Supporting Information

Confinement of iodine molecules into triple-helical chains within robust metal– organic frameworks

Xinran Zhang,¹ Ivan da Silva,² Harry G.W. Godfrey,¹ Samantha K. Callear,² Sergey A. Sapchenko,^{1,3} Yongqiang Cheng,⁴ Inigo Vitórica-Yrezábal,¹ Mark D. Frogley,⁵ Gianfelice Cinque,⁵ Chiu C. Tang,⁵ Carlotta Giacobbe,⁶ Catherine Dejoie,⁶ Svemir Rudić,² Anibal J. Ramirez-Cuesta,⁴ Melissa A. Denecke¹, Sihai Yang¹* and Martin Schröder¹*

[¹] School of Chemistry, University of Manchester, Manchester, M13 9PL (UK)
E-mail: Sihai.Yang@manchester.ac.uk; M.Schroder@manchester.ac.uk

^[2] ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX (UK)

- [³] Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 (Russia)
- [⁴] The Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
- ⁵] Diamond Light Source, Harwell Science Campus, Oxfordshire, OX11 0DE (UK)
- ^[6] European Synchrotron Radiation Facility, Grenoble, 38043 (France)

1. Experiments and methods

All materials were purchased from commercially available sources, and used without further purification. Iodine (99.8% ACS) was purchased from Sigma-Aldrich.

1.1 Synthesis of MFM-300 materials

1.1.1 Synthesis of MFM-300(Al)

Biphenyl-3,3',5,5'-tetracarboxylic acid (H₄L, 60 mg, 0.182 mmol) and Al(NO₃)₃9H₂O (340mg, 0.906 mmol) were added to a mixture of water (9 mL), piperazine (3 mL) and 2.8M HNO₃ (2 mL). The solution was heated in a 24 mL bomb at 483K for 3 days. The tan product was separated by filtration, washed with water and DMF several times and dried in air.

1.1.2 Synthesis of MFM-300(In)

Biphenyl-3,3',5,5'-tetracarboxylic acid (H₄L, 330 mg, 1 mmol) and $In(NO_3)_3.3H_2O$ (585 mg, 1.65 mmol) were added to a mixture of DMF (20 mL), MeCN (10 mL) and 70% nitric acid (1 mL). The solution was heated in a pressure flask at 363K for 3 days. The white product was separated by filtration, washed with DMF several times and dried in air.

1.1.3 MFM-300(Sc)

Biphenyl-3,3',5,5'-tetracarboxylic acid (H₄L, 300 mg, 0.91 mmol) and scandium triflate (900 mg, 1.83 mmol) were mixed in DMF (105 mL), water (15 mL) and HCl (36.5%, 3 mL). The solution was placed in a round bottom pressure flask and heated in an oil bath to 80° for 72h. The white product was separated by filtration, washed with DMF and dried in air.

1.2 In-house powder X-ray diffraction analysis

Powder X-Ray Diffraction (PXRD) data were collected in flat plate mode over the 2 θ range 5-40° on a X'pert multipurpose Diffractometer using Cu-K α radiation (λ = 1.54056 Å) at 40 kV and 30 mA.

1.3 SEM experiments

SEM measurements were undertaken on a Zeiss EVO60 at a working voltage of 20kv with a scale bar up to 2 microns. The EDX experiment was undertaken using an EDS7636 SiLi dectector.

2. Additional Results

Figure S1: Views of samples: (a) MFM-300(Sc), (b) MFM-300(Sc) · 1.11I₂ and (c) MFM-300(Sc) · 2.62I₂.

Figure S2: PXRD patterns for solvated MFM-300(Al)

Figure S3: PXRD patterns for solvated MFM-300(In).

Figure S4: PXRD patterns for solvated MFM-300(Sc).

Figure S5: PXRD patterns for solvated MFM-300(Fe).

Figure S6: N₂ isotherm for MFM-300(Fe) at 77K.

Figure S7: (a) Comparison of PXRD patterns for the bare MFM-300(Sc) and regenerated MFM-300(Sc) upon desorption of I_2 . (b) Comparison of PDF data for the bare MFM-300(Sc) and regenerated MFM-300(Sc) upon desorption of I_2

Figure S8: Comparison of the simulated and experimental PDF data for the bare MFM-300(Sc).

Figure S9: XPS spectra of MFM-300(Sc) \cdot 2.62I₂. (a) full range (b) specific region for I₂.

Figure S10: SEM images. top: MFM-300(Sc); bottom: MFM-300(Sc) · 2.62I₂.

Figure S11: SEM-EDX images for MFM-300(Sc) · 2.62I₂.

Figure S12: Raman spectra of MFM-300(Sc) as a function of I₂ loading.

Figure S13: High resolution powder diffraction data for MFM-300(Sc) as a function of I_2 loading.

