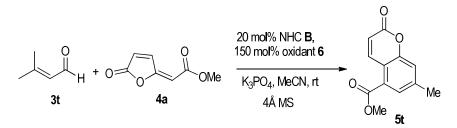
¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.11 (d, J = 1.6 Hz, 1H), 7.64 (s, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 7.12 (s, 1H), 6.95 (dd, J = 8.0, 2.4 Hz, 1H), 3.98 (s, 3H), 3.87 (s, 3H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 161.3, 160.3, 154.4, 142.5, 139.8, 136.8, 130.3, 127.3,


127.1, 126.0, 119.6, 118.7, 118.5, 114.1, 113.0, 55.5, 52.7, 17.7; IR v_{max} (neat, cm⁻¹): 1721, 1609, 1582, 1441, 1400, 1348, 1256, 1215, 1026, 878, 777; HRMS: (ESI) for $C_{19}H_{17}O_5^+$ [M+H]⁺: calcd 325.1071, found 325.1072.

Methyl 7-(furan-2-yl)-3-methyl-2-oxo-2H-chromene-5-carboxylate (5q)

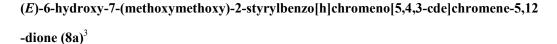

132.1, 127.4, 127.0, 122.7, 118.2, 114.9, 112.4, 108.2, 52.7, 17.8; IR v_{max} (neat, cm⁻¹): 1728, 1610, 1250, 1028, 1011, 735;HRMS: (ESI) for C₁₆H₁₃O₅⁺ [M+H]⁺: calcd 285.0757, found 285.0772.

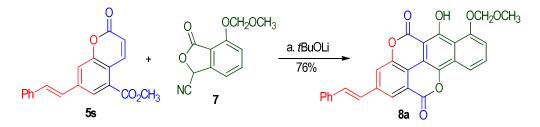
Methyl 3,4-dimethyl-2-oxo-7-phenyl-2H-chromene-5-carboxylate (5r)


117.5, 117.1, 53.2, 17.9, 14.0; IR v_{max} (neat, cm⁻¹): 1724, 1601, 1437, 1348, 1331, 1219, 1101, 1018, 766; HRMS: (ESI) for C₁₉H₁₇O₄⁺ [M+H]⁺: calcd 309.1121, found 309.1119.

Methyl (E)-2-oxo-7-styryl-2H-chromene-5-carboxylate (5s)

Under Ar atmosphere, a solution of enal **3s** (1.70 g, 9.9mmol) and **4a** (1.38 g, 9.0 mmol), oxidant **6** (4.1 g, 9.9mmol), K₃PO₄ (2.9 g,13.5 mmol), activated 4Å MS (1 g) and NHC pre-catalyst **B** (550 mg, 1.8mmol) in 80 mL MeCN was stirred at rt for 48 hours. The mixture was concentrated under reduced pressure and purified by silica gel column chromatography to afford the corresponding product **5s** (1.93 g, 70%) as a red solid; mp 165–167 °C;¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 10.0 Hz, 1H), 8.09 (d, *J* = 2.0 Hz, 1H), 7.57 (d, *J* = 1.2 Hz, 2H), 7.55 (s, 1H), 7.40 (t, *J* = 6.8 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.28 (s, *J* = 16.0 Hz, 1H), 7.11 (d, *J* = 16.4 Hz, 1H), 6.48 (d, *J* = 10.0 Hz, 1H), 4.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 160.0, 155.4, 141.2, 140.6, 136.2, 133.1, 129.1, 129.0, 128.0, 127.2, 126.1, 125.6, 118.2, 117.7, 117.4, 52.8;IR v_{max} (neat, cm⁻¹): 1732, 1713, 1601, 1433, 1302, 1219, 1194, 1134, 1115, 1034, 980, 833, 694;HRMS: (ESI) for C₁₉H₁₅O₄⁺ [M+H]⁺: calcd 307.0965 found 307.0973.


Methyl 7-methyl-2-oxo-2H-chromene-5-carboxylate (5t)



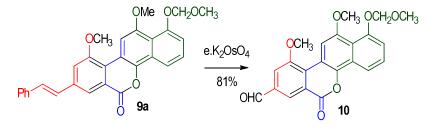
Under Ar atmosphere, a solution of enal **3t** (0.23 ml, 2.4mmol) and **4a** (308mg, 2.0 mmol), oxidant **6** (1.49 g, 3.6mmol), K₃PO₄ (510mg,2.4mmol), activated 4Å MS (300mg) and NHC pre-catalyst **B** (126 mg, 0.4mmol) in 20 mL MeCN was stirred at rt for 48 hours. The mixture was concentrated under reduced pressure and purified by silica gel column chromatography to afford the corresponding product **5t** (86.2mg, 40%) as a yellow solid, all analytical data of **5t** are in agreement with the reported data;³ mp145–146 °C(lit. mp³144.5–144.9 °C);¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, *J* = 10.0 Hz, 1H), 7.75 (d, *J* = 1.1 Hz, 1H), 7.30 (s, 1H), 6.45 (d, *J* = 10.0 Hz, 1H), 3.96 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 160.1, 155.0, 142.2, 141.4, 128.6, 127.4, 121.5, 117.1, 116.4, 52.7, 21.7;IR v_{max} (neat, cm⁻¹): 1740, 1717, 1612, 1308, 1254, 1111, 1308, 837;HRMS: (ESI) for C₁₂H₁₁O₄⁺ [M+H]⁺: calcd 219.0652, found 219.0661.

