Revealing the Synergy of Mono/Bimetallic PdPt/TiO₂ Heterostructure for Enhanced Photoresponse Performance

Jun $Li^{\dagger, \parallel}$, Chang-Hai $Liu^{\sharp, \S, \parallel}$, Mohammad Norouzi Banis[¶], Daniel Vaccarello[†], Zhi-Feng Ding[†],

Sui-Dong Wang^{*§} and Tsun-Kong Sham^{*†,¶}

[†]Deparment of Chemistry and [¶]Soochow University-Western University Joint Centre for Synchrotron Radiation Research, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada

^{*}School of Material Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China

[§]Soochow University-Western University Joint Centre for Synchrotron Radiation Research, Insitute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China

J. Li and C. H. Liu contributed equally to this work

*Corresponding email: <u>wangsd@suda.edu.cn</u>; <u>tsham@uwo.ca</u>

Figure S1. Schematic illustration of noble metal $(NM)/TiO_2$ heterojunction as well as the electron transfer upon excitation.

Figure S2. SEM cross section view of TiO_2 NTs.

Figure S3. The first shell EXAFS fitting between 1.6 and 3.3 Å at the Pt L₃-edge of (a) Pt foil, (b) Pt-TNT, (c) Pd₁Pt₂-TNT, (d) Pd₁Pt₁-TNT and (e) Pd₂Pt₁-TNT. Of which the black and red lines are experimental and associated fitting data, respectively.

Figure S4. The first shell EXAFS fitting between 1.6 and 3.2 Å at the Pd K-edge of (a) Pd foil, (b) Pd-TNT, (c) Pd₂Pt₁-TNT, (d) Pd₁Pt₁-TNT and (e) Pd₁Pt₂-TNT. Of which the black and red lines are experimental and associated fitting data, respectively.