	MFM-300(Sc) 1.11I ₂	MFM-300(Sc) · 2.62I ₂	MFM-300(Fe)	MFM-300(Fe) · 1.11I ₂
Formula	$C_{16}H_8Sc_2O_{10}.I_{2.2168}$	$C_{16}H_8Sc_2O_{10}.I_{5.232}$	$C_{16}H_8Fe_2O_{10}$	C ₁₆ H ₈ Fe ₂ O ₁₀ .I _{2.2216}
Formula weight (g/mol)	731.46	1114.08	471.92	753.84
Temp / K	298	298	298	298
Radiation type	Synchrotron	Synchrotron	Synchrotron	Synchrotron
Diffractometer	Beamline I11 of Diamond Light Source	Beamline I11 of Diamond Light Source	Beamline I11 of Diamond Light Source	Beamline I11 of Diamond Light Source
Data collection mode	Transmission	Transmission	Transmission	Transmission
Wavelength (Å)	0.827136(2)	0.827136(2)	0.827136(2)	0.827136(2)
Crystal system	Tetragonal	Tetragonal	Tetragonal	Tetragonal
Space group	<i>I</i> 4 ₁ 22			
<i>a</i> / Å	15.37392(3)	15.40576(4)	15.1061(2)	15.11438(3)
<i>b</i> / Å	15.37392(3)	15.40576(4)	15.1061(2)	15.11438(3)
<i>c</i> / Å	12.35373(3)	12.39288(4)	12.09237(14)	12.03278(3)
$V / Å^3$	2919.897(14)	2941.29(2)	2759.41(8)	2748.823(13)
$D_c/g \text{ cm}^{-3}$	1.664	2.518	1.136	1.822
R _{exp} / %	3.86	3.44	4.66	3.66
R _{wp} / %	6.81	6.12	8.98	6.76
R _p / %	5.22	4.55	7.00	5.24
GoF	1.77	1.78	1.93	1.85
R _{Bragg}	3.73	3.79	3.34	2.40
CCDC deposition number	1558479	1558480	1558481	1558482

Table S1: Summary of powder X-ray diffraction refinements for MFM-300(Sc)^{-1.11I2}, MFM-300(Sc)^{-2.62I2}, desolvated MFM-300(Fe) and MFM-300(Fe)^{-1.11I2}.

Figure S14: Views of different I_2 binding sites for MFM-300(Sc) $\cdot 1.11I_2$.

Figure S15: Views of different I_2 binding sites for MFM-300(Sc) $\cdot 2.62I_2$.

Additional views for MFM-300(Fe) ·1.11I₂

Figure S16: Views along *c* axis of the binding sites and occupancies for adsorbed I_2 molecules in MFM-300(Fe)·1.11I₂.

Figure S17: I_2 binding sites for MFM-300(Fe) $\cdot 1.11I_2$.

Complex	MFM-300(In) · 0.5I ₂
Empirical Formula	$C_{16}H_8I\ In_2O_{10}$
Molar mass, g mol ⁻¹	716.76
Temperature, K	120(2)
Crystal system	Tetragonal
Space group	I4 ₁ 22
<i>a</i> , Å	15.4373(2)
b, Å	15.4373(2)
<i>c</i> , Å	12.3120(2)
<i>V</i> , / Å ³	2934.08(9)
Ζ	4
$D_{\text{calcd}}, \text{ g cm}^{-3}$	1.623
F(000)	1340
μ , mm ⁻¹ Crystal size, mm θ range, deg Limiting indicies <i>hkl</i> Reflections collected / independent R_{int} Reflections with $I > 2\sigma(I)$	2.66 $0.060 \times 0.020 \times 0.005$ 2.558 - 24.977 $-18 \le h \le 16, -17 \le k \le 17, -14 \le l \le 14$ 6405 / 1247 0.0906 996
Goodness-of-fit on F^2	1.129
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0956, wR_2 = 0.2780$
R-indices (all data)	$R_1 = 0.1122, wR_2 = 0.2657$
Largest difference in peak and hole, $e/Å^3$	2.634 / -1.061
CCDC deposition number	1558478

Table S2: Crystal data and structure refinement for MFM-300(In) $0.5I_2$.

Bond	<i>d</i> , Å
In1—O1M	2.103 (18)
In1—O1M ⁱ	2.103 (18)
In1—O12 ⁱⁱ	2.104 (14)
In1—O12 ⁱⁱⁱ	2.104 (14)
In1—O11	2.162 (15)
In1—O11 ^{iv}	2.162 (15)
I1—I1 ^v	2.64 (6)
I2—I2 ^{vi}	2.49 (5)

Table S3. Selected bond length (Å) for MFM-300(In) $\cdot 0.5I_2$

Symmetry transformations used to generate equivalent atoms: (i) y+1/2, -x+1, z-1/4; (ii) -x+3/2, y, -z+3/4; (iii) -y+1, x-1/2, z+1/4; (iv) -y+1, -x+1, -z+1; (v) x, -y+1/2, -z+5/4; (vi) y, x, -z+1.

Figure S18. TGA plots and I₂ adsorption capacities of MFM-300(Sc) for adsorption-desorption cycling tests.