Total Synthesis of Defucogilvocarcins


Phthalide 7 is a commercial available compound used as reagents in other reports³, and can be prepared in 2 steps synthesis from substituted amide using literature methods⁴.

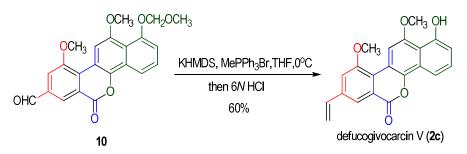
Compound (8a) was prepared as a yellow solid in 76% yield (177 mg) from coumarin 5s (153 mg, 0.50mmol) and phthalide 7 (120 mg, 0.55 mmol), following the procedure of described in synthesis of 8b. mp 280°C \rightarrow black; ¹H NMR (400 MHz, CDCl₃) δ 12.17 (s, 1H), 8.36 (d, J = 1.2 Hz, 1H), 8.20 (dd, J = 8.4, 1.0 Hz, 1H), 7.80 – 7.74 (m, 2H), 7.62 – 7.56 (m, 2H), 7.42 (t, J = 7.2 Hz, 2H), 7.39 – 7.32 (m, 3H), 7.22 (d, J = 16.4 Hz, 1H), 5.46 (s, 2H), 3.64 (s, 3H);IR v_{max} (neat, cm⁻¹): 1730, 1676, 1647, 1616, 1377, 1199, 1107, 988, 752; HRMS: (ESI) for C₂₈H₁₉O₇⁺ [M+H]⁺: calcd467.1125, found 467.1120. (Due to the poor solubility of the product in various solvents, ¹³C NMR cannot be detected)

(E)-10,12-dimethoxy-1-(methoxymethoxy)-8-styryl-6H-dibenzo[c,h]chromen-6-one (9a)⁵

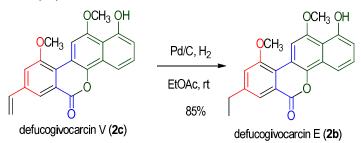


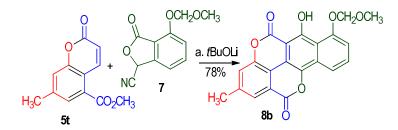
To a Schlenk tube equipped with a magnetic stir bar, was added 1 N NaOH (4 ml) and 1,4-dioxane (4 ml),the resulting mixture was degassed (three freeze-pump-thaw cycles) and the reaction tube was refilled with Ar. To this solution was added **8a** (100 mg, 0.21mmol) in glove box. The reaction mixture was stirred at 60°C for 5 h when the yellow suspension turns to a clear yellow solution, and then cooled to 0°C. It was quenched with saturated 1 N HCl and extracted with DCM (3 x 10 mL).The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure, the desired product was used without further purification as a yellow solid.

To a solution of this yellow solid in dry acetone, was added Me₂SO₄ (1 ml) and K₂CO₃ (2 g) at rt. The reaction mixture was stirred at 50 °C overnight, and then cooled to rt. The mixture was filtered, washed with acetone and the volatiles were removed under reduced pressure afforded as a yellow suspension. Then the resulting suspension was filtered, the filter cake was washed with water and acetone, then dried in vacuum to yield **9a** (96 mg, 98% yield for 2 steps) as a yellow solid. mp 285 °C \rightarrow black;


¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 8.27 (dd, J = 8.4, 0.8 Hz, 1H), 8.20 (d, J = 1.6 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.47 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.36 – 7.29 (m, 2H), 7.23 (d, J = 16.4 Hz, 1H), 7.18 (dd, J = 7.6, 0.8 Hz, 1H), 7.10 (d, J = 16.4 Hz, 1H), 5.28 (s, 2H), 4.11 (s, 3H), 3.99 (s, 3H), 3.63 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ 161.5, 157.7, 153.8, 152.6, 141.0, 138.6, 136.7, 131.2, 129.0, 128.5, 127.3, 126.96, 126.92, 126.86, 123.7, 123.6, 120.7, 118.9, 117.0, 115.5, 114.5, 113.6, 104.4, 97.1, 56.67, 56.64, 56.4;IR v_{max} (neat, cm⁻¹): 1726, 1589, 1390, 1375, 1256, 1229, 1130, 1022, 781;HRMS: (ESI) for C₂₉H₂₅O₆⁺ [M+H]⁺: calcd469.1646, found 469.1646.

10,12-dimethoxy-1-(methoxymethoxy)-6-oxo-6H-dibenzo[c,h]chromene-8-carbaldehyde (10)


To a suspension of **9a** (50 mg, 0.107mmol) in THF (6 mL) and H₂O (6 mL) was K₂OsO₄² H₂O (1 mg, 0.002mmol) and NaIO₄ (92 mg, 0.428mmol) at 0°C. The reaction was stirred at rt overnight then quenched with saturated aqueous Na₂S₂O₃ (10 mL). The layers were separated and the aqueous phase was extracted with DCM (3 x 10 mL), the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was triturated with Et₂O (2 × 1mL) to afford **10** (35 mg, 83%) as a yellow solid. All analytical data of **10** are in agreement with the reported data^{7a}. mp195–198 °C (lit. mp^{7a} 200–203 °C);¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.44 (d, *J* = 1.6 Hz, 1H), 8.28 (s, 1H), 8.23 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.65 (d, *J* = 1.2 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.23 (dd, *J* = 7.6, 0.8 Hz, 1H), 5.30 (s, 2H), 4.10 (s, 3H), 4.00 (s, 3H), 3.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.3, 160.3, 157.8, 153.7, 152.7, 142.3, 136.1, 129.7, 127.5, 127.0, 126.5, 123.5, 119.5, 117.0, 116.1, 112.63, 112.61, 103.7, 96.9, 56.6, 56.5, 56.4;IR v_{max} (neat, cm⁻¹): 1732, 1703, 1665, 1587, 1452, 1393, 1117, 1059, 1013; HRMS: (ESI) for C₂₂H₁₈O₇Na⁺ [M+Na]⁺: calcd 417.0945, found 417.0958.


To a suspension of MePPh₃Br (132mg, 0.368mmol) in THF (6 mL) was added KHMDS (0.7M in PhMe, 0.53 mL, 0.368mmol) at 0 °C and stirring was continued for 15 min. A solution of 10 (29 mg, 0.074 mmol) in THF (2 mL) was added dropwise and the mixture was stirred for 2h at 0 °C and then quenched with 6NHCl (5 ml), the resulting mixture was stirred overnightat rt. The aqueous layerwas extracted with DCM (3 x 10 mL) and the combined organic layers were then driedover Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (20 : 1 DCM/MeOH) to provide 2c (15.5 mg,60%) as a yellow solid. All analytical data of 2c are in agreement with the reported data.⁷mp263-266 °C(lit. mp^{7b} 267-272 °C);¹H NMR (400 MHz, CDCl₃) δ 9.31 (s, 1H), 8.22 (s, 1H), 8.09 (d, J = 1.6 Hz, 1H), 8.04 (dd, J = 8.4, 0.8 Hz, 1H), 7.48 (t, J = 8.0Hz, 1H), 7.27 (d, J = 1.2 Hz, 1H), 6.99 (dd, J = 8.0, 1.2 Hz, 1H), 6.77 (dd, J = 17.6, 10.8 Hz, 1H), 5.93 (d, J = 17.6 Hz, 1H), 5.45 (d, J = 10.8 Hz, 1H), 4.08 (s, 3H), 4.07 (s, 3H);¹³C NMR (100 MHz, CDCl₃) & 161.3, 157.5, 154.4, 152.0, 141.8, 138.8, 135.5, 128.7, 126.3, 123.8, 123.6, 120.8, 116.6, 115.0, 114.2, 113.6, 112.9, 101.8, 56.4, 56.2; IR v_{max} (neat, cm⁻¹): 3339, 1721, 1605, 1385, 1238, 1167, 1065; HRMS: (ESI) for C₂₁H₁₆O₅Na⁺ [M+Na]⁺: calcd 371.0890, found 371.0900.

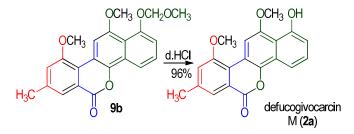
DefucogivocarcinE (2b)


A solution of **2c** (8 mg, 0.023mmol) in EtOAc (3 mL) was treated with hydrogen in the presence of 10% Pd-C (2.4mg, 0.002mmol) at rt and stirred for 1.5h. The mixture was filtered through Celite, washed with EtOAc and the volatiles were removed under reduced pressure. The residue was triturated with Et₂O (2 × 1 mL) to afford **2b** (6.8 mg, 85%) as a pale yellow solid. All analytical data of **2b** are in agreement with the reported data⁸.mp 254–256 °C(lit. mp⁸ 255–256 °C);¹H NMR (400 MHz, CDCl₃) δ 9.36 (s, 1H), 8.33 (s, 1H), 8.08 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.97 (d, *J* = 1.6 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 1.6 Hz, 1H), 7.00 (dd, *J* = 7.6, 0.8 Hz, 1H), 4.11 (s, 3H), 4.08 (s, 3H), 2.80 (q, *J* = 7.6 Hz, 2H), 1.35 (t, *J* = 7.6 Hz, 3H);¹³C NMR (100 MHz, CDCl₃) δ 161.5, 157.3, 154.3, 152.0, 146.3, 141.5, 128.6, 126.4, 123.4, 122.2, 121.8, 117.3, 114.8, 113.6, 113.1, 112.6, 102.0, 56.4, 56.2, 29.1, 15.3; IR v_{max} (neat, cm⁻¹): 3356, 1719, 1589, 1437, 1387, 1250, 1171, 1123, 1057; HRMS: (ESI) for C₂₁H₁₉O₅[M+H]⁺: calcd351.1227, found 351.1228.

6-hydroxy-7-(methoxymethoxy)-2-methylbenzo[h]chromeno[5,4,3-cde]chromene-5,12-di one (8b)³

To a stirred solution of 'BuOH (124 μ l, 1.36 mmol) in THF (3 mL) at -60°C was added "BuLi (2.0 M in cyclohexane, 0.68 mL, 1.36mmol) and stirring for 10 min. Then a solution of a phthalide 7⁴ (90 mg, 0.41mmol) in THF (1 mL) was added dropwise. The resulting yellowish solution was stirred at -60 °C for 40 min, after which a solution of coumarin **5t** (90 mg, 0.41

mmol)in THF (5 mL) was added to it. The cooling bath was removed after about 1 h at -60 °C and the reaction mixture was brought to rt over a period of 1 h and further stirred overnight. The reaction was then quenched with saturatedaqueousNH₄Cl (15 mL) and stirred for 30 min at rt. The THF was removed in vacuum and the resulting suspension was filtered. The filter cake was washed with water and acetone, then dried in vacuum to yield the pure product **8b** (121 mg, 78%) as a yellow solid. mp 265°C \rightarrow black; ¹H NMR (400 MHz, CDCl₃) δ 12.18 (s, 1H), 8.20 (dd, *J* = 8.4, 1.0 Hz, 1H), 8.06 (s, 1H), 7.76 (t, *J* = 8.0 Hz, 1H), 7.51 (s, 1H), 7.34 (dd, *J* = 8.0, 1.0 Hz, 1H), 5.45 (s, 2H), 3.64 (s, 3H), 2.61 (s, 3H);IR v_{max} (neat, cm⁻¹): 3160, 1701, 1624, 1400, 1223, 1107, 976, 752; HRMS: (ESI) for C₂₁H₁₄O₇Na⁺ [M+Na]⁺: calcd 401.0632, found 401.0618. (Due to the poor solubility of the product in various solvents, ¹³C NMR cannot be detected)

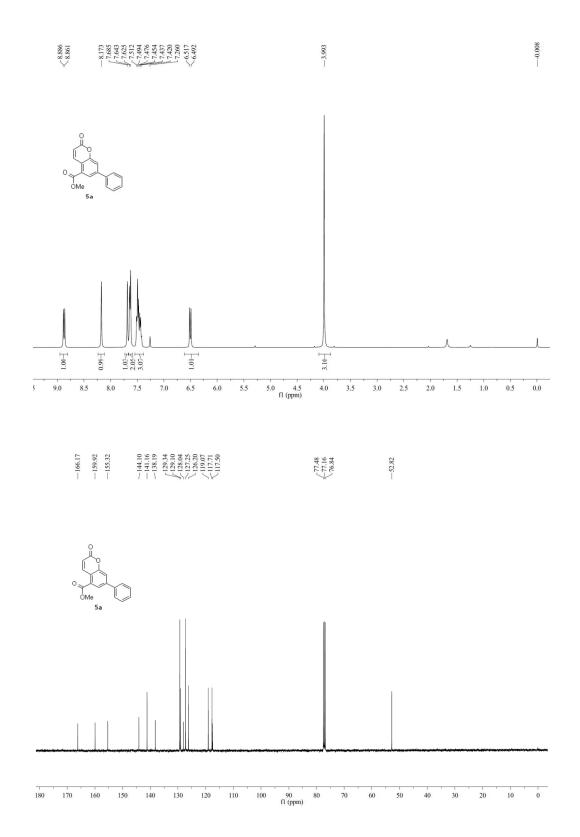


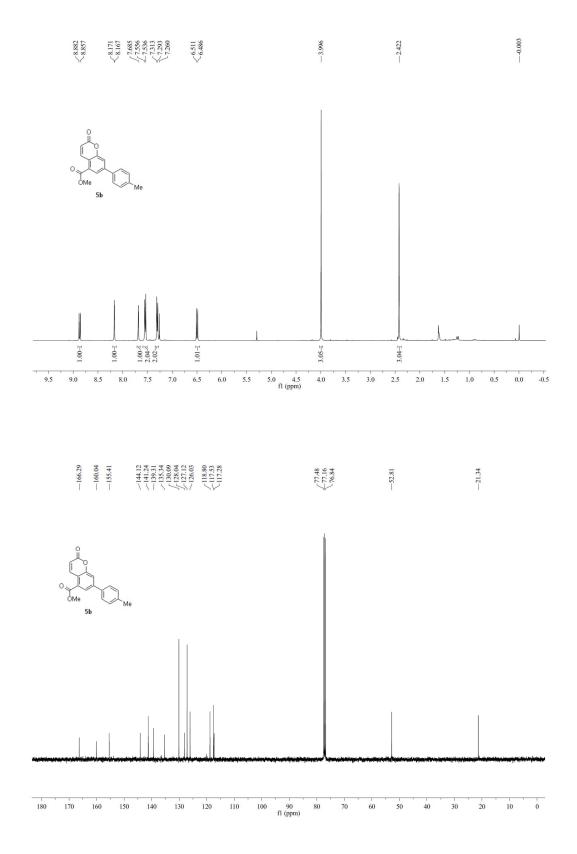
To a Schlenk tube equipped with a magnetic stir bar, was added 1N NaOH (4 ml) and 1,4-dioxane (4 ml),the resulting mixture was degassed (three freeze-pump-thaw cycles) and the reaction tube was refilled with Ar. To this solution was added **8b** (80 mg, 0.21mmol) in glovebox. The reaction mixture was stirred at 60°C for 5 h when the yellow suspension turns to a clear yellow solution, and then cooled to 0°C.It was quenched with saturated 1N HCl and extracted with DCM (3 x 10 mL).The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure, the desired product was used without further purification as a yellow solid.

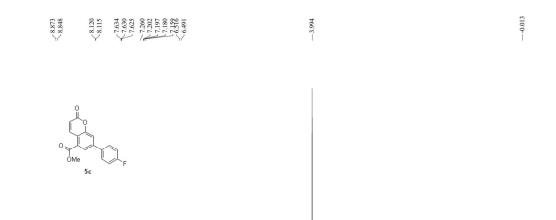
To a solution of this yellow solid in dry acetone, was added Me_2SO_4 (1 ml) and K_2CO_3 (2g) at rt. The reaction mixture was stirred at 50 °C overnight, and then cooled to rt. The mixture was filtered, washed with acetone and the volatiles were removed under reduced pressure afforded

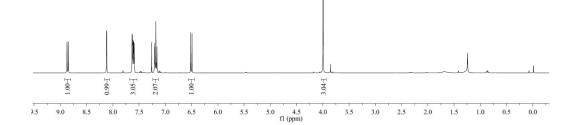
as a yellow suspension. Then the resulting suspension was filtered, the filter cake was washed with water and acetone, then dried in vacuum to yield **9b** (66.3 mg, 83% for two steps) as a yellow solid.mp195–198 °C;¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 7.87 (s, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.06 (s, 1H), 5.29 (s, 2H), 4.02 (s, 3H), 3.98 (s, 3H), 3.63 (s, 3H), 2.45 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ 161.5, 157.2, 153.7, 152.5, 140.6, 139.9, 127.2, 126.9, 123.2, 122.8, 122.0, 118.7, 118.2, 117.0, 115.4, 113.7, 104.5, 97.1, 56.6, 56.3, 21.7;IR v_{max} (neat, cm⁻¹):1720, 1589, 1334, 1153, 1061, 1018;HRMS: (ESI) for C₂₂H₂₁O₆⁺ [M+H]⁺: calcd381.1333, found 381.1320.

Defucogivocarcin M (2a)

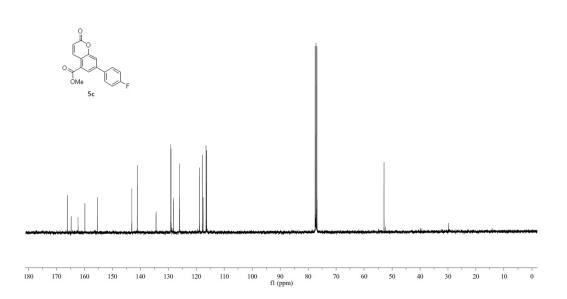


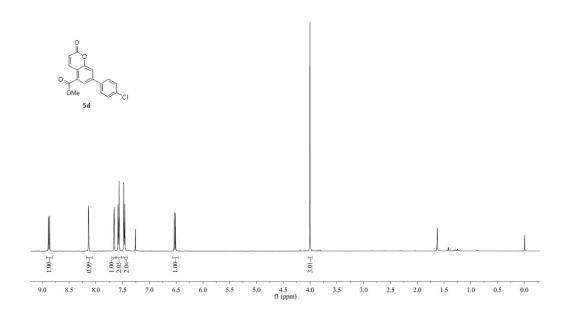

To a suspension of **9b** (18 mg, 0.047 mmol) in MeOH (2 mL) was added 6 *N* HCl (0.2 mL) at rt. The reaction mixture was stirred at 50°C for 2 h. The reaction was diluted with DCM (20 mL) and washed with saturated aqueous NaCl (2 x 10 mL),the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield **2a** (15.3 mg, 96%) as a yellow solid. All analytical data of **2a** are in agreement with the reported data⁶. mp 284–286 °C (lit. mp^{6a}289–291 °C); ¹H NMR (400 MHz, CDCl₃) δ 9.34 (s, 1H), 8.26 (s, 1H), 8.05 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.90 (d, *J* = 0.8 Hz, 1H), 7.48 (t, *J* = 8.4 Hz, 1H), 7.09 (d, *J* = 1.2 Hz, 1H), 6.99 (dd, *J* = 7.6, 0.8 Hz, 1H), 4.09 (s, 3H), 4.05 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 157.1, 154.3, 151.9, 141.4, 140.0, 128.6, 126.3, 123.2, 122.9, 121.9, 118.2, 114.8, 113.5, 113.1, 112.5, 101.9, 56.3, 56.1, 21.8; IR v_{max} (neat, cm⁻¹): 3372, 1720, 1512, 1260, 602;HRMS: (ESI) for C₂₀H₁₇O₅⁺ [M+H]⁺: calcd337.1071, found 337.1068.

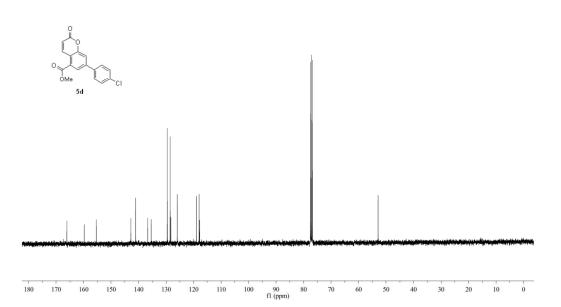

III: References

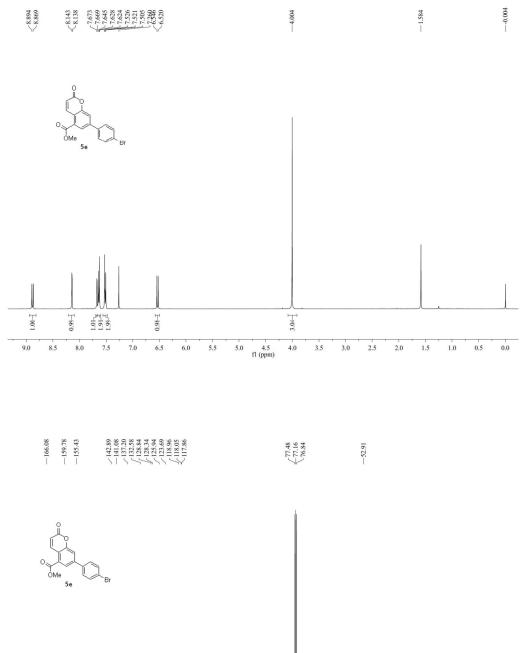

(a) Mo, J.; Chen, X.; Chi, Y. R. J. Am. Chem. Soc. 2012, 134, 8810–8813; (b) Wiech, N. L.; Lan, L.; Hsuan, Y. WO2006052916, 2006.

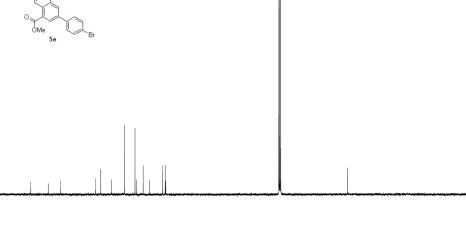
- (a) Chen, W.; Ye, C.; Wang, Y.; Sun, P. *HuaxueTongbao*, 2009, 72, 438-443; (b) Chen, Y.;
 Yu, H.; Shie, J.; Cheng, T. R.; Wu, C.; Fang, J.; Wong, C. *Bioorg. Med. Chem*.2014,22, 1766–1772.
- Ueberschaar, N.; Xu, Z.; Scherlach, K.; Metsä-Ketelä, M.; Bretschneider, T.; Dahse, H-M.; Görls, H.; Hertweck, C. J. Am. Chem. Soc. 2013, 135, 17408–17416.
- 4. Okazaki, K.; Nomura, K.; Yoshii, E. Synth. Commun.1987, 17, 1021-1027.
- 5. Sternbach, L. H.; Kaiser, S.; Goldberg, M. W. J. Am. Chem. Soc. 1958, 80, 1639-1647.
- 6. (a) Takemura, I.; Imura, K.; Matsumoto, T.; Suzuki, K. *Org. Lett.* 2004, *6*, 2503–2505;
 (b) Sumida, Y.; Harada, R.; Kato-Sumida, T.; Johmoto, K.; Uekusa, H.; Hosoya T. *Org. Lett.* 2014, 16, 6240–6243.
- (a) Nandaluru, P. R.; Bodwell, G. J.J. Org. Chem. 2012, 77, 8028–8037; (b) Petten, A. D.; Nguyen, N. H.; Danishefsky, S. J. J. Org. Chem. 1988, 53, 1003–1007.
- 8. James, C. A.; Snieckus, V. J. Org. Chem. 2009, 74, 4080-4093.

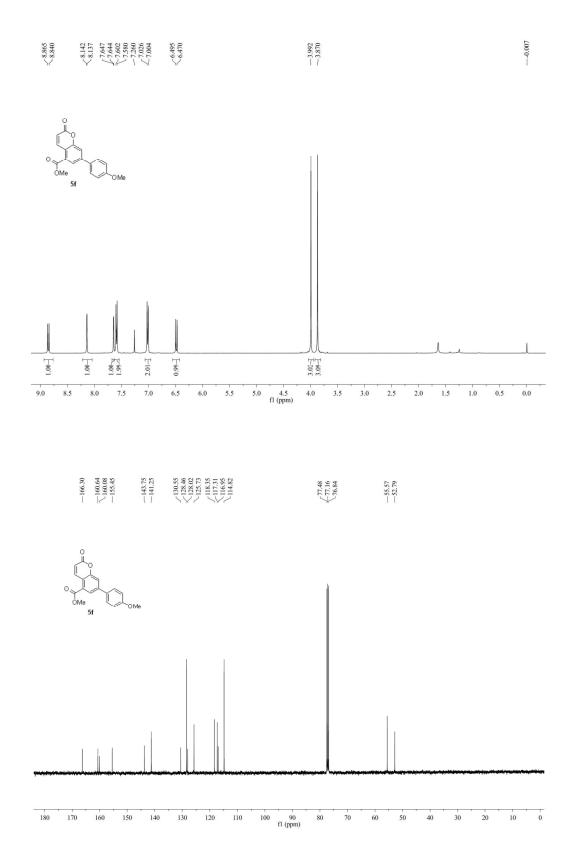


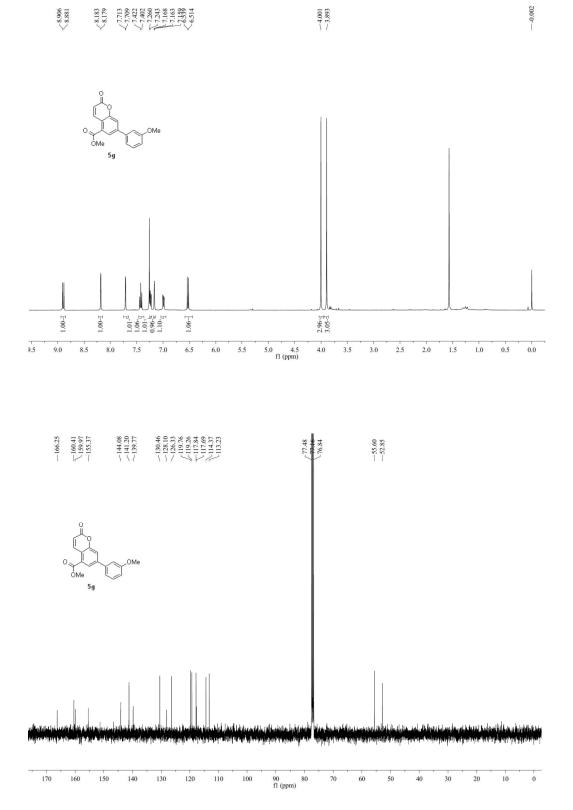




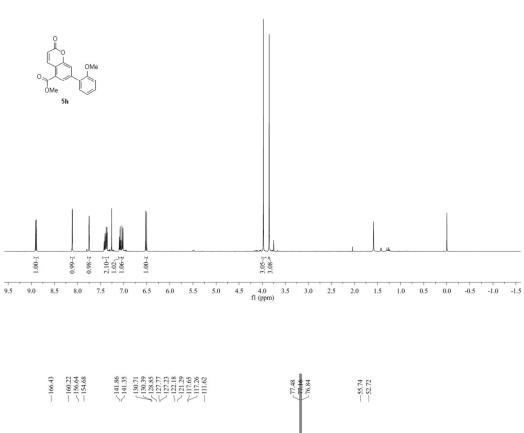


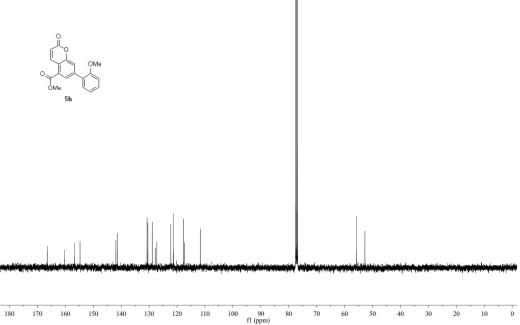

----0.007

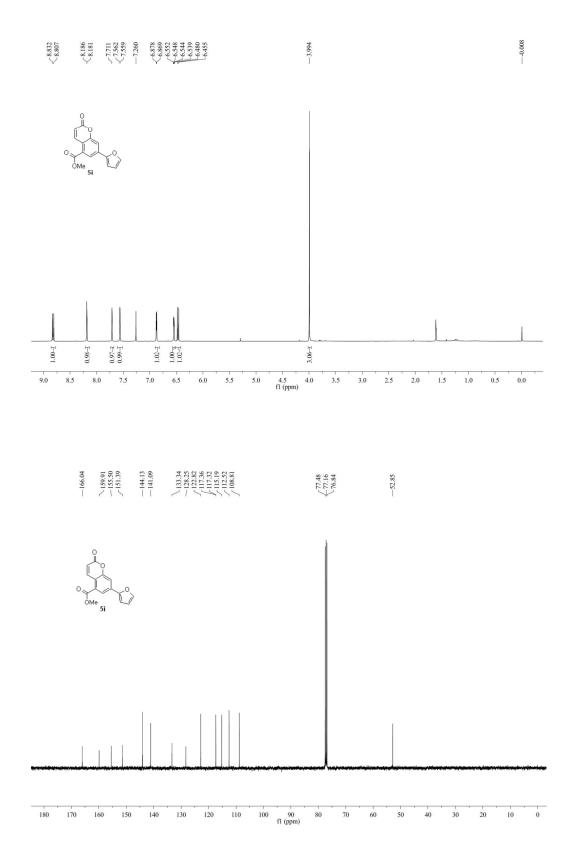


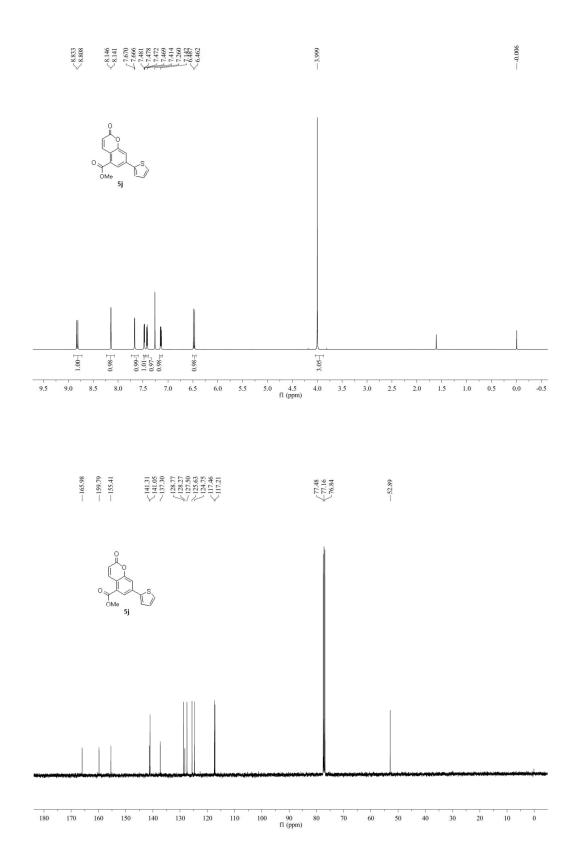


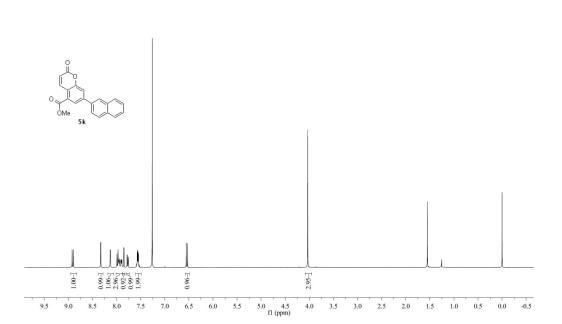


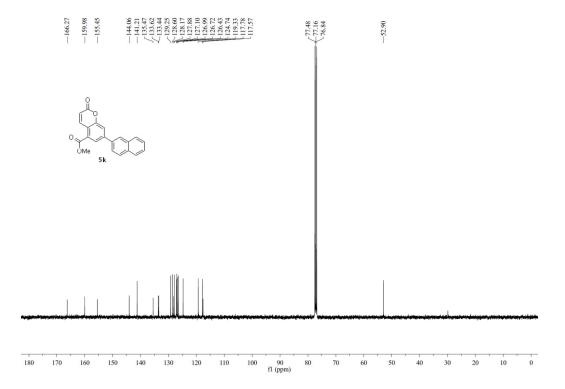

100 90 80 fl (ppm)

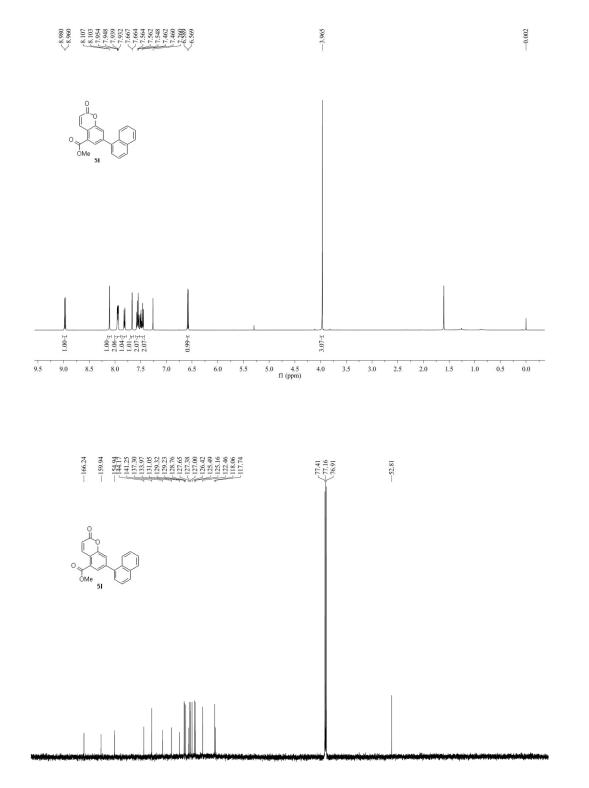


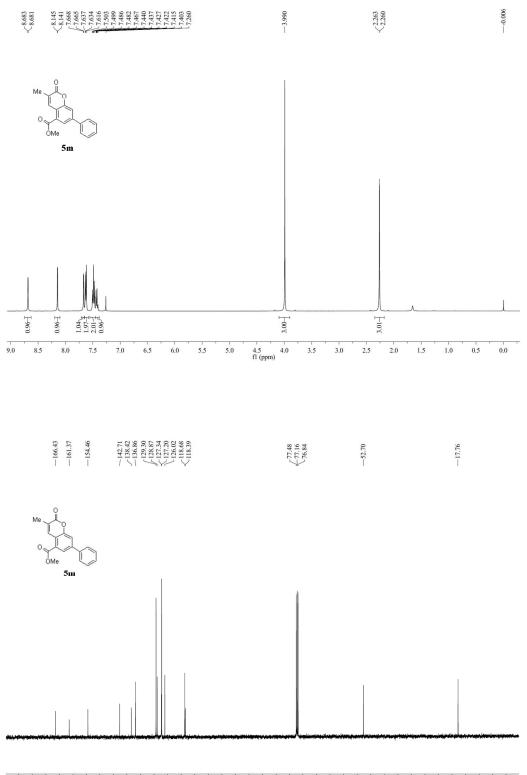




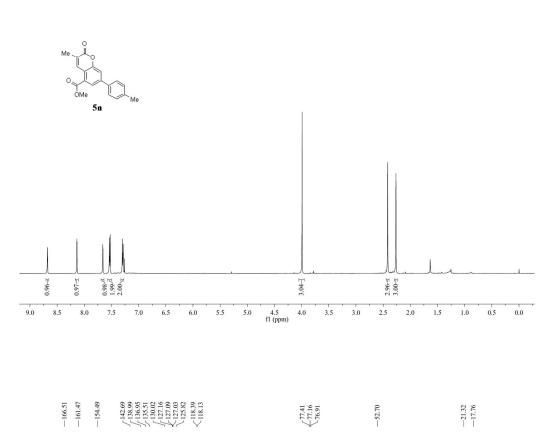


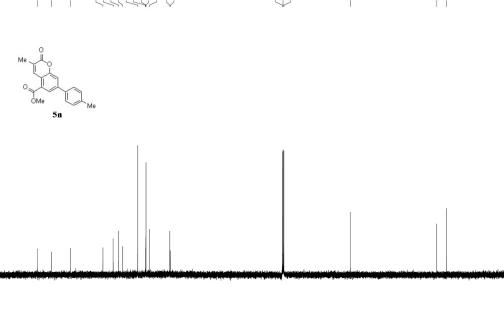


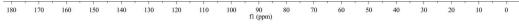


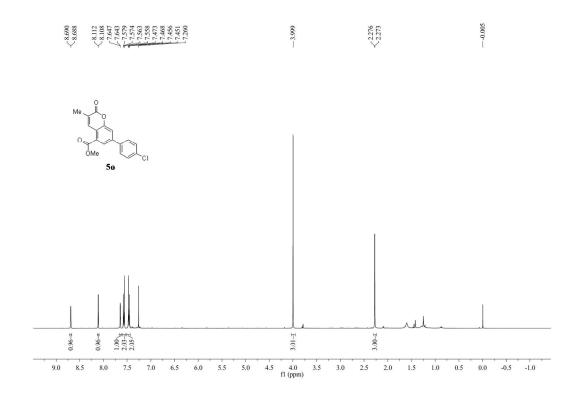

---4.033

--0.000




180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)




90 80 fl (ppm)

